量子力学

郭文安

January 4, 2021

Contents

1	波函	j数和薛定谔方程 1
	1.1	概率初步
		1.1.1 随机事件的概率 1
		1.1.2 分布函数(distribution function)
		1.1.3 统计平均和标准偏差 2
	1.2	波函数及其几率解释
	1.3	力学量的平均值与算符
	1.4	Schrödinger方程
	1.5	Seq的讨论: 几率守恒与几率流 13
	1.6	本征值问题与定态
•		·问题
4	5世 0-1	19 19 19 19 19 19 19 19 19 19 19 19 19 1
	2.1	组术将定心问题
		2.1.1 维儿似休労妍 19 9.1.9 白山粉之 94
		2.1.2 日田松丁 1.1.1 <td< td=""></td<>
		2.1.3 足心内感的 服何论 20 9.1.4 右限深热陞 90
	22	2.1.4 日限1/5月月 1.1.1.1 2.3
	2.2	
	$\frac{2.0}{2.4}$	
	2.1	
3	量子	·力学原理 41
	3.1	左矢, 右矢与算符
		3.1.1 左矢(bra)与内积(Inner products)
		3.1.2 算符(Operators)的性质与运算 43
		3.1.3 外积(Outer Product)
	3.2	基矢(Basis)
		3.2.1 力学量算符本征矢作为基矢 46
	3.3	测量原理或广义统计诠释 47
	3.4	自旋1/2系统, Stern-Gerlach实验
		3.4.1 矢量的矩阵形式 50
		3.4.2 算符的矩阵形式 51
		3.4.3 泡利算符和泡利矩阵 53
	3.5	期望值和本征方程的矩阵形式 54
		3.5.1 期望值
		3.5.2 矩阵表示下的本征方程 54

	3.6	Schrödinger方程及其矩阵形式56
	3.7	表象变换
	3.8	连续谱、坐标与动量表象
		3.8.1 坐标表象下算符的表示
		3.8.2 坐标表象下的Schrödinger 方程 65
		3.8.3 动量表象
		3.8.4 坐标表象和动量表象的变换
		3.8.5 坐标表象下的公式
	3.9	能量表象
		3.9.1 借助波函数完成计算
	3.10	力学量算符的共同本征函数
	0.20	310.1 简并与力学量完全集
	3.11	轨道角动量 73
		3.11.1 对易关系
		$3.11.2$ \hat{L}^2 <i>L</i> ² <i>L</i>
	3.12	相容与不相容力学量、测不准关系。
	3.13	力学量的时间演化, Schrödinger 与Heisenberg 绘景
		3.13.1 力学量的时间演化
		3.13.2 Schrödinger 和Heisenberg 绘景(picture)
	3.14	升降算符法
		3.14.1 求解一维谐振子问题
		3.14.2 角动量
	3.15	Ehrenfest定理
	3.16	海尔曼(Hellmann)定理和维里(Virial)定理
		3.16.1 海尔曼定理及应用
		3.16.2 维里定理及应用
4	中心	力场 93
	4.1	中心力场的一般规律
	4.2	氢原子与类氢原子
	4.3	球形势阱
2	⇔★	问题记忆之解
9	月1	105 北海北沿北 105
	0.1	中间升减沈迟
	5.9	第1.1 取公式 105 第五太海井沿 100
	0.2	
6	角动	量耦合 113
	6.1	电子的轨道角动量与自旋角动量的耦合 113
	6.2	碱金属原子能级的精细结构
	6.3	塞曼效应
		6.3.1 强场Zeeman效应 123
		6.3.2 弱场Zeeman效应
	6.4	超精细结构, 自旋单态与三重态
		6.4.1 量子测量的 <i>Bell</i> 基 128
	6.5	任意两个角动量的耦合, C-G系数129
	6.6	EPR佯谬与Bell不等式

		6.6.1 <i>Bell</i> 不等式的证明	L
7	全同	粒子和波函数的交换对称性13:	3
	7.1	多粒子波函数	3
	7.2	交换对称与反对称,不可分辨的全同粒子	1
		7.2.1 一般性讨论	3
	7.3	量子统计	3
	7.4	交换力)
8	量子	跃迁 143	3
	8.1	核磁共振	3
	8.2	量子跃迁问题的微扰处理	3
	8.3	绝热定理与Berry phase)
		8.3.1 Berry phase	1
	8.4	光的吸收与辐射	7
		8.4.1 自发辐射)

Chapter 1

波函数和薛定谔方程

1.1 概率初步

1.1.1 随机事件的概率

世界上充满了随机事件:一定条件下,一个事件可能发生也可能不发生.例如:掷骰子掷出6,投篮投中, 掷硬币出国徽,六盒彩中大奖,摸牌摸到大王···.这并不等于说没有规律,我们可以用概率(或几率)来 描述随机事件.

概率的定义:

经验表明,在一次试验中,一个随机事件是否发生不好说。如果N次相同的试验 $(N \to \infty)$ 中,某一事件 (A事件)发生的次数 N_A 与N之比趋于稳定的极限值

$$\lim_{N \to \infty} \frac{N_A}{N} = P(A) \tag{1.1}$$

则P(A)被称作事件A发生的概率.

对于有M个同样可能性事件的情况(通常根据对称性可以判断),每个事件发生的概率自然为1/M.比如掷骰子的情况,出现1点到6点是6个不同的随机事件。每个事件以同样的可能性发生,其概率自然 是 $lim_{N\to\infty}N_A/N = 1/6$.

互斥事件(muturally exclusive)的加法定理

如果两个随机事件在一次观测中不可能同时发生,这两个事件称为互斥事件.例如在掷骰子时,出现1点与出现3点是互斥事件.

若A、B互斥,问事件A或事件B出现(记为A+B)的概率是多少?设想作N次观测,事件A出现N_A次,B出现N_B次,则A或B出现的概率为

$$\lim_{N \to \infty} \frac{N_A + N_B}{N} = P(A) + P(B) \equiv P(A+B)$$
(1.2)

加法定理可以推广到多个互斥事件的情形

$$P(A_1) + P(A_2) + P(A_3) + \dots + P(A_m) = P(A_1 + A_2 + \dots + A_m)$$
(1.3)

显然全部互斥事件出现的概率为1,即全部互斥事件中总有一个要发生。

$$\sum_{i} P(i) = 1 \tag{1.4}$$

这称为归一化条件.

独立事件(independent events)同时出现的乘法定理

互不相干的随机事件,例如扔两个骰子,各自得各自的点数,称为独立事件.

设A,B为两个独立事件.它们同时发生记为A·B.比如,同时扔N次两个骰子.A事件是第一个骰子得4, B事件是第二个骰子得4.以N_A表示第一个骰子得4点的次数(不管第二个骰子是几点),因此N_A中某些次 第二个骰子也是4,这个次数记为N_{A·B},也就是A,B同时发生的次数.

根据定义,第一个骰子得4,且第二个骰子得4这个事件发生的概率就等于

$$P(A \cdot B) \equiv_{N \to \infty} \frac{N_{A \cdot B}}{N}$$
(1.5)

$$=\lim_{N \to \infty} \frac{N_A}{N} \times \frac{N_{A \cdot B}}{N_A} \tag{1.6}$$

$$= P(A)P(B) \tag{1.7}$$

从另一个角度看, 掷两个骰子共有36种可能的结果(元素).只看第一个骰子的点数,可能的结果是6种. 如果给定A(第一个骰子的点数), 看第二个骰子的点数,还是只有6种可能的结果。因此第一个骰子得4,第 二个骰子也是4的概率是1/6×1/6=1/36.正好对应36种同样可能性的结果之一.

上式称作独立事件的乘法定理:两个独立事件发生的概率等于两个事件各自发生的概率的乘积.

1.1.2 分布函数(distribution function)

定义**随机变量(stochastic/random variable)**, 它的值由一个实验的结果所决定的(按一定概率取各种可 能值).

设有一个随机变量X, 它可以取 $x_1, \dots, x_i, \dots, x_n$; $P_1, \dots, P_i, \dots, P_n$ 是取相应值的概率. 我们称X为离 散型随机变量, { P_i } 为随机变量X的概率(几率)分布.

比如掷一个骰子, X为点数, 可以取1, 2, 3, 4, 5, 6; 相应几率 $P(1) = P(2) = \cdots = P(6) = 1/6$.

再比如两个骰子, X为两个点中的大数, 仍然可以取1, 2, 3, 4, 5, 6, 但是相应的几率分布就不是1/6了. (那 么是怎么分布的呢?)

显然, 概率分布满足条件:

$$P(x_i) \geq 0, \quad i = 1, 2, \cdots$$

$$(1.8)$$

$$\sum_{i} P(x_i) = 1 \tag{1.9}$$

如果*X*的取值连续,那么一个区间对应于一个事件.随机变量*X*取值在*x*与*x*+*dx*之间的概率为 $dP(x) = \rho(x)dx$,其中 $\rho(x)$ 为概率密度.假设*X*在*a*,*b*之间取值,那么

$$\rho(x) \ge 0 \tag{1.10}$$

$$\int_{a}^{b} \rho(x)dx = 1 \tag{1.11}$$

如图Fig. 1.1 所示.

1.1.3 统计平均和标准偏差

考虑离散型随机变量X,其可以取 x_1, x_2, \dots, x_n .设在N次实验中测得上述数值的次数为 N_1, N_2, \dots, N_n .当 观测次数趋于无穷时,X的算术平均趋于一定的极限,称作X的统计平均值(average),在量子力学里也称期 望值(expectation value):

$$\overline{X} \equiv \langle X \rangle = \lim_{N \to \infty} \frac{N_1 x_1 + N_2 x_2 + \dots}{N} = x_1 P_1 + x_2 P_2 + \dots = \sum_i P_i x_i.$$
(1.12)

Figure 1.1: 连续随机变量的概率分布示意图.

对于连续型随机变量X,取x到x + dx的几率为 $\rho(x)dx$,其统计平均值为

$$\overline{X} \equiv \langle X \rangle = \int_{a}^{b} x \rho(x) dx, \qquad (1.13)$$

a,b 表示X的取值范围.

现在我们想描述X的值在X上下涨落的幅度,怎么办?如果考虑

$$\overline{\Delta X} \equiv \overline{X - \overline{X}} = \sum_{i} (x_i - \overline{X}) P_i = \sum_{i} x_i P_i - \overline{X} \sum_{i} P_i = 0$$
(1.14)

对任意分布都是零,不能达到目的.

我们引入

$$\overline{(\Delta X)^2} \equiv \overline{(X - \overline{X})^2} = \sum_i (x_i - \overline{X})^2 P_i$$

$$= \sum_i (x_i^2 - 2(\overline{X})x_i + (\overline{X})^2) P_i$$

$$= \overline{X^2} - (\overline{X})^2,$$
(1.15)

称为X的涨落 或者 均方偏差(方差, variance). 开方就是X的标准偏差(standard deviation), 在量子力学里 也称不确定度(uncertainty):

$$\sigma_X \equiv (\overline{(\Delta X)^2})^{1/2} = (\langle X^2 \rangle - \langle X \rangle^2)^{\frac{1}{2}}.$$
(1.16)

以上定义可以很容易推广到连续变量.注意: σ_X 小,意味着P(x)在 \overline{X} 附近有尖锐峰.

练习:

1. 生日问题. 一个班12个人,问其中存在两个人以上生日相同的概率多大? (不考虑闰年,假设一个人 在一年中任意一天出生的概率相同).

提示: 1. 世界上任意两个人生日相同的概率为1/365. 2. 任意两个人他们生日不同的概率为364/365. 3. 三 个人呢?

2. 在间隔为*l*的平行线上扔长度为*l*的火柴棒. 问棒与线相交的几率? 提示: 相交的条件是什么?

•本节内容参考: 汪志诚, 《热力学·统计物理》, 高等教育出版社, 第四版.

1.2 波函数及其几率解释

Figure 1.2: 子弹通过A,B两口射向墙壁

我们先来考虑几个假想实验.

首先考虑子弹通过A,B两口射向墙壁(见图1.2).如果关闭B口,子弹通过A口落在墙壁上的概率分布 为 $\rho'_A(x)$;如果关闭A口,子弹通过B口落在墙壁上的概率分布为 $\rho'_B(x)$.若同时打开A口和B口,子弹落在墙壁x附近的概率会是怎样的呢?

假设我们共发射了2N发子弹.其中 $N_A(x)$ 发穿过A口落在墙上x附近dx范围内.类似的 $N_B(x)$ 是穿过B口落在x附近dx范围的数目.

显然我们可以这样计算落在x附近的概率密度

$$\rho_{A+B}(x)dx = \lim_{N \to \infty} \frac{N_A(x) + N_B(x)}{2N} = \lim_{N \to \infty} \frac{N}{2N} \frac{N_A(x) + N_B(x)}{N}$$

= $\frac{1}{2} (\rho'_A(x) + \rho'_B(x))dx = [\rho_A(x) + \rho_B(x)]dx$ (1.17)

其中 $\rho_A(x) \equiv \rho'_A(x)/2$ 是两口全开情况下, 子弹通过A口落在墙壁x附近的概率密度; $\rho_B(x) \equiv \rho'_B(x)/2$ 是通过B口落在墙壁x附近的概率密度. 1/2反映了子弹选择一个口的概率。由于子弹要么通过A口, 要么通过B口落在x, 所以这是两个互斥的随机事件, 所以通过A或B落在x的概率就是两者之和. 这是符合我们的经验的.

现在来考虑电子枪发射的电子通过A,B两缝射向屏幕的实验(见图1.3).

类似子弹实验,如果关闭B口,我们看到电子通过A缝落在屏幕上的概率分布为 $\rho'_A(x)$.关闭A口,电子通过B口落在屏幕上的概率分布为 $\rho'_B(x)$.若同时打开A口和B口,很自然地,我们期望得到如方程(1.17)描述的概率分布.

然而真实的实验告诉我们,情况并非如此. 电子落在屏幕的概率分布似乎不满足互斥事件的加法定理!

$$\rho_{A+B}(x) \neq \rho_A(x) + \rho_B(x). \tag{1.18}$$

表明我们不能简单地把落在x处的电子分成从A口来的和从B口来的.实际上电子在屏幕上的概率分布非常类似于水波通过双缝后在远处的干涉图样.

Figure 1.3: 电子通过A,B两缝射向屏幕

对于水波(见图1.4),如果只开一个A缝,在远处测量到的水波强度 $I_A(x)$ 分布类似于 $\rho'_A(x)$;类似的情况适用于只开B缝,分布 $I_B(x)$.具体地,强度由传播到x的波的复振幅的模方决定:

$$I_A(x) = |h(x)e^{i\frac{2\pi l_A}{\lambda}}|^2$$

$$I_B(x) = |h(x)e^{i\frac{2\pi l_B}{\lambda}}|^2$$
(1.19)

(1.20)

其中 λ 是波长, l_A , l_B 是波传播路程. h(x)是水波在x处的振幅大小。

当双缝都打开的时候,在x处测量到的波强度应该由叠加后波幅的模方决定,而不是正比于强度的相加:

$$I_{A+B}(x) = |h(x)e^{i\frac{2\pi l_A}{\lambda}} + h(x)e^{i\frac{2\pi l_B}{\lambda}}|^2 = I_A(x) + I_B(x) + 2h^2\cos k(l_A - l_B)$$
(1.21)

这样我们就在远处看到了水波的干涉图样.

我们可以得到这样的结论: 要描述电子这样的微观粒子的运动状态,单纯的几率是不够的,要用波函数. 波函数的模方才是几率(准确说是几率密度,因为这里变量是连续的.以后我们还会遇到变量是离散的情况,那么相应波函数的模方就是几率了).一个电子的波函数可以同时从两个缝中通过,当到达x处时发生相 干叠加,叠加后的波函数的模方是在该处发现电子的概率密度.这被称为波函数的几率解释,由Born最早提出.

波函数一般写作 $\Psi(x,t)$,是时间和空间的函数.通常满足归一化条件(不满足的情况以后讨论):

$$\int |\Psi(x,t)|^2 dx = 1,$$
(1.22)

积分是对全空间进行.对任意时刻都成立. (本课程不涉及电子的产生与湮灭).

如果有多个粒子, 波函数可以写成 $\Psi(x_1, x_2, \dots, x_n; t)$, 其模方表示在空间位置 x_1 处发现第一个粒子, 同时 在 x_2 处发现第二个粒子, …, 在 x_n 处发现第n个粒子的几率密度. 其归一化的形式为:

$$\int \left|\Psi\right|^2 dx_1 dx_2 \cdots dx_n = 1 \tag{1.23}$$

Figure 1.4: 水波的双缝干涉.

数学上看, 波函数总可以看做是平面波的叠加. 我们把某一时刻的波函数 $\Psi(x,t)$ 写为 $\psi(x)$, 由傅里叶分解

$$\begin{cases} \psi(x) = \frac{1}{(2\pi)^{\frac{1}{2}}} \int \tilde{\varphi}(k) e^{ikx} dk \\ \tilde{\varphi}(k) = \frac{1}{(2\pi)^{\frac{1}{2}}} \int \psi(x) e^{-ikx} dx \end{cases}$$
(1.24)

其中, k为平面波的波矢.

根据德布罗意关系,具有波矢k的平面波具有一定动量p,

$$\vec{p} = \hbar \vec{k},\tag{1.25}$$

式1.24可以改写成:

$$\begin{cases} \varphi(p) = \frac{1}{(2\pi\hbar)^{\frac{1}{2}}} \int \psi(x) e^{-i\frac{p}{\hbar}x} dx \\ \psi(x) = \frac{1}{(2\pi\hbar)^{\frac{1}{2}}} \int \varphi(p) e^{i\frac{p}{\hbar}x} dp \end{cases}$$
(1.26)

其中 $\varphi(p) = \tilde{\varphi}(k)/\hbar^{1/2}$,也是波函数,我们称为**动量空间(或动量表象下)的波函数**,其物理意义为:它的模方为粒子动量为p的几率密度.分析量纲,可以很清楚验证这一点.而 $\psi(x)$ 准确地说是坐标空间(坐标表象)的波函数.

