陈建军

职称:教授

学历:博士

电话:

办公室:北京市海淀区新街口外大街19号北京师范大学科技楼c307

个人主页:

邮箱: jjchern@bnu.edu.cn

邮编: 100875

传真:

教育经历

2006.9∼2011.7              北京大学物理学院,理学博士

2002.9∼2006.7              南开大学物理科学学院,理学学士



工作经历

2020.6∼至今     北京师范大学物理学系,教授

2013.8∼2020.5              北京大学物理学院, “百人计划”研究员

2011.7∼2013.7              北京邮电大学理学院,讲师



学术兼职

1、第九届中国光学学会基础光学专业委员会委员

2、《量子电子学报》第八届编委会委员。



集成纳米光子学

1. 研究复合金属-介质人工微纳结构中光(经典、量子)的产生、传输及操控。

2. 发展混合集成工艺,把异质异构光子器件精确混合集成在芯片上。


教学工作

《几何光学及光学仪器》


1. 2019年获国家自然科学基金委员会“优秀青年科学基金项目”资助。

2. 2018年获北京大学物理学院本科生科研优秀指导教师称号。

3. 2013年获第八届饶毓泰基础光学奖二等奖。

4. 2011年获北京大学优秀博士论文奖


1.          S. Jia, Y. Li, Z. Xue, K. Chen, Z. Li,Q. Gong, and J. Chen, "Multichannel Single-Photon Emissions with on-DemandMomentums by Using Anisotropic Quantum Metasurfaces," Adv Mater, e2212244(2023).

2.          Z. Xue, S. Jia, X.Li, Z. Li, Q. Gong, and J. Chen, "Scalar‐Superposition Metasurfaces withRobust Placement of Quantum Emitters for Tailoring Single‐Photon EmissionPolarization," Laser Photonics Rev 16,2200179 (2022).

3.          H. Li, W. Li, andJ. Chen, "Perovskite micro-nano lasers and on-chip integration,"Chinese Sci Bull 67, 3928-3940 (2022).

4.          S. Jia, Z. Li, andJ. Chen, "Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna," Chinese Phys B 31, 014209 (2022).

5.          X. Cheng, C. Liu,G. Zhang, W. Liu, J. Wang, Y. Duan, J. Chen, H. Yang, and S. Wang, "Resolving plasmonic hotspots by label-free super-resolutionmicroscopy," Optics Letters 47, 210-213 (2022).

6.          J. Chen and F. Gan,"Polarization-switchable plasmonic emitters based on laser-inducedbubbles," Opto-Electron Adv 5,200100-200100 (2022).

7.          Y.-J. Qian, H. Liu,Q.-T. Cao, J. Kullig, K. Rong, C.-W. Qiu, J. Wiersig, Q. Gong, J. Chen, andY.-F. Xiao, "Regulated Photon Transport in Chaotic Microcavities byTailoring Phase Space," Physical Review Letters 127, 273902 (2021).

8.          S. Jia, Z. Li, andJ. Chen, "High-sensitivity plasmonic sensor by narrowing Fano resonancesin a tilted metallic nano-groove array," Opt Express 29, 21358-21368 (2021).

9.          D. Wu and J. Chen,"Broadening Bandwidths of Few-Layer Absorbers by Superimposing TwoHigh-Loss Resonators," Nanoscale Res Lett 16, 26 (2021).

10.        H. Liu, H. Yu, L.Dai, Z. Li, and J. Chen, "Low-threshold and narrow-linewidth perovskitemicrolasers pumped by a localized waveguide source," Nanophotonics-Berlin 10, 3477-3485 (2021).

11.        G. Li, S. Jia, H.Yang, and J. Chen, "Direction‐Controllable Plasmonic Color Scanning byUsing Laser‐Induced Bubbles," Advanced Functional Materials 31, 2008579 (2021).

12.        J. Chen and K. Rong,"Nanophotonic devices and circuits based on colloidal quantum dots,"Materials Chemistry Frontiers 5,4502-4537 (2021).

13.        G. R. Zhang, Y. Gu,Q. H. Gong, and J. J. Chen, "Symmetry-tailored patterns and polarizationsof single-photon emission," Nanophotonics-Berlin 9, 3557-3565 (2020).