上面的公式可以写成三维形式:

$$\begin{cases} \varphi(\vec{p}) = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} \int \psi(\vec{r}) e^{-i\frac{\vec{p}\cdot\vec{r}}{\hbar}} d\vec{r} \\ \psi(\vec{r}) = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} \int \varphi(\vec{p}) e^{i\frac{\vec{p}\cdot\vec{r}}{\hbar}} d\vec{p} \end{cases}$$
(1.27)

利用

可以证明,如果

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dk = \delta(x), \qquad (1.28)$$
$$\int |\psi(\vec{r})|^2 d\vec{r} = 1$$

Figure 1.5: (来自Wiki百科) 单电子双缝实验图样. 屏幕上有(a) 11, (b) 200, (c) 6000, (d)40000, (e) 140000个 电子

则

$$\int \left|\varphi(\vec{p})\right|^2 d\vec{p} = 1$$

我们来看一个例子. 假设某一时刻to, 一个粒子的(坐标表象)波函数为

$$\psi(x) = Ae^{-\frac{\alpha^2 x^2}{2}},$$

其中α为一个实数, A为一个复常数. 则其动量表象波函数为

$$\varphi(p) = \frac{A}{(2\pi\hbar)^{\frac{1}{2}}} \int e^{-\frac{\alpha^2 x^2}{2} - i\frac{p}{\hbar}x} dx$$
(1.29)

$$= \frac{A}{(2\pi\hbar)^{\frac{1}{2}}} \int e^{-\frac{\alpha^2}{2}(x^2 + i\frac{2p}{\alpha^2\hbar}x + \frac{i^2p^2}{\alpha^4\hbar^2}) - \frac{p^2}{2\alpha^2\hbar^2}} dx$$
(1.30)

$$= \frac{A}{(2\pi\hbar)^{\frac{1}{2}}} \frac{\sqrt{2\pi}}{\alpha} e^{-\frac{p^2}{2\alpha^2\hbar^2}}.$$
 (1.31)

这里我们用到高斯积分

$$\int_{-\infty}^{\infty} \exp(-x^2) dx = \sqrt{\pi}.$$
(1.32)

由波函数的归一化条件得 $|A|^2 = \alpha/\sqrt{\pi}$,因此 $|A| = (\alpha/\sqrt{\pi})^{1/2}$.注意我们并不能完全确定A,因为其幅角 并不知道.在量子力学里面一个波函数的"整体幅角"可以是任意约定的,因为它并不影响波函数的几率解 释。但是一旦确定这个幅角(也称相位),波函数的取值就是单值的(不允许一个位置有两个不同的函数 值).这里我们取A为实数.

于是

$$\varphi(p) = \frac{1}{\pi^{\frac{1}{4}} (\hbar\alpha)^{\frac{1}{2}}} e^{-\frac{p^2}{2\alpha^2 \hbar^2}}.$$
(1.33)

Figure 1.6: (a)粒子的空间位置几率分布。(b)粒子的动量几率分布

根据 $\psi(x)$ 和 $\varphi(p)$ 的模方(都是高斯函数),我们可以看到粒子主要出现在0附近 $\pm 1/\alpha$ 的范围内,而其动量分布在0附近 $\pm \hbar\alpha$ 的范围里.如图1.2.

我们来具体计算位置*x*和动量*p*的不确定度:

$$\langle x \rangle = \int x \frac{\alpha}{\sqrt{\pi}} e^{-\alpha^2 x^2} dx = 0$$
 (1.34)

$$\langle x^2 \rangle = \int x^2 \frac{\alpha}{\sqrt{\pi}} e^{-\alpha^2 x^2} dx = \frac{1}{2\alpha^2}$$
(1.35)

$$\Delta x = (\langle x^2 \rangle - \langle x \rangle^2)^{1/2} = \sqrt{\frac{1}{2\alpha^2}}$$
(1.36)

$$\langle p \rangle = \int p \frac{1}{\sqrt{\pi}\hbar\alpha} e^{-\frac{p^2}{\alpha^2\hbar^2}} dp = 0$$
 (1.37)

$$\langle p^2 \rangle = \int p^2 \frac{1}{\sqrt{\pi}\hbar\alpha} e^{-\frac{p^2}{\alpha^2\hbar^2}} dp = \frac{\hbar^2\alpha^2}{2}$$
(1.38)

$$\Delta p = (\langle p^2 \rangle - \langle p \rangle^2)^{1/2} = \sqrt{\hbar^2 \alpha^2/2}$$
(1.39)

于是,

$$\Delta p \Delta x = \hbar/2 \tag{1.40}$$

符合海森堡不确定关系. (这里按量子力学习惯用法, 不确定度用Δ表示).

以上计算用到积分公式

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} x^2 \exp(-x^2) dx = \frac{1}{2}.$$
(1.41)

通常正态分布或者高斯分布可以写为

$$\rho(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp(\frac{-x^2}{2\sigma^2}) \tag{1.42}$$

满足归一化

$$\int_{-\infty}^{\infty} \rho(x) dx = 1, \qquad (1.43)$$

并具有性质

$$\int_{-\infty}^{\infty} x^2 \rho(x) dx = \sigma^2.$$
(1.44)

 σ 是分布的宽度, x的标准差, σ^2 是方差.

1.3 力学量的平均值与算符

我们知道一个变量的概率分布即可知道其统计平均值(期望值).比如,知道 $|\psi(x)|^2$ 就可以算出粒子位置的期望值:

$$\langle x \rangle = \int |\psi(x)|^2 x dx \tag{1.45}$$

但是 $|\psi(x)|^2$ 不是动量p的概率分布函数,所以

$$\langle p \rangle \neq \int |\psi(x)|^2 p dx.$$
 (1.46)

动量的期望值应该由下式给出

$$\langle p \rangle = \int |\varphi(p)|^2 p dp = \int \varphi^* \varphi p dp$$
 (1.47)

由于

$$\varphi(p)^* = \frac{1}{(2\pi\hbar)^{\frac{1}{2}}} \int \psi^*(x) e^{+i\frac{p}{\hbar}x} dx$$

于是

$$\langle p \rangle = \int \frac{dpdx}{(2\pi\hbar)^{\frac{1}{2}}} \psi^*(x) e^{i\frac{p}{\hbar}x} p\varphi(p)$$
(1.48)

利用

$$\frac{-i\hbar d}{dx}e^{i\frac{p}{\hbar}x} = pe^{i\frac{p}{\hbar}x} \tag{1.49}$$

得到

$$\langle p \rangle = \int \frac{dpdx}{(2\pi\hbar)^{\frac{1}{2}}} \psi^*(x) (\frac{-i\hbar d}{dx}) e^{i\frac{p}{\hbar}x} \varphi(p)$$
(1.50)

再利用

$$\psi(x) = \frac{1}{(2\pi\hbar)^{\frac{1}{2}}} \int \varphi(p) e^{i\frac{p}{\hbar}x} dp$$

得到

$$\langle p \rangle = \int dx \psi^*(x) (\frac{-i\hbar d}{dx}) \psi(x) \tag{1.51}$$

我们定义 $-i\hbar \frac{d}{dx}$ 为动量算符 \hat{p} .利用它,我们可以通过 $\psi(x)$ 直接计算动量的期望值. 回头看Eq.(1.45),可以改写成

$$\langle x \rangle = \int \psi^* x \psi dx. \tag{1.52}$$

我们称x是坐标算符x.

推广到三维,

$$\hat{\mathbf{p}} = -i\hbar\nabla, \qquad \hat{\mathbf{x}} = \mathbf{x}.$$
 (1.53)

对应三个方向的动量。

以上动量与坐标算符的形式为坐标表象下的. 根据Eq.(1.47), 我们可以定义 $\hat{p} = p$. 在将Eq.(1.45) 写成

$$\langle x \rangle = \int \varphi(p)^* (\frac{i\hbar d}{dp})\varphi(p)dp \tag{1.54}$$

形式,得到 $\hat{x} = \frac{i\hbar d}{dp}$.这样的形式称为动量表象下的坐标与动量算符.如非特别说明,以后提到的算符具体形式都是在坐标表象下的.

另外,势能V(x)是x的函数,因此其统计平均

$$\langle V \rangle = \int |\psi(x)|^2 V(x) dx = \int \psi(x)^* \hat{V} \psi(x) dx$$
(1.55)

因此,势能算符 Ŷ为V(x).

对于动能 $T = \frac{p^2}{2m}$,知道p就能得到T,所以其期望值

$$\begin{aligned} \langle T \rangle &= \int |\varphi(p)|^2 \frac{p^2}{2m} dp \end{aligned} \tag{1.56} \\ &= \int \psi^*(x) (\frac{-i\hbar d}{dx}) (\frac{-i\hbar d}{dx}) \frac{\psi(x)}{2m} dx \\ &= \int \psi^*(x) (\frac{-\hbar^2 d^2}{2m dx^2}) \psi(x) dx, \end{aligned}$$

这样我们得到动能算符的具体形式

$$\hat{T} = -\frac{\hbar^2 d^2}{2m \mathrm{d}x^2}.$$
(1.57)

推广到三维情况

$$\hat{T} = -\frac{\hbar^2 \nabla^2}{2m} \tag{1.58}$$

下面研究角动量**l** = **r** × **p**. 问题必须在2维或3维空间. 考虑一般情况: 3维空间. 这样角动量有三个分量. 其期望值也就是三个分量的期望值

$$\langle \mathbf{l} \rangle = (\langle l_x \rangle, \langle l_y \rangle, \langle l_z \rangle). \tag{1.59}$$

我们研究z分量. 在直角坐标系下

$$l_z = xp_y - yp_x. aga{1.60}$$

怎么利用波函数来计算l_z的期望值?

我们这里的目的是给大家一个'感觉'。所以假设*x*, *y*, *z*方向的几率相互独立,即波函数可以分离变量,并各自归一化:

$$\psi(x, y, z) = \psi_x(x)\psi_y(y)\psi_z(z) \tag{1.61}$$

$$\int |\psi|^2 d^3 r = \int |\psi_x|^2 dx = \int |\psi_y|^2 dy = \int |\psi_z|^2 dz = 1$$
(1.62)

可以推出:

$$\varphi(p_x, p_y, p_z) = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} \int \psi(x, y, z) e^{-\frac{i}{\hbar}(p_x x + p_y y + p_z z)} dx dy dz$$

$$= \varphi_x(p_x) \varphi_y(p_y) \varphi_z(p_z),$$
(1.63)

其中

$$\varphi_x(p_x) = \frac{1}{(2\pi\hbar)^{\frac{1}{2}}} \int \psi_x(x) e^{-\frac{i}{\hbar}p_x x} dx$$
(1.64)

完全由 ψ_x 决定. $\varphi_y(p_y), \varphi_z(p_z)$ 类同. $x = p_y, y = p_x$ 的取值没有关联,相互独立。

现在我们问: 粒子在x方向位于x附近,同时具有y方向动量 p_y 的几率?根据概率加法定理,我们知道它位于x附近的几率是

$$dx \int |\psi(x, y, z)|^2 dy dz = |\psi_x(x)|^2 dx,$$
(1.65)

它具有动量 p_y (不论 p_x, p_z 为多少)的几率为

$$dp_y \int |\varphi(p_x, p_y, p_z)|^2 dp_x dp_y = |\varphi_y(p_y)|^2 dp_y$$
(1.66)

同时我们注意到这两个事件是独立的,同时发生的几率就是几率相乘,因此

$$\langle l_z \rangle = \int x |\psi_x|^2 dx \cdot p_y |\varphi_y|^2 dp_y - \int y |\psi_y|^2 dy \cdot p_x |\varphi_x|^2 dp_x$$

$$= \int \psi_x^* x \psi_x dx \psi_y^* (-i\hbar \frac{\partial}{\partial y}) \psi_y dy - \int \psi_y^* y \psi_y dy \psi_x^* (-i\hbar \frac{\partial}{\partial x}) \psi_x dx$$

$$= \int \psi^* [-i\hbar (x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x})] \psi dx dy dz.$$

$$(1.67)$$

据此可以定义角动量z分量的算符 $\hat{l}_z = -i\hbar(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x})$. 我们看到这一算符可以写成 $\hat{x}\hat{p}_y - \hat{y}\hat{p}_x$. 一般地,力学量A如果可以写成坐标与动量的函数A(x,p),那么其算符可以写为 $A(\hat{x},\hat{p})$ (表示函数关系 不变, 把x换成 û, p换成 p). 这样该力学量的期望值可以按下式计算

$$\langle A \rangle = \int \psi^* \hat{A} \psi \mathrm{d}\mathbf{r}. \tag{1.68}$$

例如哈密顿量

$$H = \frac{p^2}{2m} + V(x),$$
 (1.69)

其算符为

$$\hat{H} = -\frac{\hbar^2 \nabla^2}{2m} + V(x) = \frac{\hat{p}^2}{2m} + V(\hat{x}).$$
(1.70)

1.4 Schrödinger方程

牛顿力学告诉我们,一个质点的运动方程为

$$f = ma \tag{1.71}$$

加速度a由惯性质量和所受外力 $f = -\nabla V$ 决定。比如考虑一个质点的自由落体运动, f = mg, 确定其运动状态 $x(t), \dot{x}(t)$, 只需要知道x(t = 0) 和 $\dot{x}(t = 0)$.

牛顿力学的一个等效形式是哈密顿力学。引入哈密顿量

$$H = \frac{p^2}{2m} + V,$$
 (1.72)

运动方程改写为

$$\frac{\mathrm{d}p}{\mathrm{d}t} = -\frac{\partial H}{\partial x}, \qquad \qquad \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\partial H}{\partial p} \tag{1.73}$$

粒子的运动状态由时刻t的动量p(t)和位置x(t)描述。原则上都可以准确知道,如果初始条件p(0)和x(0)已知的话.比如上面提到的质点自由落体运动,V(x) = -mgx.容易验证,可以得到和牛顿力学一样的结果,其中 $p(t) = m\dot{x}(t)$.

现在我们知道微观粒子的运动状态要用波函数来描述,而运动状态会随时间变化.那么这一变化遵从什么样的规律呢?量子力学的开山鼻祖之一Schrödinger猜出了答案,这就是下面的Schrödinger方程:

$$i\hbar\frac{\partial\Psi}{\partial t} = \hat{H}\Psi = (\frac{\hat{p}^2}{2m} + \hat{V})\Psi.$$
(1.74)

这一方程适用于坐标和动量波函数,只要带入算符的相应具体表达就可以了.

在坐标表象下,该方程的一维形式为

$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = \left[\frac{-\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)\right]\Psi(x,t).$$
(1.75)

在三维空间则为

$$i\hbar \frac{\partial \Psi(\mathbf{r},t)}{\partial t} = \left[\frac{1}{2m}(-i\hbar\nabla) \cdot (-i\hbar\nabla) + V(\mathbf{r})\right]\Psi(\mathbf{r},t)$$

$$= \left[\frac{-\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right]\Psi(\mathbf{r},t).$$
(1.76)

这一方程与描述弹性波的方程非常类似, 故也称**波动方程**. 数学上看它是我们熟悉的偏微分方程, 要注意 的是波函数可以是复数.

如果我们知道了 $\Psi(x,0)$, (其实也就知道了 $\langle x \rangle(0)$, $\langle p \rangle(0)$), 就可以求出 $\Psi(x,t)$, 进而求出 $\langle x \rangle(t)$ 和 $\langle p \rangle(t)$. 以后我们会看到,这些期望值随时间的演化与经典力学给出的结果是完全一样的。

1.5 Seq的讨论:几率守恒与几率流

我们知道粒子的在空间的几率密度分布ρ(x,t)由波函数的模方给出

$$\rho(x,t) = \Psi^*(x,t)\Psi(x,t) = |\Psi(x,t)|^2.$$
(1.77)

假设在零时刻,波函数的满足归一化

$$\int_{-\infty}^{\infty} \rho(x,0) \mathrm{d}x = 1 \tag{1.78}$$

如果Schrödinger 方程式正确的,那么以后任意时刻的波函数都是确定的,都应该满足归一化.

我们来证明这一点.

考虑

$$\frac{d}{dt} \int_{-\infty}^{\infty} |\Psi(x,t)|^2 \mathrm{d}x = \int_{-\infty}^{\infty} \frac{\partial}{\partial t} |\Psi(x,t)|^2 \mathrm{d}x$$
(1.79)

利用求导法则

$$\frac{\partial}{\partial t}|\Psi(x,t)|^2 = \Psi^* \frac{\partial\Psi}{\partial t} + \frac{\partial\Psi^*}{\partial t}\Psi$$
(1.80)

根据S-eq (1.75)和其复共轭方程,考虑到V(x)是实数,我们得到

$$\frac{\partial}{\partial t} |\Psi(x,t)|^2 = \frac{i\hbar}{2m} \left(\Psi^* \frac{\partial^2 \Psi}{\partial x^2} - \frac{\partial^2 \Psi^*}{\partial x^2} \Psi \right) = \frac{\partial}{\partial x} \left[\frac{i\hbar}{2m} \left(\Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi \right) \right]$$
(1.81)

因此

$$\frac{d}{dt} \int_{-\infty}^{\infty} |\Psi(x,t)|^2 dx = \frac{i\hbar}{2m} (\Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi)|_{-\infty}^{\infty}$$
(1.82)

由于 $\Psi(x,t)$ 在正负无穷远处必须趋于零(否则无法归一化,有物理意义的波函数都是可以归一化的),因此

$$\frac{d}{dt} \int_{-\infty}^{\infty} |\Psi(x,t)|^2 \mathrm{d}x = 0 \tag{1.83}$$

这样我们就证明了积分是常数,也就是Seq的解是归一的.

我们把以上讨论推广到3维空间.

根据Schrödinger 方程和它的复共轭方程(两边同时取复共轭,并注意到V是实函数):

$$i\hbar\frac{\partial\Psi}{\partial t} = \left(\frac{-\hbar^2}{2m}\nabla^2 + V\right)\Psi \tag{1.84}$$

和

$$-i\hbar\frac{\partial\Psi^*}{\partial t} = (\frac{-\hbar^2}{2m}\nabla^2 + V)\Psi^*.$$
(1.85)

得到

$$i\hbar\frac{\partial}{\partial t}(\Psi^*\Psi) = -\frac{\hbar^2}{2m}(\Psi^*\nabla^2\Psi - \Psi\nabla^2\Psi^*).$$
(1.86)

利用公式

$$\nabla \cdot (\Psi^* \nabla \Psi) = \nabla \Psi^* \cdot \nabla \Psi + \Psi^* \nabla^2 \Psi, \qquad (1.87)$$

我们得到

$$i\hbar\frac{\partial}{\partial t}(\Psi^*\Psi) = -\frac{\hbar^2}{2m}\nabla\cdot(\Psi^*\nabla\Psi - \Psi\nabla\Psi^*),\tag{1.88}$$

也就是

$$\frac{\partial}{\partial t}\rho(\mathbf{r},t) = \frac{i\hbar}{2m}\nabla\cdot(\Psi^*\nabla\Psi - \Psi\nabla\Psi^*).$$
(1.89)

我们来定义一个矢量

$$\mathbf{j}(\mathbf{r},t) = -\frac{i\hbar}{2m} (\Psi^* \nabla \Psi - \Psi \nabla \Psi^*)$$

$$= \frac{1}{2m} (\Psi^* \hat{\mathbf{p}} \Psi - \Psi \hat{\mathbf{p}} \Psi^*)$$

$$= \frac{1}{2} (\Psi^* \hat{\mathbf{v}} \Psi - \Psi \hat{\mathbf{v}} \Psi^*),$$

(1.90)

其中 $\hat{\mathbf{v}} \equiv \hat{\mathbf{p}}/m$, 是粒子的速度算符. 于是Eq.(1.89)可以写成

$$\frac{\partial}{\partial t}\rho(\mathbf{r},t) = -\nabla \cdot \mathbf{j}.$$
(1.91)

我们回忆一下流体的连续性方程:

$$\frac{\partial}{\partial t}\rho_f(\mathbf{r},t) = -\nabla \cdot (\rho_f \mathbf{v}). \tag{1.92}$$

其中 ρ_t 是流体的(分子)密度, $\rho_t \mathbf{v}$ 是流量密度: 单位时间通过单位面积的流体的(分子)数目).

注意到流体的密度与粒子的几率密度类似, **j**的经典对应正是**几率密度与速度的乘积**, 我们发现Eq. (1.91)描述的正是几率的连续性, 或者说是几率守恒的微观表达式. **j**(**r**, **t**)为单位时间通过单位面积的几率.

如果我们考虑一个封闭空间τ内的几率随时间的变化,这一物理意义可以看得更清楚.利用高斯定理,

$$\frac{d}{dt} \int_{\tau} \rho d\tau = -\oint_{S} \mathbf{j} \cdot d\mathbf{S}, \qquad (1.93)$$

这里S是包围 τ 的表面, d**S** 是矢量面元. 上式表明, 粒子出现在空间 τ 内的几率的时间变化率取决于粒子几率 流密度在空间表面的积分, 也就是流入流出之差. 这是几率守恒方程的积分形式.

当空间⁷趋于无穷大,即整个空间,包围它的表面就在无穷远处,波函数在无穷远处趋于零,于 是Eq.(1.93)变成

$$\frac{d}{dt} \int_{\infty} \rho d\tau = 0 \tag{1.94}$$

我们得到了跟一维情况一样的结论: Seq 保证归一化不变.

分析一下**j**的量纲是有益的. 根据几率守恒方程(1.91), 考虑到在d维空间, $[\rho] = 1/L^d$, 容易得到[**j**] = $\frac{L}{TL^d}$ = $\frac{1}{TL^{d-1}}$. 由于 L^{d-1} 表示广义的面积, 此量纲正反映了它的物理意义: 单位时间通过单位截面的几率. 对于一维情况, [**j**] = 1/T, 实际上就是单位时间通过一点(一维空间的截面)的几率.

如果粒子带电荷q,我们就可以根据几率流密度来计算电流密度.假设有N个同样的粒子,按同样的波函数运动.那么根据几率的定义,单位时间通过单位截面的粒子数就是Nj,电流密度就是Nqj.可以认为一个粒子带来的电流密度就是qj.

考虑一个粒子的平均位置(x).由于波函数随时间演化,平均位置也会变化。据此可以定义速度

$$v = \frac{\mathrm{d}\langle x\rangle}{\mathrm{d}t} = \int x \frac{\partial}{\partial t} \rho dx = \frac{i\hbar}{2m} \int x \frac{\partial}{\partial x} (\Psi^* \frac{\partial\Psi}{\partial x} - \frac{\partial\Psi^*}{\partial x} \Psi) \mathrm{d}x \tag{1.95}$$

上式利用了(1.88). 分部积分,并考虑的'正常波函数'在无穷远处为零(否则无法归一化),得到

$$v = -\frac{i\hbar}{2m} \int (\Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi) \mathrm{d}x$$
(1.96)

对后一项再作一次分部积分,得

$$v = \frac{-i\hbar}{m} \int (\Psi^* \frac{\partial \Psi}{\partial x}) dx = \frac{\langle p \rangle}{m}.$$
 (1.97)

我们看到这样定义的速度就是动量期望值除以质量。这从速度和动量的关系的角度给出了动量算符.(注意:在每个瞬间,都有一个动量期望值,它给出一个速度).

任意一个波函数 $\Psi(\mathbf{r},t)$ 都可以写成

$$|\Psi(\mathbf{r},t)|\exp[i\alpha(\mathbf{r},t)] = \sqrt{\rho(\mathbf{r},t)}\exp[i\alpha(\mathbf{r},t)].$$

其中 $\alpha(\mathbf{r}, t)$ 是相位.

我们来计算其几率流密度. 在某一时刻, 波函数在某一位置 \mathbf{r} 的取值可以写成 $\Psi = |\psi|e^{i\alpha(\mathbf{r})}$. 于是

$$\mathbf{j}(\mathbf{r}) = -\frac{i\hbar}{2m} \{ |\psi|e^{-i\alpha} [(\nabla|\psi|)e^{i\alpha} + i\nabla\alpha e^{i\alpha}|\psi|] - |\psi|e^{i\alpha} [(\nabla|\psi|)e^{-i\alpha} - i\nabla\alpha e^{-i\alpha}|\psi|] \}$$

$$= |\psi|^2 \frac{\hbar}{m} \nabla\alpha.$$
(1.98)

我们看到, 粒子在空间某处的几率流密度是由其波函数相位的梯度决定的! 波函数的相位在量子力学里具有 重要的物理意义.

1.6 本征值问题与定态

Schrödinger方程

 $i\hbar\frac{\partial\Psi}{\partial t} = \hat{H}\Psi \tag{1.99}$

怎么求解?

首先我们来求时间空间分离变量解

$$\Psi(\mathbf{r},t) = \psi(\mathbf{r})f(t) \tag{1.100}$$

这是一种特殊的解.

把假设解的形式带入Schrödinger方程,

$$\dot{\Xi} = \psi(\mathbf{r})i\hbar \frac{df}{dt} = \dot{\Xi} = f(t)\hat{H}\psi(\mathbf{r})$$
(1.101)

两边同时除以 $f(t)\psi(\mathbf{r})$,

$$\frac{i\hbar}{f(t)}\frac{df}{dt} = \frac{H\psi(\mathbf{r})}{\psi(\mathbf{r})} = E \quad (\begin{tabular}{c} \begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \\ \psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \end{tabular} = E \quad (\begin{tabular}{c} \#\psi(\mathbf{r}) \end{tabular} = E \ (\begin{tabula$$

其中*E*是具有能量量纲的常数.我们还利用了*V*(*x*)是与时间无关的常数这一假设,因此才有等式右端是空间函数,左端是时间函数,相等的前提是都等于一个常数。

我们得到

$$\frac{d\ln(f)}{dt} = -i\frac{E}{\hbar} \Rightarrow f(t) = e^{-i\frac{E}{\hbar}t}$$
(1.103)

并且

$$\hat{H}\psi(\mathbf{r}) = E\psi(\mathbf{r}),\tag{1.104}$$

具体就是

$$\left[\frac{-\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right]\psi(\mathbf{r}) = E\psi(\mathbf{r}).$$
(1.105)

这一方程称为不含时Seq, 又称能量本征方程. 因为哈密顿量算符对应的力学量是能量, 所以*E*称为能量本征 值, $\psi(\mathbf{r})$ 称为属于能量*E*的能量本征态, 为确切记, 可写成 $\psi_E(\mathbf{r})$.

如果我们解出了 ψ_E ,分量变量解就可以写出

$$\Psi(\mathbf{r},t) = \psi_E(\mathbf{r})e^{-i\frac{E}{\hbar}t}.$$
(1.106)

这样的状态称作**定态**(stationary state). 只要在t = 0时, $\Psi(\mathbf{r}, 0) = \psi_E$, 那么系统就会处于定态. 为什么有这样的名字呢? 我们来计算粒子分布几率. 注意波函数原则上是含时的, 但是

$$|\Psi(\mathbf{r},t)|^2 = |\psi_E(\mathbf{r})|^2 \tag{1.107}$$

与时间无关的'定'分布.

我们再来计算一下能量期望值,

$$\begin{split} \langle H \rangle &= \int \Psi^*(\mathbf{r}, t) \hat{H} \Psi(\mathbf{r}, t) d\mathbf{r} \\ &= \int \psi_E^*(\mathbf{r}) e^{i\frac{E}{\hbar}t} \hat{H} \psi_E(\mathbf{r}) e^{-i\frac{E}{\hbar}t} d\mathbf{r} \\ &= \int \psi_E^* \hat{H} \psi_E d\mathbf{r} \\ &= E \end{split}$$

我们发现其并不随时间改变. 主要推导中利用了Ĥ不含对时间的求导.

同样容易算出 $\langle H^2 \rangle = E^2$,因此 $\sigma_H^2 = \langle H^2 \rangle - \langle H \rangle^2 = 0$.说明定态情况下能量值是确定的,没有不确定度. 对任意力学量A,如果它不显含t(没有时间作为参数),比如动能T,位置,动量,角动量,我们计算其在定态下的期望值

$$\begin{split} \langle A \rangle &= \int \Psi^*(\mathbf{r},t) \hat{A} \Psi(\mathbf{r},t) d\mathbf{r} \\ &= \int \psi^*_E(\mathbf{r}) \hat{A} \psi_E(\mathbf{r}) d\mathbf{r} \end{split}$$

同样不随时间变化! 所以这样的状态被称作定态.

一般地, 在t = 0时, 粒子很可能不处于 ψ_E 态, 不过我们总可以将 $\Psi(\mathbf{r}, 0)$ 展开成 $\psi_E(\mathbf{r})$ 的叠加

$$\Psi(\mathbf{r},0) = \sum_{E} C_E \psi_E(\mathbf{r}), \qquad (1.108)$$

即分解成能量本征态的叠加, |C_E|是小于1的与E对应的复常数. 那么

$$\Psi(\mathbf{r},t) = \sum_{E} C_E \psi_E(\mathbf{r}) e^{-i\frac{E}{\hbar}t}$$
(1.109)

就是是Seq的满足初始条件的解. 证明如下:

$$i\hbar \frac{\partial \Psi(\mathbf{r},t)}{\partial t} = \sum_{E} C_E \psi_E(\mathbf{r}) E e^{-i\frac{E}{\hbar}t}$$
$$= \sum_{E} C_E \hat{H} \psi_E(\mathbf{r}) e^{-i\frac{E}{\hbar}t}$$
$$= \hat{H} \sum_{E} C_E \psi_E(\mathbf{r}) e^{-i\frac{E}{\hbar}t}$$
$$= \hat{H} \Psi(\mathbf{r},t)$$
(1.110)

展开式(1.108)也叫态叠加原理:粒子的运动状态由 \hat{H} 的本征态 ψ_E 线性叠加而成. C_E 是展开系数,可以求出(以后讨论),其模方 $|C_E|^2$ 的物理意义是粒子处于 ψ_E 的几率:测量粒子能量可以得 E_1, E_2, \cdots ,相应的几率为 $|C_{E_1}|^2, |C_{E_2}|^2, \cdots$.这个原理我们后面还会详细讨论.

我们来看一个例子. 假设

$$\Psi(x,0) = c_1\psi_1(x) + c_2\psi_2(x), \qquad (1.111)$$

其中 $\psi_1(x)$ 和 $\psi_2(x)$ 是能量本征方程的解,分别属于能量本征值 E_1, E_2 .并且满足归一化.为了讨论方便,假 $\psi_c_1, c_2, \psi_1(x), \psi_2(x)$ 都是实数.

那么

$$\Psi(x,t) = c_1 \psi_1(x) e^{-iE_1 t/\hbar} + c_2 \psi_2(x) e^{-iE_2 t/\hbar}$$
(1.112)

这个解就不是定态. 因为

$$|\Psi(x,t)|^{2} = |c_{1}\psi_{1}(x)e^{-iE_{1}t/\hbar} + c_{2}\psi_{2}(x)e^{-iE_{2}t/\hbar}|^{2}$$

= $c_{1}^{2}\psi_{1}(x)^{2} + c_{2}|^{2}\psi_{2}(x)^{2} + 2c_{1}c_{2}\psi_{1}(x)\psi_{2}(x)\cos((E_{2} - E_{1})t/\hbar)$ (1.113)

Chapter 2

一维问题

2.1 一维束缚定态问题

2.1.1 一维无限深势阱

我们先来看一个最简单的问题:考虑一个粒子被放在一个无限硬的一维盒子里.盒子长度为a,粒子质量为m.可以盒子左端为原点建立坐标系.粒子的势能函数就是

$$V(x) = \begin{cases} 0 & 0 \le x \le a, \\ \infty & x > a \text{ or } x < 0, \end{cases}$$
(2.1)

这样的势能函数一般形象地称为无限深势阱.

根据经典力学, 粒子在盒子中间自由不受力, 在两端受无穷大的弹力:

$$f = -\nabla V = \begin{cases} 0 & x < a \\ -\infty & x = a \\ \infty & x = 0. \end{cases}$$
(2.2)

可以想象, 粒子在盒子里要么静止, 要么匀速运动, 碰壁后由于动能守恒(假设没有能量耗散), 反向. 再碰壁, 再反向, 如此往复. 由于动量p任意, 它的能量 $E = \frac{p^2}{2m}$ 可以取任意大于等于零的值.

现在根据量子力学来研究这个问题.

粒子的运动遵从Schrödinger方程:

$$i\hbar\frac{\partial\Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t).$$
(2.3)

考虑粒子处于定态的情况:

$$\Psi(x,t) = \psi_E(x)e^{-i\frac{E}{\hbar}t},\tag{2.4}$$

其中 $\psi_E(x)$ 满足能量本征方程:

$$-\frac{\hbar^2}{2m}\psi_E''(x) + V(x)\psi_E(x) = E\psi_E(x).$$
(2.5)

在0 < x < a区间,方程可以写成

$$\psi'' + \frac{2mE}{\hbar^2}\psi = 0.$$
 (2.6)

令 $k = \sqrt{\frac{2mE}{\hbar^2}}$ (我们知道粒子的能量应该大于零,因其势能已经是大于零的了),有

$$\psi'' + k^2 \psi = 0. \tag{2.7}$$

其解可以为 $\exp(ikx), \exp(-ikx)$ 的线性组合,也可以选 $\cos(kx), \sin(kx)$ 的线性组合.我们选后者,并写成等价的简洁形式

$$\psi(x) = A\sin(kx + \delta), \tag{2.8}$$

其中A与δ待定.

由于盒子边界无限硬,或者说粒子到盒外的话势能无限高,粒子无法到达,因此

$$\psi(x \le 0) = 0, \tag{2.9}$$

 $(\psi(0) = 0 \mathbb{E}\psi(x)$ 连续的结果,这是个假设:波函数是连续的)这就要求 $\delta = 0$;并且

$$\psi(x \ge a) = 0,\tag{2.10}$$

这个条件要求 $\sin ka = 0$,所以k只能是一些离散的值:

$$k = \frac{n\pi}{a}, n = 1, 2, 3, \cdots$$
 (2.11)

而k是与粒子的能量相关的: $k = \sqrt{\frac{2mE}{\hbar^2}}$,我们发现能量也只能取一些离散值:

$$E_n = \frac{\hbar^2 n^2 \pi^2}{2ma^2}.$$
 (2.12)

这样,我们得到了一个非常重要的不同于经典力学的结论:无限深势阱中处于定态的粒子的能量是不连续的, 其能量只能处于一系列分立的本征值*E_n*,这些能量称为粒子的能级.这些能量里最低的一个称为基态能量, 它是大于零的.这一点与经典力学的结论也非常不同.

我们再看能量本征函数 $\psi_E(x)$. 由于能量只能取由n决定的分立值,所以可以写成 $\psi_n(x)$.

$$\psi_n = \begin{cases} A \sin \frac{n\pi x}{a} & 0 \le x \le a \\ 0 & x > a \text{ or } x < 0 \end{cases}$$
(2.13)

考虑到波函数的归一化,

$$\int_{0}^{a} |\psi_{n}|^{2} = \int_{0}^{a} |A|^{2} \sin^{2} \frac{n\pi x}{a} dx = |A|^{2} \frac{a}{2} = 1$$
(2.14)

因此 $|A| = \sqrt{\frac{2}{a}}$.由于波函数的相位整体改变一个值(或者说加上一个与位置无关的相位)是无关紧要的,所以通常选取 $A = \sqrt{2/a}$.