14.        G. Zhang, H. Liu, S.Jia, H. Li, Z. Li, Q. Gong, and J. Chen, "Enlarging the PurcellEnhancement by Inserting a Dielectric Film in Dielectric‐LoadedSurface‐Plasmon‐Polariton Waveguides," Advanced Quantum Technologies 3, 2000033 (2020).

15.        M. Xue, M. Li, Y.Huang, R. Chen, Y. Li, J. Wang, Y. Xing, J. Chen, H. Yan, H. Xu, and J. Chen,"Observation and Ultrafast Dynamics of Inter-Sub-Band Transition in InAsTwinning Superlattice Nanowires," Adv Mater 32, e2004120 (2020).

16.        R. Wang, Q.-H. Gong,and J.-J. Chen, "Extra-narrowband metallic filters with an ultrathinsingle-layer metallic grating," Chinese Phys B 29, 064215 (2020).

17.        H. Liu, K. Rong, Z.Li, and J. Chen, "Experimental demonstration of nanophotonic devices andcircuits with colloidal quantum dot waveguides," Optics Express 28, 23091-23104 (2020).

18.        Q. G. Hui Liu,Jianjun Chen, "胶质量子点激光器及片上集成," 中国激光 47, 0701004 (2020).

19.        G. Zhang, S. Jia, Y.Gu, and J. Chen, "Brightening and Guiding Single‐Photon Emission byPlasmonic Waveguide–Slit Structures on a Metallic Substrate," LaserPhotonics Rev 13, 1900025 (2019).

20.        K. Rong, H. Liu, K.Shi, and J. Chen, "Pattern-assisted stacking colloidal quantum dots forphotonic integrated circuits," Nanoscale 11, 13885-13893 (2019).

21.        F. Gan, H. Li, andJ. Chen, "Tailoring the emission polarization with metasurface-basedemitters designed on a plasmonic ridge waveguide," Nanoscale 11, 7140-7148 (2019).

22.        J. Chen,"Colloidal quantum dot lasers and hybrid integrations," Journal ofSemiconductors 40, 050401 (2019).

23.        Y. Zhou, R. Chen, J.Wang, Y. Huang, M. Li, Y. Xing, J. Duan, J. Chen, J. D. Farrell, H. Q. Xu, andJ. Chen, "Tunable Low Loss 1D Surface Plasmons in InAs Nanowires,"Adv Mater 30, e1802551 (2018).

24.        H. Yu, X. Cheng, Y.Wang, Y. Liu, K. Rong, Z. Li, Y. Wan, W. Gong, K. Watanabe, T. Taniguchi, S.Wang, J. Chen, Y. Ye, and L. Dai, "Waterproof Perovskite-Hexagonal BoronNitride Hybrid Nanolasers with Low Lasing Thresholds and High OperatingTemperature," ACS Photonics 5,4520-4528 (2018).

25.        Y. Wang, Y. Guo, H.Liao, Z. Li, F. Gan, C. Sun, and J. Chen, "Multichannel and Binary-PhaseAll-Optical Control with On-Chip Integrated Subwavelength PlasmonicWaveguides," ACS Photonics 5,1575-1582 (2018).

26.        K. Rong, F. Gan, K.Shi, S. Chu, and J. Chen, "Configurable Integration of On-Chip Quantum DotLasers and Subwavelength Plasmonic Waveguides," Adv Mater 30, 1706546 (2018).

27.        C. Peng, J. Li, H.Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, "Universal Linear-Optical LogicGate with Maximal Intensity Contrast Ratios," ACS Photonics 5, 1137-1143 (2018).

28.        F. Gan, C. Sun, H.Li, Q. Gong, and J. Chen, "On-chip polarization splitter based on amultimode plasmonic waveguide," Photonics Research 6, 47-53 (2018).

29.        J. Chen, F. Gan, Y.Wang, and G. Li, "Plasmonic Sensing and Modulation Based on Fano Resonances,"Advanced Optical Materials 6,1701152 (2018).

30.        Y. J. Wang, C. W.Sun, F. Y. Gan, H. Y. Li, Q. H. Gong, and J. J. Chen, "Sharp phasevariations from the plasmon mode causing the Rabi-analogue splitting,"Nanophotonics-Berlin 6, 1101-1107(2017).

31.        Y. Wang, C. Sun, H.Li, Q. Gong, and J. Chen, "Self-reference plasmonic sensors based ondouble Fano resonances," Nanoscale 9,11085-11092 (2017).

32.        Y. Wang, C. Sun, Q.Gong, and J. Chen, "Coupled-resonator-induced plasmonic bandgaps,"Optics Letters 42, 4235 (2017).

33.        C. Sun, K. Rong, F.Gan, S. Chu, Q. Gong, and J. Chen, "An on-chip polarization splitter basedon the radiation loss in the bending hybrid plasmonic waveguidestructure," Applied Physics Letters 111,101105 (2017).

34.        C. Sun, H. Li, Q. Gong,and J. Chen, "Plasmonic Polarization-Rotating Emitters with MetallicNanogroove Antennas," Advanced Optical Materials 5, 1700510 (2017).

35.        K. Rong, C. Sun, K.Shi, Q. Gong, and J. Chen, "Room-Temperature Planar Lasers Based onWater-Dripping Microplates of Colloidal Quantum Dots," ACS Photonics 4, 1776-1784 (2017).

36.        F. Y. Gan, Y. J.Wang, C. W. Sun, G. R. Zhang, H. Y. Li, J. J. Chen, and Q. H. Gong,"Widely Tuning Surface Plasmon Polaritons with Laser-InducedBubbles," Advanced Optical Materials 5,1600545 (2017).

37.        F. Y. Gan, C. W.Sun, Y. J. Wang, H. Y. Li, Q. H. Gong, and J. J. Chen, "Multimode MetallicDouble-Strip Waveguides for Polarization Manipulation," Adv MaterTechnol-Us 2, 1600248 (2017).

38.        W. Yao, C. Sun, Q.Gong, and J. Chen, "Controlling surface-plasmon-polaritons launching withhot spot cylindrical waves in a metallic slit structure," Nanotechnology 27, 385204 (2016).

39.        B. Wang, F. L. Dong,Q. T. Li, D. Yang, C. W. Sun, J. J. Chen, Z. W. Song, L. H. Xu, W. G. Chu, Y.F. Xiao, Q. H. Gong, and Y. Li, "Visible-Frequency Dielectric Metasurfacesfor Multiwavelength Achromatic and Highly Dispersive Holograms," Nano Lett16, 5235-5240 (2016).

40.        C. Sun, K. Rong, Y.Wang, H. Li, Q. Gong, and J. Chen, "Plasmonic ridge waveguides withdeep-subwavelength outside-field confinements," Nanotechnology 27, 065501 (2016).

41.        C. Sun, H. Li, Q.Gong, and J. Chen, "Ultra-small and broadband polarization splitters basedon double-slit interference," Applied Physics Letters 108, 101106 (2016).

42.        X. Y. Song, Z.Zhang, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, "Efficientunidirectional launching of surface plasmons by a cascade asymmetric-groovestructure," Nanoscale 8,6777-6782 (2016).

43.        Q. T. Li, F. L.Dong, B. Wang, F. Y. Gan, J. J. Chen, Z. W. Song, L. X. Xu, W. G. Chu, Y. F.Xiao, Q. H. Gong, and Y. Li, "Polarization-independent and high-efficiencydielectric metasurfaces for visible light," Optics Express 24, 16309-16319 (2016).

44.        J. Chen, K. He, C.Sun, Y. Wang, H. Li, and Q. Gong, "Tuning Fano resonances with anano-chamber of air," Optics Letters 41,2145-2148 (2016).

45.        Y. Bao, H. Liang, H.Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, "Efficient UnidirectionalLaunching of Surface Plasmons by Multi-Groove Structures," Plasmonics, 1-6(2016).

46.        W. J. Yao, S. Liu,H. M. Liao, Z. Li, C. W. Sun, J. J. Chen, and Q. H. Gong, "EfficientDirectional Excitation of Surface Plasmons by a Single-ElementNanoantenna," Nano Lett 15,3115-3121 (2015).