几点讨论:

- $E_1 = \frac{\pi^2 \hbar^2}{2ma^2} > 0$, 称为零点能。
- 图2.1显示了能量较低的几个波函数和几率密度分布的图像.
- 相对于势阱中心,这些本征函数奇偶交替.
- 随着能量增加, 节点数递增: 0,1,2,3,…
- 彼此正交归一(orthonormal):

$$\int \psi_m^*(x)\psi_n(x)\mathrm{d}x = \delta_{m,n} \tag{2.15}$$

• 完备性:任意函数f(x)(0与a之间的)都可以用 $\psi_n(x)$ 的线性组合表示出来

$$f(x) = \sum_{n=1}^{\infty} c_n \psi_n(x) \tag{2.16}$$

2.1. 一维束缚定态问题

怎么计算c_n?利用正交归一性容易发现

$$c_n = \int \psi_n(x) f(x) \mathrm{d}x \tag{2.17}$$

例: 零时刻波函数为 $\Psi(x,0) = Ax(a-x)$. 根据归一化, $A = \sqrt{30/a^5}$. 计算 c_n .

$$c_n = \int_0^a \sqrt{\frac{2}{a}} \sin(\frac{n\pi}{a}) Ax(a-x) dx$$

= 0, if n is even;
= $\frac{8\sqrt{15}}{(n\pi)^3}$, if n is odd (2.18)

- 我们给出的是定态波函数: $\Psi(\mathbf{r},t) = \psi_n(\mathbf{r})e^{-i\frac{E_n}{\hbar}t}$. 时间震荡因子不影响几率分布. 粒子位置的期望 值 $\langle x \rangle$ 不会随时间变化. 动量的期望值 $\langle p \rangle$ 是多少?
- 假设粒子在0时刻处于 $\Psi(\mathbf{r}, 0) = \frac{1}{\sqrt{a}} \sin \frac{\pi x}{a} + \frac{1}{\sqrt{a}} \sin \frac{2\pi x}{a}$ 的状态,那么t时刻其波函数应为

$$\Psi(\mathbf{r},t) = \frac{1}{\sqrt{a}} \sin \frac{\pi x}{a} e^{-iE_1 t/\hbar} + \frac{1}{\sqrt{a}} \sin \frac{2\pi x}{a} e^{-iE_2 t/\hbar}$$
(2.19)

其中, $E_1 = \hbar^2 \pi^2 / (2ma^2), E_2 = 4\hbar^2 \pi^2 / (2ma^2).$ 请问几率密度 $|\Psi(\mathbf{r}, t)|^2$ 会不会随时间变化? 粒子位置的 期望值 $\langle x \rangle$ 会不会随时间变化?

Figure 2.1: 基态, 第一激发态与第二激发态波函数及其对应的几率分布.

2.1. 一维束缚定态问题

• 展开系数*c*_n的物理意义

根据 $\psi(x,0)$ 的归一化,容易证明

$$\sum_{n=1}^{\infty} |c_n|^2 = 1 \tag{2.20}$$

我们前面证明了

$$\psi(x,t) = \sum c_n \psi_n(x) e^{-iE_n t/\hbar}$$
(2.21)

是满足薛定谔方程的解. 利用 $\psi_n(x)$ 的正交归一性,容易证明 $\psi(x,t)$ 也是满足归一化条件的。 我们还可以计算能量期望值

$$\langle H \rangle = \int_0^a \psi^*(x,t) H \psi(x,t) \mathrm{d}x = \sum_n |c_n|^2 E_n$$
(2.22)

量子力学原理指出: |*c_n*|²是测量能量得到*E_n*的几率. 我们看到这个几率是归一的。上面的公式正是统计 平均的计算公式. 这个平均值不会随时间变化,正是能量守恒的表现. 但是由于是统计平均,每次测量的结 果并不一定相同.

我们还会在后面学习量子力学理论体系的时候进一步讨论这个问题.

2.1.2 自由粒子

与无限深势井中粒子的运动对比,我们来研究自由粒子,V(x) = 0.

我们看到粒子的不含时薛定谔方程与无限深势井中的粒子的方程一样

$$\psi''(x) + k^2 \psi = 0 \tag{2.23}$$

其中 $k \equiv \sqrt{2mE}/\hbar$. 那么它的解也可以是exp(*ikx*), exp(-*ikx*)或者cos(*kx*), sin(*kx*). 此时我们会选择指数函数 形式.

$$\psi(x) = Ae^{ikx} + Be^{-ikx} \tag{2.24}$$

$$\Psi(x,t) = Ae^{ikx - i\frac{\hbar^2 k^2}{2m}t} + Be^{-ikx - i\frac{\hbar^2 k^2}{2m}t}$$
(2.25)

我们看出来这就是朝右和朝左的平面波的叠加. 令 $k = \pm \sqrt{2mE}/\hbar$, 上式可以写成

$$\Psi_k(x,t) = Ce^{ikx - i\frac{\hbar k^2}{2m}t} = Ce^{i\frac{p}{\hbar}x - i\omega t} = \psi_k(x)e^{-i\omega t}$$
(2.26)

其中用到德布罗意关系 $p = \hbar k, E = \hbar \omega, C$ 是常数.

然而我们发现这个'定态'解无法归一化:

$$\int_{\infty}^{\infty} |\psi_k(x,t)|^2 dx = |C|^2 \int_{-\infty}^{\infty} dx$$
(2.27)

如果要归一化,那么 $C \rightarrow 0$.这说明对自由粒子而言,分量变量解(或者说定态解)不是物理上可以实现的状态.换言之,自由粒子没有确定能量.

但是这并不是说分离变量解没有用. 我们可以用它们来展开初始波函数 $\Psi(x,0)$, 从而得到薛定谔方程的一般解 $\Psi(x,t)$.

例如,如果初始时刻的波函数为

$$\Psi(x,0) = \frac{\alpha^{1/2}}{(\pi)^{\frac{1}{4}}} e^{\frac{-\alpha^2 x^2}{2}},$$
(2.28)

利用傅里叶变换(1.26),将其写成 $\psi_k(x)$ 的叠加

$$\Psi(x,0) = \frac{1}{\sqrt{2\pi\hbar}} \int \varphi(p) e^{ipx/\hbar} dp \qquad (2.29)$$

系数C被写成1/√2πħ,保证了广义的正交归一性:

$$\int \psi_k^*(x)\psi_{k'}dx = \delta(p-p') \tag{2.30}$$

 $\delta(p-p')$ 是Dirac函数. 我们还会回到这个问题.

叠加系数 $\varphi(p)$ 就是我们说的动量表象波函数

$$\varphi(p) = \frac{1}{\pi^{\frac{1}{4}} (\hbar\alpha)^{\frac{1}{2}}} e^{-\frac{p^2}{2\alpha^2 \hbar^2}}$$
(2.31)

满足

$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = \frac{-\hbar^2}{2m} \frac{d^2}{dx^2} \Psi(x,t)$$
(2.32)

的通解就是

$$\Psi(x,t) = \frac{1}{(2\pi\hbar)^{\frac{1}{2}}} \int \varphi(p) e^{i\frac{p}{\hbar}x - i\frac{E}{\hbar}t} dp.$$
(2.33)

2.1. 一维束缚定态问题

把(2.31)代入,我们有

$$\Psi(x,t) = \frac{1}{(2\pi\hbar)^{\frac{1}{2}}} \int \frac{1}{\pi^{\frac{1}{4}}(\hbar\alpha)^{\frac{1}{2}}} e^{-\frac{p^2}{2\alpha^2\hbar^2} + i\frac{p}{\hbar}x - i\frac{p^2t}{2m\hbar}} dp.$$
(2.34)

我们看到p=0的几率幅最大,这点并不随时间变化.

将动量积分掉,我们得到

$$\Psi(x,t) = \frac{1}{\sqrt{\left(\frac{1}{\alpha} + \frac{i\hbar t\alpha}{m}\right)}\pi^{\frac{1}{4}}} e^{-\frac{x^2\alpha^2}{2(1+\frac{i\hbar t\alpha^2}{m})}}.$$
(2.35)

考虑它的模方,可以看到波函数的宽度 $(1 + \frac{\hbar^2 \alpha^4 t^2}{m})^{1/2}/(\sqrt{2}\alpha)$ 随时间变大,这表明波包在扩散!速度大约为 $\hbar\alpha/m$.

如果零时刻波函数是如下形式

$$\Psi(x,0) = Ae^{-\frac{\alpha^2 x^2}{2} + i\frac{p_0 x}{\hbar}},$$
(2.36)

通过傅立叶逆变换,我们可以算出

$$\varphi(p) = \frac{A}{(2\pi\hbar)^{\frac{1}{2}}} \int e^{-\frac{\alpha^2 x^2}{2} + i\frac{p_0 x}{\hbar} - i\frac{px}{\hbar}} dx$$

$$= \frac{1}{\pi^{\frac{1}{4}} (\hbar\alpha)^{\frac{1}{2}}} e^{-\frac{(p-p_0)^2}{2\alpha^2\hbar^2}},$$
 (2.37)

表明动量的几率分布为中心为 p_0 的高斯分布,不确定度为 $\hbar\alpha/\sqrt{2}$.那么之后任意时刻的波函数就是

$$\Psi(x,t) = c \int e^{-\frac{(p-p_0)^2}{2\alpha^2\hbar^2}} e^{i\frac{p}{\hbar}x - i\frac{p^2}{2m\hbar}t} dp$$

= $\frac{1}{\sqrt{(\frac{1}{\alpha} + \frac{i\hbar t\alpha}{m})\pi^{\frac{1}{4}}}} e^{-\frac{(x-\frac{p_0t}{m})^2\alpha^2}{2(1+\frac{i\hbar t\alpha^2}{m})} + \frac{ip_0}{\hbar}(x-\frac{p_0t}{m})}$ (2.38)

模方就是

$$|\psi(x,t)|^{2} = \frac{1}{\sqrt{\left(\frac{1}{\alpha^{2}} + \frac{\hbar^{2}t^{2}\alpha^{2}}{m^{2}}\right)\pi^{\frac{1}{2}}}}e^{-\frac{(x-\frac{p_{0}t}{m})^{2}\alpha^{2}}{(1+\frac{\hbar^{2}\alpha^{4}t^{2}}{m^{2}})}}.$$
(2.39)

可以看到波包的中心在以速度po/m移动.同时波包的宽度在按

$$\Delta x = \frac{1}{\sqrt{2}} \frac{(1 + \hbar^2 \alpha^4 t^2 / m^2)^{1/2}}{\alpha} \approx \frac{1}{\sqrt{2}} \hbar \alpha t / m$$
(2.40)

扩散,其速度是ħα/m.这一过程的数值模拟可以在我的主页找到.

2.1.3 定态问题的一般讨论

薛定谔方程的定态解或者分离变量解为

$$\Psi(\mathbf{r},t) = \psi_E(\mathbf{r})e^{-i\frac{E}{\hbar}t} \tag{2.41}$$

其中 $\psi_E(x)$ 满足不含时薛定谔方程:

$$\hat{H}\psi_E = E\psi_E \tag{2.42}$$

我们前面遇到了两种情况: 粒子被约束在有限空间范围内和粒子自由. 前者上述方程的解对应*E*是分立的能级, 后者*E*是连续的. 前者对应给定能量下粒子无法到达无穷远处, 称为束缚定态(简称束缚态,bound state), 后者不对应可以实现的状态.

对波函数的一般要求: 连续、单值(确定的x只有唯一的 $\psi_E(x)$). 本节里的波函数都指 ψ_E .

几个帮忙的定理:

 $1 \le$ 如果 $\psi(x) = u(x) + iv(x)$ 是 $\hat{H}\psi(x) = E\psi(x)$ 的解,那么 $\psi^{*}(x) = u(x) - iv(x)$ 也是属于E的解。 证明:

$$(-\frac{\hbar^2}{2m}\psi'' + V(x)\psi)^* = (E\psi)^* -\frac{\hbar^2}{2m}\psi^{*\prime\prime} + V(x)\psi^* = E\psi^*$$
(2.43)

这里用到了V(x)是实的.

 $2 \cdot \hat{H}\psi(x) = E\psi(x)$ 总可以找到一组实解,所有的解都可以表示成这组实解的线性叠加(完备性)。 证明:如果 $\psi(x) = u(x) + iv(x)$ 是解, $\psi^*(x) = u(x) - iv(x)$ 也是解。那么

$$\hat{H}(\psi \pm \psi^*) = E(\psi \pm \psi^*)$$
(2.44)

即u(x), v(x)也是本征值为E的解,也就是说 $\psi(x) = u(x) + iv(x)$ 是实解的叠加。

3、对一维粒子,如果 ψ_1 和 ψ_2 均为 $\hat{H}\psi = E\psi$ 的属于同一能量E的解,则 $\psi_1\psi'_2 - \psi_2\psi'_1 = C$ (常数)

证明:

$$\psi_2[\psi_1'' + \frac{2m}{\hbar^2}(E - V)\psi_1] = 0$$

$$-\psi_1[\psi_2'' + \frac{2m}{\hbar^2}(E - V)\psi_2] = 0$$

(2.45)

两个方程相减,得到

$$\psi_1 \psi_2'' - \psi_2 \psi_1'' = 0. \tag{2.46}$$

可以写成

$$(\psi_1\psi_2' - \psi_2\psi_1')' = 0. \tag{2.47}$$

积分,我们得到

$$\psi_1 \psi_2' - \psi_2 \psi_1' = C. \tag{2.48}$$

4、東缚态要求无穷远处 $|x| \to \infty$, 波函数 $\psi_E(x) \to 0$, 表明粒子被约束在有限的空间里。(注意其 与 $\psi(x) = Ce^{\frac{i\pi}{h}}$ 的区别: 后者 $|\psi(x)| =$ 常数,因此无法归一化)。

定理: 粒子在一维规则势场V(x)(无奇点)中运动,如存在束缚态,则无简并现象. (所谓简并是指两个(或以上)不一样的波函数属于同一个能级E.)

证明:假设有两个束缚态 ψ_1, ψ_2 简并,由于 $|x| \to \infty, \psi \to 0$,根据前面定理3,无穷远处常数必为零,

$$\psi_1 \psi_2' = \psi_2 \psi_1' \tag{2.49}$$

2.1. 一维束缚定态问题

就是说

$$\frac{\psi_1'}{\psi_1} = \frac{\psi_2'}{\psi_2} \tag{2.50}$$

两边积分

$$\ln \psi_1 = \ln \psi_2 + C \tag{2.51}$$

C是常数.因此 $\psi_1 = e^C \psi_2$.说明 $\psi_1 = \psi_2$ 是一**样的**(相差常数因子)波函数。考虑到 ψ_1, ψ_2 都有归一化,有 $|e^C| = 1$,即C是一个纯虚数,给出一个固定的相位.

5、一般情况下,如果V(x)连续,或

$$V(x) = \begin{cases} V_1 & x < a \\ V_2 & x > a \end{cases}$$
 (不连续, $@V_2 - V_1 f \mathbb{R})$ (2.52)

 $则\psi(x) 与 \psi'(x)$ 都连续。

Figure 2.2: V(x) 不连续, 但是跳跃有限.

证明:

$$\frac{d^2}{dx^2}\psi(x) = -\frac{2m}{\hbar^2} [E - V(x)]\psi(x)$$
(2.53)

在a处积分

$$\psi'(a+\varepsilon) - \psi'(a-\varepsilon) = -\frac{2m}{\hbar^2} \lim_{\varepsilon \to 0} \int_{a-\varepsilon}^{a+\varepsilon} dx [E-V(x)]\psi(x)$$
(2.54)

由于E与V(x)有限大,所以积分

$$\lim_{\varepsilon \to 0} \int_{a-\varepsilon}^{a+\varepsilon} dx [E-V(x)]\psi(x) = \lim_{\varepsilon \to 0} E\psi(a)2\varepsilon - \lim_{\varepsilon \to 0} \left[V_2(\psi(a+)\varepsilon + V_1\psi(a-)\varepsilon] \to 0\right]$$
(2.55)

这里我们利用了积分的面积解释。所以

$$\psi'(a+0^+) = \psi'(a-0^+) \tag{2.56}$$

即 ψ' 是连续的,条件是V(x)有限。

讨论:

- 1. V(x)有限区域, $\psi = \psi'$ 连续;
- 2. 如果V(x) 在x = a处发生无穷大跳跃,尽管 $\varepsilon \to 0$ 仍然可以导致2.55 中右边不等于零,从而使得 ψ '可以不连续;

 $6 \times$ 考虑势能函数是偶的V(x) = V(-x). 如果 $\psi_1(x)$ 是 $\hat{H}\psi = E\psi$ 的解,那么 $\psi_1(-x)$ 也是本征值为E的解。 证明:

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x) + V(x)\psi(x) = E\psi(x)$$
(2.57)

 $在x \rightarrow -x$ 时

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} \to -\frac{\hbar^2}{2m}\frac{d^2}{d(-x)^2} = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2}$$
(2.58)

 $\langle x \rangle \rightarrow -x,$ 定态薛定谔方程变为:

$$-\frac{\hbar^2}{2m}\frac{d^2}{d(-x)^2}\psi(-x) + V(-x)\psi(-x) = E\psi(-x)$$
(2.59)

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(-x) + V(x)\psi(-x) = E\psi(-x)$$
(2.60)

重要推论: 对于一维束缚态的解,则 $\psi(x) = C\psi(-x)$. 在考虑 $\psi(-x) = C\psi(-(-x))$,即 $\psi(x) = C^2\psi(x)$,所以

$$C^2 = 1$$
 (2.61)

只有两种可能: C = 1或C = -1, 分别为**偶宇称**和**奇宇称**两种情况:

就是说:一维偶势V(x) = V(-x)下,束缚态解是有确定宇称的。

说明: $\overline{ cV(x) } = V(-x)$ 条件下,对于能量为*E*的解,如果不是束缚态,一般会存在简并。此时解 $\psi(x)$ 不一定有确定的字称,但是总可以写成有字称解的叠加。

比如: 自由粒子V(x) = V(-x) = 0, $\psi(x) = A \exp(\pm ipx/\hbar)$ 就是能量 $E = p^2/2m$ 的两个解,都 是 $\cos(px/\hbar)$ 与 $\sin(px/\hbar)$ 的叠加。

2.1.4 有限深势阱

我们设阱外 $V = V_0$, 阱内仍然V = 0. 可以理解为盒子硬度有限, 但仍有 $E < V_0$.