47.        Y. Wang, J. Chen, C.Sun, K. Rong, H. Li, and Q. Gong, "An ultrahigh-contrast and broadbandon-chip refractive index sensor based on a surface-plasmon-polaritoninterferometer," The Analyst 140,7263-7270 (2015).

48.        H. Wang, X. Chen, S.Wei, F. Yang, H. Liao, Z. Li, J. Chen, and Q. Gong, "Quasi-cylindricalwaves on a dielectric-film-coated metal surface," JOSA B 32, 1514-1523 (2015).

49.        C. Sun, J. Chen, W.Yao, H. Li, and Q. Gong, "Manipulating surface-plasmon-polariton launchingwith quasi-cylindrical waves," Scientific reports 5, 11331 (2015).

50.        C. Sun, J. Chen, H.Li, and Q. Gong, "Ultra-small wavelength splitters in a subwavelengthplasmonic waveguide," Optics Letters 40,685-688 (2015).

51.        P. Li, J. Song, A.Pan, J. Chen, S. Wang, J. Shen, P. Wang, J. Zhan, H. Qian, and W. Tang,"Surface plasmon polaritons suppress photoresponse of colloidal CdSnanorods in nanogap," Applied Physics Express 8, 055001 (2015).

52.        Z. Chen, J. Chen, L.Yu, and J. Xiao, "Sharp Trapped Resonances by Exciting the Anti-symmetricWaveguide Mode in a Metal-Insulator-Metal Resonator," Plasmonics 10, 131-137 (2015).

53.        J. J. Chen, C. W.Sun, K. X. Rong, H. Y. Li, and Q. H. Gong, "Polarization-free directionalcoupling of surface plasmon polaritons," Laser Photonics Rev 9, 419-426 (2015).

54.        J. Chen, C. Sun, H.Li, and Q. Gong, "Ultra-small on-chip polarization splitters in hybridplasmonic waveguides," in Frontiersin Optics, (Optical Society of America, 2015), FW5C. 1.

55.        Y. Zhang, H. Wang,H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, "Unidirectional launching ofsurface plasmons at the subwavelength scale," Applied Physics Letters 105, 231101 (2014).

56.        J. J. Chen, C. W.Sun, H. Y. Li, and Q. H. Gong, "Experimental demonstration of an on-chippolarization splitter in a submicron asymmetric dielectric-coated metalslit," Applied Physics Letters 104,231111 (2014).

57.        J. J. Chen, C. W.Sun, and X. Y. Hu, "Nanoscale all-optical devices based on surface plasmonpolaritons," Chinese Sci Bull 59,2661-2665 (2014).

58.        J. Chen, C. Sun, H.Li, and Q. Gong, "Ultra-broadband unidirectional launching of surfaceplasmon polaritons by a double-slit structure beyond the diffractionlimit," Nanoscale 6,13487-13493 (2014).

59.        J. Chen, C. Sun, andQ. Gong, "Fano resonances in a single defect nanocavity coupled with aplasmonic waveguide," Optics Letters 39,52-55 (2014).

60.        J. Chen, Z. Li, andQ. Gong, "All-optical Control of surface plasmon polaritons based on metalslit structures," Chinese Journal of Quantum Electronics 31, 428-432 (2014).

61.        X. Zhang, Z. Li, J.J. Chen, S. Yue, and Q. H. Gong, "A dichroic surface-plasmon-polaritonsplitter based on an asymmetric T-shape nanoslit," Optics Express 21, 14548-14554 (2013).

62.        X. Zhang, Z. Li, J.J. Chen, H. M. Liao, S. Yue, and Q. H. Gong, "A submicronsurface-plasmon-polariton dichroic splitter based on a composite cavitystructure," Applied Physics Letters 102,091110 (2013).

63.        G. Wu, J. J. Chen,R. Zhang, J. H. Xiao, and Q. H. Gong, "Highly efficient nanofocusing in asingle step-like microslit," Optics Letters 38, 3776-3779 (2013).

64.        H. Liao, Z. Li, J.Chen, X. Zhang, S. Yue, and Q. Gong, "A submicron broadband surface-plasmon-polaritonunidirectional coupler," Scientific reports 3, 1918 (2013).