经典物理告诉我们: 粒子如果能量 $E = \frac{p^2}{2m} < V_0$, 会被限制在盒子内; 与无限深没有区别。如 果 $E = \frac{p^2}{2m} > V_0$, 会离开盒子, 自由运动。

下面我们看量子力学的结论怎样的。

考虑束缚定态 $\Psi(x,t) = \psi_E(x)e^{-i\frac{E}{\hbar}t}$. (下面 $\psi_E(x)$ 简写为 ψ). 首先考虑阱内. 波函数满足

$$\psi'' + \frac{2mE}{\hbar^2}\psi = 0.$$
 (2.62)

由于势能在所有地方大于或等于零,所以E > 0. 令 $k = \frac{\sqrt{2mE}}{\hbar}$,解可以选实函数 $\cos kx$ 和 $\sin kx$ 的叠加,不 选 $e^{\pm ikx}$ 。

再考虑阱外:

$$\psi'' + \frac{2m(E - V_0)}{\hbar^2}\psi = 0 \tag{2.63}$$

考虑E < V0, 与经典不同, 我们不能武断认为

$$\psi(|x| > \frac{a}{2}) = 0 \tag{2.64}$$

 $\diamondsuit k' = \frac{\sqrt{2m(V_0 - E)}}{\hbar}$

$$\psi'' - k^2 \psi = 0 \tag{2.65}$$

考虑到有物理意义的解在无穷远处不能发散,所以取

$$\psi = \begin{cases} Ae^{-k'x} & x > \frac{a}{2} \\ Be^{k'x} & x < -\frac{a}{2} \end{cases}$$
(2.66)

再考虑到束缚态解必须有宇称性,两种可能: A = B, 偶宇称; A = -B, 奇宇称。

A 偶宇称解:

根据前面的定理: ψ , ψ' 在 $|x| = \frac{a}{2}$ 处连续:

$$\psi'|_{x=\frac{a}{2}-0^{+}} = \psi'|_{x=\frac{a}{2}+0^{+}}$$

$$\psi|_{x=\frac{a}{2}-0^{+}} = \psi|_{x=\frac{a}{2}+0^{+}}$$

$$(\ln\psi)'|_{x=\frac{a}{2}-0^{+}} = (\ln\psi)'|_{x=\frac{a}{2}+0^{+}}$$
(2.68)

$$(\ln \cos kx)'|_{x=\frac{a}{2}} = (\ln e^{-k'x})'\Big|_{x=\frac{a}{2}}$$

 $k \sin k\frac{a}{2}$

$$-\frac{k\sin k\frac{a}{2}}{\cos k\frac{a}{2}} = -k'$$
(2.69)

$$\frac{ak}{2}\tan\frac{ka}{2} = \frac{k'a}{2} \tag{2.70}$$

$$\begin{aligned} & \diamondsuit \xi = \frac{ka}{2}, \ \eta = \frac{k'a}{2} \\ & \begin{cases} \xi \tan \xi = \eta \\ \xi^2 + \eta^2 = \frac{k^2a^2}{4} + \frac{k'^2a^2}{4} = \frac{2mE}{\hbar^2}\frac{a^2}{4} + \frac{2m(V_0 - E)}{\hbar^2}\frac{a^2}{4} = \frac{mV_0a^2}{\hbar^2} \end{aligned}$$
(2.71)

讨论:

Figure 2.3: 式(2.71)的图解

- 交点给出E
- 深且宽, 井内能束缚住更多的量子态(波函数). 无限深势井是极限情况.
- 浅而窄, 束缚态少, 但是最少也有一个.

B 奇宇称解:

$$| n \sin kx \not > \begin{cases} Ae^{-k'x} & x > \frac{a}{2} \\ -Ae^{k'x} & x < -\frac{a}{2} \end{cases}$$
(2.72)

大家自行讨论。
2.2 δ势阱

对于有限深势阱,我们还可以规定阱内 $V = -V_0$, 阱外V = 0. (因为势能零点可以任意选取). 那么:

$$\int_{-\infty}^{\infty} V(x)dx = -V_0 a \ (\hat{\mathbb{Z}} \mathring{X} \mathring{H} - \gamma).$$
(2.73)

若 $V_0 \rightarrow \infty, a \rightarrow 0, \ U_0 a = \gamma$ 不变,则我们可以把势能函数写为

$$V(x) = -\gamma \delta(x). \tag{2.74}$$

粒子的定态方程为:

$$-\frac{\hbar^2}{2m}\psi'' + V(x)\psi(x) = E\psi(x)$$
(2.75)

$$\psi'' + \frac{2m\gamma}{\hbar^2}\delta(x)\psi + \frac{2mE}{\hbar^2}\psi = 0$$
(2.76)

$$\psi'' + \frac{2mE}{\hbar^2}\psi = 0.$$
 (2.77)

考虑束缚态
$$E < V(\infty) = 0$$
, $\Diamond \beta = \frac{\sqrt{-2mE}}{\hbar}$

$$\psi'' - \beta^2 \psi = 0 \tag{2.78}$$

方程的解为

$$\psi = e^{\pm\beta x}.\tag{2.79}$$

由于束缚态要求 $x \to \pm \infty, \psi \to 0$,所以

$$\psi = \begin{cases} C_1 e^{-\beta x} & x > 0\\ C_2 e^{\beta x} & x < 0 \end{cases}$$
(2.80)

势能是偶宇称的,因此我们可以要求解有宇称性:

首先考虑偶宇称解: $\psi(x) = \psi(-x)$. 这就要求 $C_1 = C_2 = C$. 在原点附近对(2.76)积分

$$\lim_{\varepsilon \to 0} \int_{-\varepsilon}^{\varepsilon} \left[\psi'' + \frac{2m\gamma}{\hbar^2} \delta(x)\psi + \frac{2mE}{\hbar^2}\psi \right] dx = \psi'(0^+) - \psi'(0^-) + \frac{2m\gamma}{\hbar^2}\psi(0) = 0$$
(2.81)

那么

$$-\beta C e^{-\beta x}\big|_{0^+} - \beta C e^{\beta x}\big|_{0^-} = -\frac{2m\gamma}{\hbar^2}C$$
(2.82)

即

$$2\beta C = \frac{2m\gamma C}{\hbar^2} \tag{2.83}$$

因而

$$\beta^2 = \left(\frac{m\gamma}{\hbar^2}\right)^2 = -\frac{2mE}{\hbar^2} \tag{2.84}$$

我们发现束缚态是唯一的,其能量为

$$E = \frac{-m\gamma^2}{2\hbar^2} \tag{2.85}$$

根据归一化要求,可以算出: $C = \sqrt{\beta}$.

再来考虑奇宇称解,这要求 $C_1 = -C_2 = C$,由于 $\psi(x)$ 处处连续,在x = 0处

$$Ce^{-\beta x}|_{0^+} = -Ce^{\beta x}|_{0_-}.$$
(2.86)

因此C=0,这说明没有奇宇称的束缚态。

2.3 一维谐振子

考虑一个弹簧, 质点质量*m*. 势能 $V(x) = \frac{1}{2}kx^2$. *k*是弹性系数. 粒子受力

f = -kx

牛顿力学告诉我们

$$-kx = m\ddot{x} \tag{2.87}$$

其解为

$$x = A\sin(\omega t + \delta) \tag{2.88}$$

$$p = m\dot{x} = m\omega A\cos(\omega t + \delta) \tag{2.89}$$

其中 $\omega = \sqrt{k/m}$ 为自然频率,势能可以写为 $V(x) = \frac{1}{2}m\omega^2 x^2$. 振幅A由能量E决定: $\frac{1}{2}kA^2 = E$. E可以取任意 大于零的值. 相位 δ 由初始位置决定.

我们也可以用哈密顿力学来写运动方程, $H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$

$$\dot{x} = \frac{\partial H}{\partial p} = \frac{p}{m}$$
$$\dot{p} = -\frac{\partial H}{\partial x} = -m\omega^2 x \tag{2.90}$$

前者就是动量的定义式,后者是牛顿方程。

量子力学用波函数描述谐振子的运动状态,满足薛定谔方程

$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = H\Psi(x,t)$$
(2.91)

先考虑定态情况: $\Psi(x,t) = \psi_E(x)e^{-iEt/\hbar}$. 由于势能在无穷远处是无穷大,所以系统只存在束缚态. 空间部 分满足定态S-eq

$$H\psi_E(x) = E\psi_E(x) \tag{2.92}$$

即

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi_E}{\mathrm{d}x^2} + \frac{1}{2}m\omega^2 x^2\psi_E = E\psi_E \tag{2.93}$$

两边除以ħω/2,即以ħω/2作为单位来度量能量

$$-\frac{\psi_E''}{\frac{m\omega}{\hbar}} + \frac{m\omega}{\hbar} x^2 \psi_E = \frac{2E}{\hbar\omega} \psi_E$$
(2.94)

我们知道[$\frac{m\omega}{\hbar}$] = $\frac{1}{L^2}$,这保证了两边量纲相同。

定义 $m\omega/\hbar \equiv \alpha^2, x_0 \equiv 1/\alpha$ 是长度,自然的长度单位!则 $x/(1/\alpha) \equiv \xi$,是以自然长度单位度量的长度. $\frac{1}{2}\hbar\omega$ 取为自然的能量单位,那么 $\lambda \equiv E/(\frac{1}{2}\hbar\omega)$ 就是以自然能量单位度量的能量.这样作也成为'无量纲化'.

$$-\frac{\mathrm{d}^2\psi_E}{\mathrm{d}\xi^2} + \xi^2\psi_E = \lambda\psi_E \tag{2.95}$$

首先研究极限 $\xi \to \pm \infty$ 下上面方程的渐近行为.由于系统能量为常数,此时可以忽略掉 $\lambda \psi_E$,方程化为

$$\frac{\mathrm{d}^2 \psi_E}{\mathrm{d}\xi^2} - \xi^2 \psi_E = 0.$$
 (2.96)

解为

$$\psi_E \propto e^{\pm \xi^2/2}.\tag{2.97}$$

(利用了此极限下 $\xi^2 = \xi^2 \pm 1$).

考虑到束缚态要求 $\psi_E \to 0$,上式只取'-'号。 在**非无穷远处**,我们设 $\psi_E = u(\xi)e^{-\xi^2/2}$,带入(2.95),得到 $u(\xi)$ 满足的方程

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\xi^2} - 2\xi \frac{\mathrm{d}u}{\mathrm{d}\xi} + (\lambda - 1)u = 0 \tag{2.98}$$

此为著名的Hermite方程。

观察可得:

$$u = c_0,$$
 if $\lambda = 1$, $\vec{\mathfrak{n}} \not\equiv E = \frac{1}{2}\hbar\omega$ (2.99)

$$u = \xi,$$
 if $\lambda = 3$, $\vec{\mathfrak{R}} \neq E = (1 + \frac{1}{2})\hbar\omega$ (2.100)

$$u = 2\xi^2 - 1$$
 if $\lambda = 5$, $\Re E = (2 + \frac{1}{2})\hbar\omega$ (2.101)

这就是厄密方程的前几个解!注意它们的宇称性,符合对称势能的要求.

一般地, 假设无穷级数解

$$u = \sum_{k=0}^{\infty} c_k \xi^k.$$
 (2.102)

束缚态和对称势能,导致解有宇称.我们分别考虑:

- 1. 偶宇称解: $u_e = c_0 + c_2\xi^2 + c_4\xi^4 + \cdots$
- 2. 奇宇称解: $u_o = c_1\xi + c_3\xi^3 + c_5\xi^5 \cdots$
- 将(2.102)带入(2.98),

$$\sum_{k=2} c_k k(k-1)\xi^{k-2} - 2\xi \sum_{k=1} c_k k\xi^{k-1} + (\lambda-1) \sum_{k=0} c_k \xi^k = 0$$
(2.103)

改写之, 让k都从零开始数起

$$\sum_{k=0} c_{k+2}(k+2)(k+1)\xi^k - 2\sum_{k=0} c_k k\xi^k + (\lambda - 1)\sum_{k=0} c_k \xi^k = 0$$
(2.104)

比较同次幂

$$c_{k+2} = \frac{2k+1-\lambda}{(k+2)(k+1)}c_k \tag{2.105}$$

对于偶宇称解,如果知道 c_0 ,可以算出 c_2 , c_4 , c_6 ,…; 奇宇称解,知道 c_1 ,可以知道 c_3 , c_5 ,…. 但是这里藏着一个问题,我们通过偶宇称解来说明.此时k = 2m为偶数.在m很大时,

$$\frac{c_{2m+2}}{c_{2m}} \to \frac{1}{m+1}.$$
 (2.106)

我们可以看到 $c_{2m} = 1/m!$

当ξ→∞时, u_e 中k越大的项越重要. 因此

$$u_e \approx \sum_m \frac{(\xi^2)^m}{m!} = e^{\xi^2}.$$
 (2.107)

这导致 $\psi_E = u_e e^{-\xi^2/2}$ 发散!

为避免这种情况发生,我们必须要让无穷级数解中断为多项式(polynomial)!

Figure 2.4: 简谐振子的能量本征态.

如果 $\lambda = 2n + 1$, *n*为整数,那么级数解就会终止为多项式,从而避免发散。这个多项式就是著名的Hermite 多项式 $H_n(\xi)$. 按惯例,规定最高幂的系数 $c_n = 2^n$. 比如: $H_0(\xi) = 1, H_1(\xi) = 2\xi, H_2(\xi) = c_0 + c_2\xi^2 = 4\xi^2 - 2$.

这个λ是以1/hω为单位的能量,或者说

$$E_n = (n+1/2)\hbar\omega. \tag{2.108}$$

对应的波函数就是

$$\psi_n = N_n H_n(\xi) e^{-\xi^2/2} = N_n H_n(\alpha x) e^{-\frac{1}{2}\alpha^2 x^2}.$$
(2.109)

其中Nn为归一化系数:

$$N_n = \left(\frac{\alpha}{2^n n! \sqrt{\pi}}\right)^{\frac{1}{2}}.$$
 (2.110)

这可以利用厄密多项式的性质得到

$$\int_{-\infty}^{\infty} H_n(\xi) H_m(\xi) e^{-\xi^2} d\xi = \sqrt{\pi} 2^n n! \delta_{m,n}$$
(2.111)

由此

$$\int_{\infty}^{\infty} \psi_m(x)\psi_n(x)\mathrm{d}x = \delta_{m,n} \tag{2.112}$$

这就是波函数的正交归一性。 最重要的是基态波函数

$$\psi_0 = \frac{\alpha^{\frac{1}{2}}}{\pi^{1/4}} e^{-\frac{1}{2}\alpha^2 x^2} \tag{2.113}$$

就是我们熟悉的高斯函数。

第一激发态

$$\psi_1(x) = \frac{(2\alpha)^{\frac{1}{2}}}{\pi^{1/4}} \alpha x e^{-\frac{1}{2}\alpha^2 x^2}$$
(2.114)

经典力学告诉我们,给定能量*E*,可以算出振子的振幅 $\frac{1}{2}m\omega^2 A^2 = E$.对于基态能量 $E = \frac{1}{2}\hbar\omega$,容易算出 经典振幅 $A = \sqrt{\hbar/(m\omega)} = x_0 = 1/\alpha$.可以看到,**自然长度单位就是基态对应的***A*.

但是按经典力学,粒子应该出现在±A之间。量子力学告诉我们这不是真的。我们计算粒子跑出这个范围的几率

$$p = 2 \int_{1/\alpha}^{\infty} |\psi_0(x)|^2 dx = \frac{2}{\sqrt{\pi}} \int_1^{\infty} e^{-\xi^2} d\xi \approx 0.16$$
(2.115)

我们再来看第一激发态ψ1.

首先来求最可几位置. 利用 $\frac{d\psi_1^2}{dx} = 0$,

$$\frac{\mathrm{d}(\xi^2 e^{-\xi^2})}{\mathrm{d}\xi} = 0, \tag{2.116}$$

得 $\xi = \pm 1$, 说明粒子在 $\pm 1/\alpha$ 处出现几率最大。 还可以求此时的经典禁区: $\frac{1}{2}m\omega^2 A^2 = \frac{3}{2}\hbar\omega$, 得到 $A = \sqrt{3}/\alpha$. 还有粒子在禁区之外出现的几率

$$p = 2 \int_{A}^{\infty} \psi_{1}^{2} dx = \frac{4}{\sqrt{\pi}} \int_{\sqrt{3}}^{\infty} \xi^{2} e^{-\xi^{2}} d\xi = 0.112$$
(2.117)

2.4 一维势垒贯穿

到此为止我们遇到不含时薛定谔方程的两种解. 一种是束缚态, 可以归一化, 能量不连续, 一种是散射态, 也称游离态, 不能归一化, 能量连续. 虽然后者本身不对应可以实现的真实状态, 但是可以叠加成'真实'的 波包.

在经典物理里面, 束缚态粒子在E < V(x)的区域运动. 如果粒子能量在左边大于V(x), 它可以从左边来, 在E = V(x)的地方停下, 然后回到无穷远处. 这两种运动状态就对应束缚态和散射态.

但是满足量子力学的粒子,由于'隧穿效应',只要 $E > V(\pm \infty)$,就处于散射态,即可以到达无穷远处.这是不同于经典粒子的地方.

参考图2.4。

Figure 2.7: (a) A bound state. (b) Scattering states. (c) A classical bound state, but a quantum scattering state.

Figure 2.5: 经典与量子束缚态和散射态.(c) 经典的束缚态,量子的散射态.

考虑一个质量为m的粒子在以下势垒中的运动

$$V(x) = \begin{cases} 0, & x < 0, x > a \\ V_0 > 0, & 0 \le x \le a \end{cases}$$
(2.118)

显然势垒没有办法束缚粒子,我们研究所谓'散射'态.

我们假设粒子是从左边入射来的. 假设它的能量E > 0, 但是低于 V_0 . 根据经典力学粒子不可能穿过势垒 到达x > a的区域, 它会在x = 0处反弹回去. 如果你发射大量这样的粒子, 百分之百都会被发弹回去. 那么量 子力学对这个问题会给出什么样的答案呢?

我们考虑定态. 由于粒子能量E > 0, 我们实际上在处理一个游离态问题(粒子会在无穷远处出现). 波函数可以写成

$$\Psi(x,t) = \psi(x)e^{-iEt/\hbar}.$$
(2.119)

空间波函数满足定态Seq

$$\hat{H}\psi(x) = -\frac{\hbar^2}{2m}\psi(x)'' = E\psi(x)$$
(2.120)

2.4. 一维势垒贯穿

在x < 0, x > a的区域, 就是

$$\psi(x)'' + k^2 \psi(x) = 0, \qquad k = \sqrt{\frac{2mE}{\hbar^2}}$$
(2.121)

$$\psi(x)'' - \beta^2 \psi(x) = 0, \qquad \beta = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}}.$$
 (2.122)

这样定义 k, β 保证了 $k^2 > 0, \beta^2 > 0.$

Eq.(2.121)的通解为exp($\pm ikx$). 考虑到初始条件: 粒子从左边入射, 也就是说, 无论如何粒子在右 bx > a段不会有向左的动量几率, 我们取解为

$$\psi(x) = e^{ikx} + Re^{-ikx}, \quad x < 0, \tag{2.123}$$

$$\psi(x) = Se^{ikx}, \qquad x > a. \tag{2.124}$$

从物理上看, exp(*ikx*)为具有动量 $\hbar k$ 的入射波, 记为 ψ_i , $R \exp(-ikx)$ 为动量为 $-\hbar k$ 的反射波 ψ_R , $S \exp(ikx)$ 为动量为 $\hbar k$ 的透射波 ψ_S . 对**游离态**波函数无法归一化, 重要的是相对强度, 所以我们把入射波的振幅取为1. 至于*S*, 如果它等于零, 就意味着粒子并不会出现在势垒之右.

势垒内部的波函数是Eq.(2.122)的解,

$$\psi(x) = Ae^{\beta x} + Be^{-\beta x}, \qquad 0 \le x \le a. \tag{2.125}$$

我们注意到,由于非束缚态,即使选择坐标系使得势垒对称,定态解也并无宇称要求.想要知道粒子的反射与透射情况就要求出*R*,*S*,这可以利用波函数及其导数在*x* = 0,*a*两处连续求出.

首先, 在x = 0处,

$$1 + R = A + B,$$

 $ik(1 - R) = (A - B)\beta.$ (2.126)

$$Ae^{\beta a} + Be^{-\beta a} = Se^{ika},$$

$$\beta Ae^{\beta a} - \beta Be^{-\beta a} = ikSe^{ika}$$
(2.127)

曲Eq.(2.126),

$$2\beta A = \beta + ik + R(\beta - ik)$$

$$2\beta B = \beta - ik + R(\beta + ik).$$
(2.128)

由Eq.(2.127),

$$2\beta A = e^{ika - \beta a} S(\beta + ik)$$

$$2\beta B = e^{ika + \beta a} S(\beta - ik).$$
(2.129)

以上两式可以写成

$$\gamma + R = S\gamma e^{ika - \beta a},$$

$$\gamma^* + R = S\gamma^* e^{ika + \beta a}.$$
(2.130)

其中

$$\gamma = \frac{\beta + ik}{\beta - ik}, \quad \gamma^* = \frac{\beta - ik}{\beta + ik} = \frac{1}{\gamma}, \quad |\gamma| = 1.$$
(2.131)

容易得到

$$S = \frac{\gamma - \gamma^*}{\gamma e^{-\beta a} - \gamma^* e^{\beta a}} e^{-ika}, \qquad R = \frac{e^{\beta a} - e^{-\beta a}}{\gamma e^{-\beta a} - \gamma^* e^{\beta a}}.$$
(2.132)

我们得到

$$|S|^{2} = \frac{|\gamma - \gamma^{*}|^{2}}{4\sinh^{2}\beta a - (\gamma - \gamma^{*})^{2}},$$
(2.133)

注意到

$$-(\gamma - \gamma^{*})^{2} = |\gamma - \gamma^{*}|^{2}, \qquad (2.134)$$

再利用

$$\gamma - \gamma^* = \frac{4ik\beta}{\beta^2 + k^2}, \quad \forall |\gamma - \gamma^*|^2 = \frac{16E(V_0 - E)}{V_0^2}$$
(2.135)

有

$$|S|^{2} = \frac{1}{1 + \frac{V_{0}^{2} \sinh^{2} \beta a}{4E(V_{0} - E)}}.$$
(2.136)

类似地,

$$|R|^{2} = \frac{\sinh^{2}\beta a}{\sinh^{2}\beta a + \frac{4E(V_{0} - E)}{V_{1}^{2}}}.$$
(2.137)

在以上计算的基础上,我们来讨论些物理问题.

首先我们看到S不等于零! 这意味着我们可以在势垒的右边找到粒子! 这一完全不同于经典力学的结论称 为隧道效应(tunneling effect).

下面作更详细的分析.在势垒左边, x < 0区域,我们可以计算几率流密度j.

$$j = \frac{1}{2m} (\psi^* \hat{p} \psi - \psi \hat{p} \psi^*), \qquad (2.138)$$

其中 $\psi(x) = \psi_i + \psi_R$. 交叉项互相抵消, 我们发现 $j = j_i + j_R$, 其中

$$j_{i} = \frac{1}{2m} (\psi_{i}^{*} \hat{p} \psi_{i} - \psi_{i} \hat{p} \psi_{i}^{*}) = \frac{\hbar k}{m}$$

$$j_{R} = \frac{1}{2m} (\psi_{R}^{*} \hat{p} \psi_{R} - \psi_{R} \hat{p} \psi_{R}^{*}) = -|R|^{2} \frac{\hbar k}{m}$$
(2.139)

在势垒右边, x > a区域, 几率流密度 $j_S = |S|^2 \frac{\hbar k}{m}$.

几率流密度的物理意义是单位时间通过单位截面的几率,在一维时约化为单位时间通过截面的几率.考虑 到波函数没有作归一化,所以算出的*j*实际上是正比于几率流密度,量纲与速度相同.设想有N个粒子以能 量E入射,单位时间通过一个截面的数目正比于 j_iN ,而反射回去的数目正比与 j_RN ,贯穿过去的正比与 j_SN . 因此我们定义反射系数 $r = |j_R/j_i|$,在本问题里 $r = |R|^2$,透射系数 $t = |j_S/j_i|^2$,在本问题里等于 $|S|^2$.

我们看到在实际问题里一般2 $\beta a >> 1$. 比如一个电子遇到一个势垒宽度为a = 1nm, 高度为 $V_0 - E = 1eV$, 则2 $\beta a \approx 10$.. 在这种情况下, sinh² $\beta a \approx \exp(2\beta a)$, 透射系数可以近似为

$$T = \frac{16E(V_0 - E)}{V_0^2} e^{-2\beta a}.$$
(2.140)

我们看到,质量越大,势垒相对于能量越高,势垒越宽,透射系数越小.

对于宏观物体, 比如 $m = 1kg = m_e/(9 \times 10^{-31}) \approx 10^{30}m_e$ (m_e 是电子质量), $V_0 - E = 1eV, a = 1nm$, 则 $2\beta a \approx 10^{17}$, 可以设想透射可能有多小, 可以说不可能发生隧道效应. 但在微观世界, 这一效应却不容忽略. 历史上, Gamov利用隧穿效应成功解释了 α 衰变: 在 ^{238}U 衰败成 ^{234}Th 的过程中, α 粒子从铀核中飞出. 虽然 α 粒子本身的能量没有铀核的势垒高, 但是由于隧穿效应,它仍然可以脱离铀核.

如果 $E > V_0$.

$$\frac{2m(V_0 - E)}{\hbar^2} < 0. \tag{2.141}$$

那么 β 改写为i α , $\alpha = \sqrt{\frac{2m(E-V_0)}{\hbar^2}} > 0$ 实数。注意

$$\sinh(\beta a) = i\sin(\alpha a) \tag{2.142}$$

那么

$$S|^{2} = \frac{1}{1 + \frac{V_{0}^{2} \sin^{2} \alpha a}{4E(E - V_{0})}}.$$
(2.143)

我们应该可以观察到所谓的共振透射。当 $\alpha a = n\pi$, $n = 1, 2, 3, \dots, |S|^2 = 1$.

如果粒子遇到一个势井, $V_0 < 0$, 会怎样? (2.143)仍然适用。唯一要注意的是: 当 $E \rightarrow 0, T \rightarrow 0$. 如图2.6.

Figure 2.6: 一维方势阱的透射系数

我们再来考虑一个极限情况,即δ势垒(或势阱)的隧穿问题。势井写为 $V(x) = -\gamma\delta(x)$. (实际上 $\gamma > 0$ 为井, $\gamma < 0$ 为垒).

粒子从左边来,势垒左边波函数为exp(*ikx*) + $R \exp(-ikx)$,右边波函数为 $S \exp(ikx)$. $k^2 = 2mE/\hbar^2$. 在x = 0处,波函数连续给出

$$1 + R = S.$$
 (2.144)

波函数的一阶导数跳跃,根据Eq.(2.82)

$$ikS - ik(1 - R) = -\frac{2m\gamma}{\hbar^2}S.$$
 (2.145)

定义 $\beta = \frac{m\gamma}{\hbar^2 k}$,解出

$$S = \frac{1}{1 - i\beta} \tag{2.146}$$

和

$$R = \frac{i\beta}{1 - i\beta} \tag{2.147}$$

由此

$$|S|^2 = \frac{1}{1+\beta^2},\tag{2.148}$$

$$|R|^2 = \frac{\beta^2}{1+\beta^2}.$$
 (2.149)

根据 $\beta^2 = \frac{m\gamma^2}{2\hbar^2 E}$,我们容易看到 m, γ 和入射能量E对透射系数的影响。

最后我们要注意,以上讨论的都是不可归一化的散射态波函数,不是可实现的状态.但是我们可以把散射 波函数叠加起来,形成可以归一化的波函数,即波包.波包在空间移动,遇到势垒后分成两个波包:透射和 反射波包.大家可以参考我的主页上的动画. 波包本身的能量不确定,但是会围绕平均能量在一定幅度内涨落.我们可以用平均能量下的透射与反射 系数来近似波包的反射和透射系数.

也可以这么看:如果波包非常长,其实它就非常接近平均能量对应的散射态了.这个近似就是非常好的.

Chapter 3

量子力学原理

3.1 左矢, 右矢与算符

波函数实际描述的是粒子的微观状态.

粒子的每一个微观状态都可以用抽象的复数矢量空间中的矢量来表示,该矢量称为**态矢(state vector)**, 它包含了一个物理状态(state)的全部信息.也就是说,我们能问的所有事情都被态矢包含了.这一矢量称为右 矢(ket).比如,一个处于无限深势阱基态的粒子的状态,我们可以记为|α).而复数矢量空间称为Hilbert空间, 其维度由我们关心的物理系统的特性决定.

两个右矢可以相加:

$$|\alpha\rangle + |\beta\rangle = |\gamma\rangle. \tag{3.1}$$

|γ〉是另一个矢量.加法满足交换律,

$$|\alpha\rangle + |\beta\rangle = |\beta\rangle + |\alpha\rangle \tag{3.2}$$

结合律:

$$|\alpha\rangle + (|\beta\rangle + |\gamma\rangle) = (|\alpha\rangle + |\beta\rangle) + |\gamma\rangle.$$
(3.3)

也可以用一个复数去乘一个右矢,得到另一个矢量*c*|α),并且

$$c|\alpha\rangle = |\alpha\rangle c. \tag{3.4}$$

数乘满足

$$c(|\alpha\rangle + |\beta\rangle) = c|\alpha\rangle + c|\beta\rangle \tag{3.5}$$

以及

$$(a+b)|\alpha\rangle = a|\alpha\rangle + b|\alpha\rangle \tag{3.6}$$

$$a(b|\alpha\rangle) = (ab)|\alpha\rangle \tag{3.7}$$

如果c = 0,得到的矢量称为空矢(null ket).在物理上,我们约定 $|\alpha\rangle$ 与 $c|\alpha\rangle$ ($c \neq 0$)表示同一个物理态.换 句话说,矢量空间里"方向"才是重要的.

一个力学量,或称观测量(observable,注意这是个名词),比如动量、坐标或以后遇到的自旋角动量等,可以表示为矢量空间里的一个**算符**.比如说Â,它可以从左边作用在一个右矢上

$$\hat{A} \cdot |\alpha\rangle,$$
 (3.8)

通常简写为 $A|\alpha\rangle$,得到另一个矢量.一般来说,这个矢量不是一个常数乘以 $|\alpha\rangle$.但是存在一些特殊的矢量,满足

$$A|a\rangle = a|a\rangle,\tag{3.9}$$

称为算符 \hat{A} 的本征矢量(eigenvector, eigenket). a是纯数, 称作A的本征值(eigenvalue). 一般来说, 本征值和本征矢不止一个.

在物理上, 与本征矢对应的状态称为本征态(eigenstate). 按Dirac符号, 前面的能量本征方程Eq. (1.104)就 是

$$\hat{H}|n\rangle = E_n|n\rangle. \tag{3.10}$$

以后我们会讨论波函数 ψ_n 与右矢 $|n\rangle$ 的关系.

在线性代数里我们学过矢量 $|\alpha\rangle$ 和 $|\beta\rangle$ 的线性组合可以写为 $a|\alpha\rangle + b|\beta\rangle$.如果另一个矢量 $|\gamma\rangle$ 不能写为 $|\alpha\rangle$ 和 $|\beta\rangle$ 的线性组合,则称 $|\alpha\rangle$, $|\beta\rangle$, $|\gamma\rangle$ 线性无关.如果任意一个矢量都可以表示成这组彼此线性无关的矢量的线形组合,那么我们称这组矢量张开了一个空间,这些矢量称为该空间的一组'基'(basis).这些矢量的个数称为空间的维数.

后面我们会论证,假设力学量Â有N个本征矢,那么它们会彼此线性无关,因此可以张开一个N维空间. 一个任意的右矢|α)可以表示为

$$|\alpha\rangle = \sum_{a} c_a |a\rangle, \tag{3.11}$$

其中a表示N个右矢, ca是复数. 也就是说这N个本征矢构成一组'基'。这一表示是否唯一以后再讨论.

3.1.1 左矢(bra)与内积(Inner products)

前面谈论的是右矢空间(ket space), 现在引入**左矢空间(bra space)**. 我们假设每一个右矢 $|\alpha\rangle$ 都能在这个空间里找到一个**左矢(bra)**和它对应, 记为 $\langle \alpha |$.

$$|\alpha\rangle \leftrightarrow \langle \alpha| \tag{3.12}$$

也可以写作

$$(|\alpha\rangle)^{\dagger} = \langle \alpha|, \qquad (\langle \alpha|)^{\dagger} = |\alpha\rangle. \tag{3.13}$$

可以把左矢空间理解成右矢空间的镜像.

非常重要的一个约定:

$$(c|\alpha\rangle)^{\dagger} \equiv c^{*}\langle\alpha|,$$

$$(c|\alpha\rangle + b|\beta\rangle)^{\dagger} = c^{*}\langle\alpha| + b^{*}\langle\beta|.$$
(3.14)

现在我们来定义左矢和右矢的内积(inner product),

$$\langle \beta | \alpha \rangle = \langle \beta | \cdot | \alpha \rangle. \tag{3.15}$$

这一乘积一般是个复数.

我们假设内积的根本性质有两个,

第一

$$\langle \beta | \alpha \rangle = (\langle \alpha | \beta \rangle)^*. \tag{3.16}$$

注意:这一点与我们熟悉的实矢量空间两个矢量的点乘 $\mathbf{a} \cdot \mathbf{b}$ 是不同的.在那种情况下, $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$.根 据上面的性质可以立即得到结论: $\langle \alpha | \alpha \rangle$ 为实数.

如果

$$\langle \alpha | \beta \rangle = 0, \tag{3.17}$$

我们称 $|\alpha\rangle$ 和 $\beta\rangle$ 正交(orthogonal).

3.1. 左矢, 右矢与算符

● 第二

$$\langle \alpha | \alpha \rangle \ge 0. \tag{3.18}$$

等号只在|α)为空矢时成立. 这一点在物理上很重要,保证了量子力学的几率解释的成立. 我们可以进而 定义|α)的模

$$||\alpha|| = \sqrt{\langle \alpha | \alpha \rangle} \tag{3.19}$$

对于一个非空的右矢,我们可以构造一个归一化的右矢 $|\tilde{\alpha}\rangle$,

$$|\tilde{\alpha}\rangle = \left(\frac{1}{\sqrt{\langle \alpha | \alpha \rangle}}\right) |\alpha\rangle, \tag{3.20}$$

满足

$$\langle \tilde{\alpha} | \tilde{\alpha} \rangle = 1. \tag{3.21}$$

注: 连续谱本征值对应的本征矢的归一化与此不同, 后面讨论。

3.1.2 算符(Operators)的性质与运算

一个算符可以从左边作用到一个右矢上X · | α >, 其实也可以从右边作用到一个左矢上:

$$(\langle \alpha |) \cdot X = \langle \alpha | X, \tag{3.22}$$

得到另外一个左矢. (这与我们前面学习过的动量算符不同. 动量算符只能向右作用到波函数上, 是我们这里 所谓算符在坐标表象下的特殊形式, 我们后面会讨论).

如果两个算符X和Y对任意一个右矢满足:

$$X|\alpha\rangle = Y|\alpha\rangle,\tag{3.23}$$

那么X = Y.