65.        J. J. Chen, Z. Li,R. Zhang, Z. L. Deng, J. H. Xiao, and Q. H. Gong, "Response Line-Shapes inCompact Coupled Plasmonic Resonator Systems," Plasmonics 8, 1129-1134 (2013).

66.        J. J. Chen, Z. Li,J. H. Xiao, and Q. H. Gong, "Efficient All-Optical Molecule-PlasmonModulation Based on T-shape Single Slit," Plasmonics 8, 233-237 (2013).

67.        J. Chen, Z. Li, Y.Zou, Z. Deng, J. Xiao, and Q. Gong, "Coupled-Resonator-Induced Fano Resonancesfor Plasmonic Sensing with Ultra-High Figure of Merits," Plasmonics 8, 1627-1631 (2013).

68.        J. Chen, Z. Li, X.Zhang, J. Xiao, and Q. Gong, "Submicron bidirectional all-opticalplasmonic switches," Scientific reports 3, 1451 (2013).

69.        S. Yue, Z. Li, J. J.Chen, and Q. H. Gong, "Deep subwavelength confinement and giantenhancement of light field by a plasmonic lens integrated with ametal-insulator-metal vertical nanocavity," Optics Express 20, 19060-19066 (2012).

70.        Z. H. You, D. Y.Jiang, J. Stamnes, J. J. Chen, and J. H. Xiao, "Characteristics andapplications of two-dimensional light scattering by cylindrical tubes based onray tracing," Appl Optics 51,8341-8349 (2012).

71.        C. Wang, J. J. Chen,W. H. Tang, and J. H. Xiao, "Ultracompact Refractive Index Sensor Based onSurface-Plasmon-Polariton Interference," Chinese Phys Lett 29, 127304 (2012).

72.        J. J. Chen, C. Wang,R. Zhang, and J. H. Xiao, "Multiple plasmon-induced transparencies incoupled-resonator systems," Optics Letters 37, 5133-5135 (2012).

73.        J. J. Chen, C. Wang,G. W. Lu, W. Q. Li, J. H. Xiao, and Q. H. Gong, "Highly efficientnanofocusing based on a T-shape micro-slit surrounded with multi-slits,"Optics Express 20, 17734-17740(2012).

74.        J. J. Chen, Z. Li,S. Yue, J. H. Xiao, and Q. H. Gong, "Plasmon-Induced Transparency inAsymmetric T-Shape Single Slit," Nano Lett 12, 2494-2498 (2012).

75.        J. J. Chen, Z. Li,M. Lei, X. L. Fu, J. H. Xiao, and Q. H. Gong, "Plasmonic Y-splitters ofHigh Wavelength Resolution Based on Strongly Coupled-Resonator Effects,"Plasmonics 7, 441-445 (2012).

76.        S. Yue, Z. Li, J. J.Chen, and Q. H. Gong, "Ultrasmall and ultrafast all-optical modulationbased on a plasmonic lens," Applied Physics Letters 98, 161108 (2011).

77.        S. Yue, Z. Li, J. J.Chen, and Q. H. Gong, "Dielectric waveguide with deep subwavelength modeconfinement based on coupled nanowires," Acta Phys Sin-Ch Ed 60, 094214 (2011).

78.        Z. Li, J. J. Chen,S. Yue, and Q. H. Gong, "Ultracompact Surface Plasmon PolaritonUnidirectional Generator Based on Asymmetric Single-Nanoslit," Conf LaserElectr (2011).

79.        J. J. Chen, Z. Li,S. Yue, and Q. H. Gong, "Highly Efficient All-Optical Control ofSurface-Plasmon-Polariton Generation Based on a Compact Asymmetric SingleSlit," Nano Lett 11, 2933-2937(2011).

80.        J. J. Chen, Z. Li,S. Yue, and Q. H. Gong, "Ultracompact surface-plasmon-polariton splitterbased on modulations of quasicylindrical waves to the total field," J ApplPhys 109, 073102 (2011).

81.        J. J. Chen, Z. Li,J. Li, and Q. H. Gong, "Compact and high-resolution plasmonic wavelengthdemultiplexers based on Fano interference," Optics Express 19, 9976-9985 (2011).