算符可以相加,并且满足交换律和结合律

$$X + Y = Y + X, \qquad X + (Y + Z) = (X + Y) + Z.$$
 (3.24)

力学量的算符还都是线性的,满足下面关系

$$X(c|\alpha\rangle + b|\beta\rangle) = cX|\alpha\rangle + bX|\beta\rangle.$$
(3.25)

算符可以相乘. 一般情况下乘法不能交换顺序

$$XY \neq YX. \tag{3.26}$$

因此有必要定义它们的对易式:

$$[X,Y] \equiv XY - YX. \tag{3.27}$$

但是结合律仍然成立

$$X(YZ) = (XY)Z = XYZ.$$
(3.28)

一般来讲 $X|\alpha\rangle$ 和 $\langle\alpha|X$ 不是对偶的(或称共轭).我们有必要定义 X^{\dagger} 使得

$$X|\alpha\rangle \leftrightarrow \langle \alpha|X^{\dagger}. \tag{3.29}$$

X[†]称作X的**厄密共轭(Hermitian adjoint)算符**. 一类非常重要的算符满足

$$X = X^{\dagger}, \tag{3.30}$$

被称作**厄密算符(Hermitian)**. 另外由于

$$XY|\alpha\rangle = X(Y|\alpha\rangle) \leftrightarrow (\langle \alpha | Y^{\dagger}) X^{\dagger} = \langle \alpha | Y^{\dagger} X^{\dagger}$$
(3.31)

所以,

$$(XY)^{\dagger} = Y^{\dagger}X^{\dagger}. \tag{3.32}$$

3.1.3 外积(Outer Product)

一个左矢还可以与一个右矢进行外积. 写为 $|\beta\rangle\langle\alpha|$. 它实际上是一个算符. 与内积完全不同.

结合公理 (The Associative Axiom): 左矢, 右矢, 算符的合法乘法可以随意结合.

这里合法乘法是针对有些'非法'乘法而言的,比如: $|\alpha\rangle \hat{A}, \hat{X}\langle\beta|$. 当 $\alpha\rangle$ 和 $|\beta\rangle$ 是同一个矢量空间的矢量时, $|\alpha\rangle|\beta\rangle$ 也是非法的.

应用举例:

1. 外积作用在一个右矢上

$$(|\beta\rangle\langle\alpha|)\cdot|\gamma\rangle = (|\beta\rangle)\cdot(\langle\alpha|\gamma\rangle). \tag{3.33}$$

得到一个新的右矢. 所以外积确实是一个算符. 如果内积 $\langle \alpha | \gamma \rangle \neq 0$,该右矢对应 $|\beta\rangle$ 对应的物理态.

2. 外积算符的厄密共轭算符

$$(|\beta\rangle\langle\alpha|\cdot|\gamma\rangle)^{\dagger} = (|\beta\rangle(\langle\alpha|\gamma\rangle))^{\dagger} = \langle\beta|(\langle\alpha|\gamma\rangle)^{*} = \langle\gamma|\alpha\rangle\cdot\langle\beta| = \langle\gamma|\cdot|\alpha\rangle\langle\beta|$$
(3.34)

这表明 $|\alpha\rangle\langle\beta|$ 是 $|\beta\rangle\langle\alpha|$ 的厄密共轭算符.

3. 考虑

$$\langle \beta | \cdot (X | \alpha \rangle) = (\langle \beta | X) \cdot | \alpha \rangle = \langle \beta | X | \alpha \rangle \tag{3.35}$$

这说明在上式中没有必要区分算符向左还是向右作用. 由于

$$\langle \beta | X | \alpha \rangle = \langle \beta | \cdot (X | \alpha \rangle) = ((\langle \alpha | X^{\dagger}) \cdot | \beta \rangle)^* = \langle \alpha | X^{\dagger} | \beta \rangle^*, \tag{3.36}$$

因此,对厄密算符 $X = X^{\dagger}$,有

$$\langle \beta | X | \alpha \rangle = \langle \alpha | X | \beta \rangle^*. \tag{3.37}$$

在Griffiths书里定义了记号 $|X\alpha\rangle \equiv X|\alpha\rangle$,即用 $X\alpha$ 来标识右矢 $X|\alpha\rangle$,以及 $\langle X^{\dagger}\beta| \equiv (X^{\dagger}|\beta\rangle)^{\dagger} = \langle \beta|X,$ 即 用 $X^{\dagger}\beta$ 来标识 $X^{\dagger}|\beta\rangle$ 对应的左矢,也就是 $\langle \beta|X,$ 这里我们利用了 $(X^{\dagger})^{\dagger} = X.$

因此Eq.(3.35)或(3.36)可以改写成

$$\langle \beta | X \alpha \rangle = (X^{\dagger} | \beta \rangle)^{\dagger} \cdot | \alpha \rangle = \langle X^{\dagger} \beta | \alpha \rangle \tag{3.38}$$

可以理解为: 左矢 $(\beta|$ 与右矢 $|X\alpha\rangle$ 的内积等于左矢 $(X^{\dagger}\beta|$ 与右矢 $|\alpha\rangle$ 的内积. 如果X是厄密算符, 那么

$$\langle \beta | X \alpha \rangle = \langle X \beta | \alpha \rangle. \tag{3.39}$$

上式也被用来定义厄密算符:满足Eq.(3.39)的算符X是厄密的. 注意到 $\langle X\beta | = (X|\beta \rangle)^{\dagger} = \langle \beta | X^{\dagger},$ 上式也就是

$$\langle \beta | X | \alpha \rangle = \langle \beta | X^{\dagger} | \alpha \rangle \tag{3.40}$$

3.2 基矢(Basis)

定理: 厄密算符Â的本征值为实; 不同本征值的本征矢正交. 证明:

$$\hat{A}|a'\rangle = a'|a'\rangle. \tag{3.41}$$

由于Â厄密,所以

$$\langle a'|\hat{A} = a'^*\langle a'|. \tag{3.42}$$

分别左乘(a'|, 右乘|a')上面两式, 相减

$$(a' - a'^*)\langle a' | a' \rangle = 0. \tag{3.43}$$

一个非空右矢和它的左矢的内积大于零,于是 $a' = a'^*$,所以本征值是实的. 现在考虑另一个本征值 $a'' \neq a'$,

$$\hat{A}|a''\rangle = a''|a''\rangle. \tag{3.44}$$

其对偶方程是:

$$\langle a''|\hat{A} = a''^* \langle a''|. \tag{3.45}$$

容易得到

$$(a' - a''^*)\langle a'' | a' \rangle = 0. \tag{3.46}$$

因为a',a''都是实的,也就是 $a' \neq a''^*$,所以 $\langle a'' | a' \rangle = 0$.

注: 一个特殊情况需要注意,如果a' = a'',仍然有可能 $|a'\rangle$ 与 $|a''\rangle$ 不同,这就是简并矢量.原则上定理不保证 $\langle a'|a''\rangle = 0$.但是我们总可以通过'构造'使得简并矢量正交.后面我们会讨论这个问题.

根据这一定理,我们总可以要求所有本征矢正交归一(约定每个基矢都是归一化的):

$$\langle a'|a''\rangle = \delta_{a',a''} \tag{3.47}$$

(注: 对于a' = a'', 但是 $|a'\rangle \neq |a''\rangle$, 我们'视为' $a' \neq a''$).

3.2.1 力学量算符本征矢作为基矢

根据Â的本征矢的正交归一性,容易证明他们彼此线性无关。假设这些本征矢有N个,那么它们张开一 个N维空间。给定一个任意的态矢量|α⟩,总可以把它展开成这些本征矢的叠加.这相当于选取Â的本征矢为 基矢.称为**A表象**.

$$|\alpha\rangle = \sum_{a'} c_{a'} |a'\rangle. \tag{3.48}$$

其中,

$$\hat{A}|a'\rangle = a'|a'\rangle. \tag{3.49}$$

左乘(a'|,利用本征矢的正交归一性,可以得到

$$c_{a'} = \langle a' | \alpha \rangle. \tag{3.50}$$

于是Eq. (3.48)可以改写成

$$|\alpha\rangle = \sum_{a'} |a'\rangle \langle a' | \alpha \rangle. \tag{3.51}$$

非常类似于一般欧几里德空间的矢量展开.

$$\vec{V} = \sum_{i} c_i \hat{e}_i \tag{3.52}$$

其中 $\hat{e}_i, i = 1, 2, \ldots$ 是正交归一单位矢量. $c_i = \hat{e}_i \cdot \vec{V}$.

利用结合公理,上式可理解为 $\sum_{a'} |a'\rangle\langle a'|$ 作用到 $|a\rangle$.由于 $|a\rangle$ 任意,实际上这要求

$$\sum_{a'} |a'\rangle\langle a'| = 1, \tag{3.53}$$

1为恒等(或单位)算符. 这就是完备性关系(的Dirac理论表示).量子力学理论假设力学量的本征矢满足完备 性关系。

我们看到

$$|a'\rangle\langle a'|\cdot|\alpha\rangle = c_{a'}|a'\rangle \tag{3.54}$$

可以理解把 $|a'\rangle\langle a'|$ 把 $|a\rangle$ 投影到 $|a'\rangle$ 方向,因此可以定义投影算符 $P_{a'}$

$$P_{a'} \equiv |a'\rangle\langle a'| \tag{3.55}$$

完备性关系Eq.(3.53)也可以写为

$$\sum_{a'} P_{a'} = 1. (3.56)$$

完备性关系非常有用.例如可用来证明展开系数*c*_a,满足的要求.在内积中插入完备性关系,在利用结合公理:

$$\langle \alpha | \alpha \rangle = \langle \alpha | (\sum_{a'} |a'\rangle \langle a'|) | \alpha \rangle = \sum_{a'} |\langle a' | \alpha \rangle|^2.$$
(3.57)

如果|α)是归一的,那么

$$\sum_{a'} |c_{a'}|^2 = 1. \tag{3.58}$$

这给出了展开系数的几率解释.

3.3 测量原理或广义统计诠释

对于处于状态 $|\alpha\rangle$ 的粒子,测量力学量A,所有可能的测量值只能是对应厄密算符A的本征值a',得到该测量值的几率为 $|c_{a'}|^2$,

$$c_{a'} = \langle a' | \alpha \rangle \tag{3.59}$$

是展开系数,又称几率幅,其中|a'〉是A的属于本征值a'的本征态。测量之后粒子的状态**坍缩**到相应的本征 态|a'〉.

换言之,如果制备大量(N个) $|\alpha\rangle$ 态的粒子,测量力学量A,我们会发现有 $N|c_{a'}|^2$ 个粒子得到a',并处于 $|a'\rangle$ 态。

如果对这些已经处于|a')态的粒子再进行测量A, 会百分之百得到测值a',并处于|a')态。

Figure 3.1: Stern-Gerlach实验(图取自Wiki百科). 经典预期与实验事实是不一样的.

3.4 自旋1/2系统, Stern-Gerlach实验

我们结合自旋1/2系统来说明量子力学原理.

银原子有47个电子. 忽略其核自旋, 再考虑46个内层电子的总角动量(自旋与轨道之和)为零. 原子的总自 旋是由其最外层的(5S) 电子的自旋提供. 其磁矩为

$$\vec{\mu} = \frac{-e}{m_e c} \mathbf{S}.\tag{3.60}$$

其中S为自旋角动量.

由于原子很重,是电子质量的5×10⁵倍,可以认为按一定轨道运动.由于原子不带电,所以不受洛仑兹力. 但是,磁场是非均匀的,原子在其中运动还是受到正比于磁矩的偏转力.可以根据势能 $V = -\vec{\mu} \cdot \mathbf{B}$ 的梯度来计算.磁场是z方向的,受力为

$$f_z = -\frac{\partial}{\partial z}(-\mu_z B_z) = \mu_z \frac{\partial B_z}{\partial z}$$
(3.61)

可以看到, 磁矩在z方向的投影不同, 受力就不同.

- 按照经典图像,银原子从炉子里出来,自旋(磁矩)的方向是随机的.在z方向的大小可以表示成|μ| cos θ.
 因此我们预期在屏幕上看到如图3.1所示的原子的连续分布.
- 事实上我们看到两个斑! 这表明原子的z方向磁矩只有两个值, 对应 $S_z = \pm \hbar/2$.
- 如果我们把实验装置旋转, 调整入射方向, 可以发现 S_x, S_y 的测量值也是 $\pm \hbar/2$.

我们现在来根据量子力学原理进行分析. 在此我们只考虑原子的自旋自由度, 而不考虑其质心的空间运动。设炉子中出来原子的自旋状态是|α).

根据量子力学基本原理,测量值是力学量算符的本征值,对应的状态是本征态.实验实际上告诉我们,自 旋角动量的三个分量(可以看作三个力学量)的本征值和对应的本征态是:

$$\hat{S}_{z}|S_{z};+\rangle = \frac{\hbar}{2}|S_{z};+\rangle, \qquad \hat{S}_{z}|S_{z};-\rangle = -\frac{\hbar}{2}|S_{z};-\rangle.$$

$$\hat{S}_{x}|S_{x};+\rangle = \frac{\hbar}{2}|S_{x};+\rangle, \qquad \hat{S}_{x}|S_{x};-\rangle = -\frac{\hbar}{2}|S_{x};-\rangle.$$

$$\hat{S}_{y}|S_{y};+\rangle = \frac{\hbar}{2}|S_{y};+\rangle, \qquad \hat{S}_{y}|S_{y};-\rangle = -\frac{\hbar}{2}|S_{y};-\rangle.$$
(3.62)

Figure 3.2: 级联SG实验.

对应到左矢空间,考虑到力学量算符是厄密的:

$$\langle S_z; +|\hat{S}_z = \frac{\hbar}{2} \langle S_z; +|, \qquad \langle S_z; -|\hat{S}_z = -\frac{\hbar}{2} \langle S_z; -|.$$
 (3.63)

基矢满足正交归一性:

$$\langle \pm | \pm \rangle = 1, \qquad \langle \pm | \mp \rangle = 0.$$
 (3.64)

和完备性:

$$|+\rangle\langle+|+|-\rangle\langle-|=1. \tag{3.65}$$

那么任意态(自旋状态)可以展开

$$|\alpha\rangle = c_1|+\rangle + c_2|-\rangle. \tag{3.66}$$

利用正交性关系,可以算出

$$c_1 = \langle +|\alpha\rangle; \qquad c_2 = \langle -|\alpha\rangle. \tag{3.67}$$

 $|c_1|^2$ 和 $|c_2|^2$ 就是分别是测量 S_z 得 $\hbar/2$ 和 $-\hbar/2$ 得几率! 两束原子的自旋状态分别塌缩成 $|+\rangle$ 和 $|-\rangle$.

这可以从多个SG装置的实验结果看到,如图3.2. 最上面的结果感觉不奇怪: 朝上的自旋被第一个装置选出来了,通过第二个装置当然就没有朝下的一支了。

第二个实验稍有些奇怪:通过第二个装置,原子分成了朝x正和x负的两束!指向z正方向的自旋矢量'分解'成了指向x正和x负的矢量和??不可能,也许是自旋没有严格指向z正,一半有些偏x+,一半偏x-?

第三个实验说明这种猜想是错误的。实际上

$$|S_z;+\rangle = \frac{1}{\sqrt{2}}|S_x;+\rangle + \frac{1}{\sqrt{2}}|S_x;-\rangle \tag{3.68}$$

类似的

$$S_x; +\rangle = \frac{1}{\sqrt{2}} |S_z; +\rangle + \frac{1}{\sqrt{2}} |S_z; -\rangle \tag{3.69}$$

这是'态矢量'的叠加或分解,不是自旋矢量的叠加或分解!具体为什么上式成立,我们会在后面论证。

3.4.1 矢量的矩阵形式

我们可以把 $|\alpha\rangle = c_1|+\rangle + c_2|-\rangle$ 记为列矢

 $\left(\begin{array}{c}c_1\\c_2\end{array}\right).\tag{3.70}$

对应的左矢可以写成

$$\langle \alpha | = c_1^* \langle + | + c_2^* \langle - |.$$
(3.71)

 $\langle \alpha |$ 记为行矢:

 $\left(\begin{array}{cc}c_1^*, & c_2^*\end{array}\right). \tag{3.72}$

我们可以要求态|α>归一:

$$\langle \alpha | \alpha \rangle = 1. \tag{3.73}$$

插入完备性关系:

$$\langle \alpha | (|+\rangle \langle +|+|-\rangle \langle -|) | \alpha \rangle = |c_1|^2 + |c_2|^2 = 1.$$
(3.74)

可见c₁,c₂的模方是处于两个基矢的几率,并且看到内积是行矢与列矢的矩阵乘积.

更一般地,任意两个矢量的内积都可以写成列矢表示与行矢表示的矩阵乘积:

$$\langle \alpha | \beta \rangle = \langle \alpha | (|+\rangle \langle +|+|-\rangle \langle -|) | \beta \rangle = c_1^* b_1 + c_2^* b_2.$$
(3.75)

可以写成

$$(c_1^*, c_2^*) \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
(3.76)

其中 b_1, b_2 是 $|\beta\rangle$ 的展开系数.

回到最一般的A表象. $|a_i\rangle, i = 1, \cdots, N$ 是力学量A的的本征矢,构成正交归一完备的一组基矢. 任意矢量

$$|\alpha\rangle = \sum_{i}^{N} a_{i} |a_{i}\rangle \tag{3.77}$$

可以表示成

$$|\alpha\rangle = \begin{pmatrix} a_1 \\ a_2 \\ \cdot \\ \cdot \\ \cdot \\ a_N \end{pmatrix}.$$
 (3.78)

考虑另一态矢 $|\beta\rangle = \sum_{i}^{N} b_{i} |a_{i}\rangle |\alpha\rangle$ 作内积

$$\langle \alpha | \beta \rangle = \langle \alpha | (\sum_{i}^{N} |a_{i}\rangle \langle a_{i}|) | \beta \rangle = \sum_{i}^{N} \langle \alpha | a_{i}\rangle \langle a_{i} | \beta \rangle = (a_{1}^{*}, a_{2}^{*}, \cdots, a_{N}^{*}) \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ \vdots \\ \vdots \\ b_{N} \end{pmatrix}.$$
(3.79)

3.4.2 算符的矩阵形式

算符原则上由其本征值和本征态确定。我们可以据此写出它的矩阵。

在欧几里德空间里,对矢量的旋转操作(算符)可以写成一个矩阵.比如将二维矢量*Å*旋转θ角得到矢量*B*:

$$\hat{R}(\theta)\vec{A} = \vec{B}.\tag{3.80}$$

选定两个正交归一矢量 $\vec{e_1}, \vec{e_2}$ 后(满足 $\vec{e_i} \cdot \vec{e_j} = \delta_{ij}, i, j = 1, 2$), $\vec{A} = a_1\vec{e_1} + a_2\vec{e_2}$ 和 $\vec{B} = b_1\vec{e_1} + b_2\vec{e_2}$ 可以写成列矢 形式

$$\vec{A} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}; \qquad \vec{B} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
 (3.81)

计算 $\vec{e_1} \cdot \vec{B}$ 和 $\vec{e_2} \cdot \vec{B}$, Eq.(3.80)可以写成矩阵关系:

$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
(3.82)

其中Â(θ)矩阵的i行j列就由

$$\vec{e_i} \cdot \hat{R} \vec{e_j} \tag{3.83}$$

算出.