82.        J. J. Chen, Z. Li,M. Lei, S. Yue, J. H. Xiao, and Q. H. Gong, "Broadband unidirectionalgeneration of surface plasmon polaritons with dielectric-film-coated asymmetricsingle-slit," Optics Express 19,26463-26469 (2011).

83.        S. Yue, Z. Li, J. J.Chen, and Q. H. Gong, "Bending Loss Calculation of a Dielectric-LoadedSurface Plasmon Polariton Waveguide Structure," Chinese Phys Lett 27, 027303 (2010).

84.        Z. Li, S. Yue, J. J.Chen, and Q. H. Gong, "Ultrafast Hot Electron Relaxation in a MetalNanostructure Detected by Femtosecond-SNOM," 2010 Conference on Lasers andElectro-Optics (Cleo) and Quantum Electronics and Laser Science Conference(Qels) (2010).

85.        Z. Li, S. Yue, J.Chen, and Q. Gong, "Ultrafast spatiotemporal relaxation dynamics ofexcited electrons in a metal nanostructure detected by femtosecond-SNOM,"Optics Express 18, 14232-14237(2010).

86.        J. J. Chen, Z. Li,S. Yue, and Q. H. Gong, "Efficient unidirectional generation of surfaceplasmon polaritons with asymmetric single-nanoslit," Applied PhysicsLetters 97, 041113 (2010).

87.        X. F. Wu, J. S.Zhang, J. J. Chen, C. L. Zhao, and Q. H. Gong, "Refractive index sensorbased on surface-plasmon interference," Optics Letters 34, 392-394 (2009).

88.        J. J. Chen, Z. Li,S. Yue, and Q. H. Gong, "Hybrid long-range surface plasmon-polariton modeswith tight field confinement guided by asymmetrical waveguides," OpticsExpress 17, 23603-23609 (2009).

89.        J. J. Chen, Z. Li,and Q. H. Gong, "Long-range surface plasmon polaritons with subwavelengthmode expansion in an asymmetrical system," Chinese Phys B 18, 3535-3541 (2009).

90.        J. J. Chen, Z. Li,J. S. Zhang, and Q. H. Gong, "Surface plasmon polariton modulator based onelectro-optic polymer," Acta Phys Sin-Ch Ed 57, 5893-5898 (2008).


科研项目

1.  国家自然科学基金委员会,面上项目,53万,62275024,2023~2026,主持

2.   国家自然科学基金委员会,优秀青年科学基金项目,120万,61922002,2020~2022年,主持

3.   国家科学技术部,国家重点研发计划项目,432万,2018YFA0704401,2019~2024年,主持

4.   国家自然科学基金委员会,重大研究计划培育项目,85万,91850103,2019~2021年,主持

5.   北京市自然科学基金委员会,重点研究专题-课题,100万,Z180015,2018~2022年,主持

6.   国家自然科学基金委员会,面上项目, 72万,11674014,2017~2020年,主持

7.   国家科学技术部,国家重点研发计划项目,160万,2016YFA0203500,2016~2021年,主持

8.   国家自然科学基金委员会,面上项目, 85万,61475005,2015~2018年,主持

9.   国家自然科学基金委员会,青年基金,30万,11204018,2013~2015年,主持



招生计划

每年招收硕士生、博士生(2-4名)和博士后,欢迎优秀年轻人加入!也欢迎学习能力强、思维活跃、对科研感兴趣的本科生加入!


研究小组

实验室拥有扫描电子显微镜系统(SEM)、电子束曝光系统(EBL)、自动化电子束蒸镀系统(E-Beam)、磁控溅射镀膜系统(Magnetron Sputtering)、台阶仪、等离子刻蚀机、等离子清洗机、高功率超连续谱光源、高功率飞秒激光器、皮秒激光器、正置显微镜、倒置显微镜、高灵敏光谱仪、光纤光谱仪、紫外可近红外分光光度计、大型工作站、通风橱、分析天平等设备,可满足数值模拟计算、纳米材料生长、微纳结构制备、光学测量表征等科研要求。

实验室所有科研设备对校内校外开放服务,提供多种材料制备、微纳加工、检测表征等技术服务以及高端技术合作开发。

                             实验室部分仪器设备照片