与此类似,一个力学量算符在给定基矢的情况下亦可以写成矩阵.比如我们来写Sz表象下Sz的矩阵.考虑

$$\hat{S}_z |\alpha\rangle = |\beta\rangle. \tag{3.84}$$

将|α〉, |β〉展开成基矢的叠加

$$\hat{S}_z(a_1|+\rangle + a_2|-\rangle) = b_1|+\rangle + b_2|-\rangle.$$
(3.85)

分别用(+|,(-|与之作内积,

$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} \langle +|\hat{S}_z|+\rangle, & \langle +|\hat{S}_z|-\rangle \\ \langle -|\hat{S}_z|+\rangle, & \langle -|\hat{S}_z|-\rangle \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
(3.86)

即

$$\hat{S}_z = \begin{pmatrix} \hbar/2, & 0\\ 0, & -\hbar/2 \end{pmatrix}$$
(3.87)

容易发现,任意算符 \hat{Q} 都可以写成A表象(以A的本征矢 $|a_i\rangle$ 为基, $|a_i\rangle$ 简写为 $|i\rangle$)下的矩阵.其元素

$$Q_{i,j} = \langle i | \hat{Q} | j \rangle. \tag{3.88}$$

由于

$$Q_{i,j} = \langle i | \hat{Q} | j \rangle = ((\hat{Q} | j \rangle)^{\dagger} | i \rangle)^{*} = (\langle j | \hat{Q}^{\dagger} | i \rangle)^{*} = (Q_{j,i}^{\dagger})^{*},$$
(3.89)

即Q和Q[†]的矩阵互为转置共轭.

而力学量算符是厄密的($Q = Q^{\dagger}$),所以其矩阵是厄密矩阵:

$$Q_{i,j} = (Q_{j,i})^*. (3.90)$$

现在来计算S_x的矩阵:

$$\hat{S}_x = \begin{pmatrix} \langle +|\hat{S}_x|+\rangle, & \langle +|\hat{S}_x|-\rangle \\ \langle -|\hat{S}_x|+\rangle, & \langle -|\hat{S}_x|-\rangle \end{pmatrix}.$$
(3.91)

对于轨道角动量 $\mathbf{L} = \mathbf{r} \times \mathbf{p}$,容易算出 $[L_x, L_y] = i\hbar L_z$. (利用动量的求导特性).

与轨道角动量不同,这里我们不知道自旋角动量*S*_x算符与位置和动量的关系,但是我们有一条基本假设:自旋角动量的分量满足角动量对易关系:

$$[\hat{S}_x, \hat{S}_y] = i\hbar \hat{S}_z. \tag{3.92}$$

及其轮转关系.

容易证明

$$i\hbar\langle +|\hat{S}_x|+\rangle = \langle +|\hat{S}_y\hat{S}_z|+\rangle - \langle +|\hat{S}_z\hat{S}_y|+\rangle = 0$$
(3.93)

类似地

$$\langle -|\hat{S}_x|-\rangle = 0. \tag{3.94}$$

再看到测每个分量平方都是 $S_x^2 = S_y^2 = S_z^2 = \hbar^2/4$, 即 $S_i^2, i = x, y, z$ 是常数算符 $\hbar^2/4$. (所以 $S^2 = S_x^2 + S_y^2 + S_z^2$ 的测量值永远为 $3\hbar^2/4$.)

证明:对任意态矢 $|\alpha\rangle$,将其展开成 S_x 的本征态的叠加

$$|\alpha\rangle = c_1|S_x, +\rangle + c_2|S_x, -\rangle \tag{3.95}$$

那么

$$S_x^2 |\alpha\rangle = c_1 S_x^2 |S_x, +\rangle + c_2 S_x^2 |S_x, -\rangle = c_1 S_x(\hbar/2) |S_x, +\rangle + c_2 S_x(-\hbar/2) |S_x, -\rangle = \frac{\hbar^2}{4} |\alpha\rangle$$
(3.96)

利用这一结果,通过计算 $\langle +|S_x^2|+\rangle$,容易证明

$$|\langle +|S_x|-\rangle|^2 = \hbar^2/4 = |\langle +|S_y|-\rangle|^2.$$
(3.97)

通常我们取 $\langle +|S_x|-\rangle = \hbar/2$,那么利用对易关系,自然 $\langle +|S_y|-\rangle = -i\hbar/2$. 最终 S_x 的矩阵(3.91)就是

$$\hat{S}_x = \begin{pmatrix} 0, & \hbar/2 \\ \hbar/2, & 0 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0, & 1 \\ 1, & 0 \end{pmatrix}$$
(3.98)

类似地, S_y 的矩阵就是

$$\hat{S}_y = \begin{pmatrix} 0, & -i\hbar/2\\ i\hbar/2, & 0 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0, & -i\\ i, & 0 \end{pmatrix}$$
(3.99)

3.4.3 泡利算符和泡利矩阵

定义泡利算符为

$$\boldsymbol{\sigma} \equiv \mathbf{S}/(\frac{\hbar}{2}). \tag{3.100}$$

是方便的. 我们有

$$\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = 1; (3.101)$$

对易关系(3.92)改写为

$$[\sigma_x, \sigma_y] = 2i\sigma_z \tag{3.102}$$

根据

$$\sigma_x(\sigma_x\sigma_y - \sigma_y\sigma_x) = 2i\sigma_x\sigma_z, \tag{3.103}$$

$$\sigma_y - \sigma_x \sigma_y \sigma_x = 2i\sigma_x \sigma_z \tag{3.104}$$

类似地

$$(\sigma_x \sigma_y - \sigma_y \sigma_x) \sigma_x = 2i\sigma_z \sigma_x, \tag{3.105}$$

$$\sigma_x \sigma_y \sigma_x - \sigma_y = 2i\sigma_z \sigma_x \tag{3.106}$$

所以

$$\sigma_x \sigma_z + \sigma_z \sigma_x = 0 \tag{3.107}$$

这称为正对易 $\{\sigma_x, \sigma_z\} = 0.$ 同理 $\{\sigma_x, \sigma_y\} = \{\sigma_y, \sigma_z\} = 0.$ 再考虑 $[\sigma_z, \sigma_x] = 2i\sigma_y, 有$

$$\sigma_z \sigma_x = i \sigma_y \tag{3.108}$$

及其轮转关系. Eq.(3.101)和(3.108)是描述自旋算符性质的最重要的两个公式.

自然, σ_z 的矩阵形式为

$$\sigma_z = \begin{pmatrix} 1, & 0\\ 0, & -1 \end{pmatrix}. \tag{3.109}$$

可以假设

$$\sigma_x = \begin{pmatrix} a, & x \\ x^*, & b \end{pmatrix}. \tag{3.110}$$

其中考虑了厄密性, a, b是实数. 利用Eq.(3.107), 容易证明a = b = 0. 根据 $\sigma_x^2 = 1$,

$$\begin{pmatrix} |x|^2, & 0\\ 0, & |x|^2 \end{pmatrix} = 1,$$
 (3.111)

1表示单位矩阵. x可以是任意模为1的复数,按泡利的方案,取x = 1. 于是

$$\sigma_x = \begin{pmatrix} 0, & 1\\ 1, & 0 \end{pmatrix}. \tag{3.112}$$

再来求 $S_y = \frac{\hbar}{2}\sigma_y$ 的矩阵:

$$\sigma_y = i\sigma_x\sigma_z = \begin{pmatrix} 0, & -i\\ i, & 0 \end{pmatrix}.$$
(3.113)

这样定出的 $\sigma_x, \sigma_y, \sigma_z$ 矩阵就是著名的泡利矩阵.

3.5 期望值和本征方程的矩阵形式

我们已经知道任意算符 \hat{Q} 都可以写成某表象(以某力学量A的本征矢{ $|i\rangle$ }为基,称A表象)下的矩阵. 其元 素 $Q_{i,j} = \langle i | \hat{Q} | j \rangle$. 力学量算符(厄密的)的矩阵是厄密矩阵 $Q_{i,j} = (Q_{j,i})^*$.

3.5.1 期望值

考虑力学量Q在状态|a)的期望值.按量子力学测量原理,我们发现期望值为内积:

$$\langle Q \rangle = \langle \alpha | Q | \alpha \rangle, \tag{3.114}$$

这是因为

$$\langle \alpha | Q | \alpha \rangle = \sum_{i,j} \langle \alpha | q_i \rangle \langle q_i | Q | q_j \rangle \langle q_j | \alpha \rangle = \sum_i q_i |c_i|^2.$$
(3.115)

这里 $|q_i\rangle$ 是Q的本征态,本征值为 q_i .

$$Q|q_i\rangle = q_i|q_i\rangle; \quad i = 1, \cdots, N.$$
(3.116)

 $\langle q_i | \alpha \rangle = c_i$ 是测量值为 q_i 的几率幅. 上式利用了Q本征矢的完备性以及正交归一性 $\langle q_i | q_j \rangle = \delta_{ij}$. 在一个确定表象下,比如这里的A表象下,这个期望值可以这样算出:

$$\langle \alpha | Q | \alpha \rangle = \sum_{i,j} \langle \alpha | i \rangle \langle i | Q | j \rangle \langle j | \alpha \rangle = \sum_{i,j} c_i^* Q_{i,j} c_j.$$
(3.117)

其中 $|i\rangle$, $|j\rangle$ 是A的本征矢,也就是基矢.上式正是 $\langle \alpha |$ 对应的行矢与Q的矩阵, $|\alpha\rangle$ 的列矢的矩阵乘.

3.5.2 矩阵表示下的本征方程

按Dirac记号,算符Q的本征方程表示为

$$Q|q\rangle = q|q\rangle. \tag{3.118}$$

在A表象下,

$$\sum_{i,j} |i\rangle \langle i|Q|j\rangle \langle j|q\rangle = \sum_{i} q|i\rangle \langle i|q\rangle.$$
(3.119)

比较两边同一个基矢|i>的系数

$$\sum_{j} Q_{i,j} c_j = q c_i. \tag{3.120}$$

其中 $c_j = \langle j | q \rangle$, 是 $| q \rangle$ 的表示. 这正是矩阵的本征方程.

下面以自旋问题为例来说明。

选 S_z 表象,基矢为 $|+\rangle$, $|-\rangle$. S_x 的本征方程为

$$S_x|a\rangle = a|a\rangle. \tag{3.121}$$

利用S_x的矩阵表达式 (3.98)(或泡利矩阵 (3.112), 化为矩阵方程.

$$\frac{\hbar}{2} \begin{pmatrix} 0, & 1\\ 1, & 0 \end{pmatrix} \begin{pmatrix} c_1\\ c_2 \end{pmatrix} = a \begin{pmatrix} c_1\\ c_2 \end{pmatrix}$$
(3.122)

可以化为齐次方程

$$\begin{pmatrix} -\lambda, & 1\\ 1, & -\lambda \end{pmatrix} \begin{pmatrix} c_1\\ c_2 \end{pmatrix} = 0$$
(3.123)

其中 $\lambda = a/(\hbar/2).$

方程有非平庸解的条件为系数行列式等于零,即久期方程. 解为 $\lambda = \pm 1$,对应本征值a有两个: $\hbar/2$, $-\hbar/2$; 将 λ 带回方程,并考虑到归一化要求 $|c_1|^2 + |c_2|^2 = 1$,我们发现对应本征态分别为

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \quad \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}. \tag{3.124}$$

(这里其实也采取了一个'规范': c1, c2取了实数解). 可以记作

$$|S_x,+\rangle = \frac{1}{\sqrt{2}}(|+\rangle + |-\rangle) \tag{3.125}$$

和

$$|S_x, -\rangle = \frac{1}{\sqrt{2}}(|+\rangle - |-\rangle). \tag{3.126}$$

前者就是3.69.

前面提到的假想实验:一个自旋朝上(z方向)的粒子通过沿x方向设置的Stern-Galach装置.我们会发现有一半机会测得 $\hbar/2$,一半机会 $-\hbar/2$,就是因为

$$|+\rangle = \frac{1}{\sqrt{2}}(|S_x, +\rangle + |S_x, -\rangle) \tag{3.127}$$

这说明:不能把Hilbert空间里矢量等同于现实空间里的矢量.

对于处于 $|+\rangle$ 态的自旋,测量 S_x 的期望值为 $\frac{\hbar}{2}\frac{1}{2} + \frac{-\hbar}{2}\frac{1}{2} = 0$.也可以直接利用矩阵计算

$$\langle S_x \rangle = \langle +|S_x|+\rangle = (1,0)\frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} = 0.$$
(3.128)

作为练习,可以试求Sy的本征矢与本征值.

3.6 Schrödinger方程及其矩阵形式

量子力学认为,系统的状态的时间演化满足Schrödinger方程,其最一般的形式如下:

$$i\hbar\frac{\partial}{\partial t}|\alpha\rangle = \hat{H}|\alpha\rangle.$$
 (3.129)

Ĥ是哈密顿量算符。大家可以对比第一章学习过的薛定谔方程,可以看到这相当于把波函数整体当作一个态 矢量. 对波函数的操作换成了对态矢量的操作.

方程的左边可以看成是($|\alpha(t + \Delta t)\rangle - |\alpha(t)\rangle$)/ Δt 乘以*i*ħ. 所以反映的是态矢量会怎样旋转. 或者说其'旋转速度'由H对当时的状态的'操作'决定。

在A表象下它可以写成矩阵形式,

$$i\hbar\frac{\partial}{\partial t}\langle i|\alpha\rangle = \langle i|\hat{H}|\alpha\rangle = \sum_{j}\langle i|\hat{H}|j\rangle\langle j|\alpha\rangle.$$
(3.130)

即

$$i\hbar\dot{c}_i = \sum_j H_{ij}c_j. \tag{3.131}$$

Figure 3.3: 带自旋中性粒子在磁场中的自旋进动.

我们来研究一个带自旋的中性粒子(比如银原子) 在均匀磁场中的运动. 该原子的磁矩为 $\vec{\mu} = \frac{-e}{m_e c} \mathbf{S}$. 假设磁场方向为x方向. 哈密顿量可以写成

$$H = -\vec{\mu} \cdot \mathbf{B} = \frac{e}{m_e c} \mathbf{S} \cdot \mathbf{B} = \frac{\hbar e B}{2m_e c} \sigma_x = \frac{\hbar \omega_L}{2} \sigma_x.$$
(3.132)

其中定义了 $\frac{eB}{m_ec} = \omega_L$.由于粒子没有空间运动,所以略去了动能 $p^2/2m$.又由于角动量的动能 $S^2/2I$ 是常数($S^2 = 3\hbar^2/4$),所以有略去了角动能.

从经典力学角度看,由于磁场均匀,粒子受力

$$\vec{F} = -\nabla V = \nabla(\vec{\mu} \cdot \mathbf{B}) = 0. \tag{3.133}$$

即均匀磁场下,中性粒子不受力,保持静止或匀速运动.但是它会受力矩 $\mathbf{M} = \vec{\mu} \times \mathbf{B}$ 作用,导致角动量变化

$$\frac{d\mathbf{S}}{dt} = \vec{\mu} \times \mathbf{B}.\tag{3.134}$$

由于力矩方向始终垂直于自旋角动量的方向,所以角动量大小不变,只改变方向.

如果自旋方向在0时刻指向z方向, 即 $\mathbf{S} = (0, 0, \hbar/2)$. 在y - z平面内, 角动量矢量会受逆时针力矩而转动, 角速度为 ω_L :

$$|S|\frac{d\phi}{dt} = |S|\omega_L \tag{3.135}$$

其中 ω_L 是磁场强度B的函数. 方程的解为

$$\phi(t) = \omega_L t + \phi(0) \tag{3.136}$$

我们选定z方向为 $\phi = 0$ 的方向,则 $\phi(0) = 0$.于是

$$S_z(t) = \frac{\hbar}{2}\cos(\omega_L t), \quad S_y(t) = -\frac{\hbar}{2}\sin(\omega_L t), \quad S_x(t) = 0.$$
 (3.137)

下面我们运用量子力学来研究这个问题.

初始条件为: $|\alpha(0)\rangle = |S_z, +\rangle$. 这表示 $S_z = \hbar/2$. (但 S_x, S_y 并不确定. 因为不是 S_x, S_y 的本征态. 量子力学 也不允许它们同时确定).

设t时刻态演化成 $|\alpha(t)\rangle = c_1(t)|+\rangle + c_2(t)|-\rangle$,满足S-eq,在Sz表象下写为以下矩阵方程

$$i\hbar \begin{pmatrix} \dot{c}_1 \\ \dot{c}_2 \end{pmatrix} = \frac{\hbar\omega_L}{2} \begin{pmatrix} 0, 1 \\ 1, 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$
(3.138)

容易解出

$$c_1 = ae^{\frac{i\omega_L t}{2}} + be^{\frac{-i\omega_L t}{2}}$$
(3.139)

$$c_2 = -ae^{\frac{i\omega_L t}{2}} + be^{\frac{-i\omega_L t}{2}} \tag{3.140}$$

其中a,b是待定系数,需要根据初始条件确定:

$$a+b=1, \qquad b-a=0.$$
 (3.141)

因此

$$|\alpha(t)\rangle = \cos(\omega_L t/2)|+\rangle - i\sin(\omega_L t/2)|-\rangle.$$
(3.142)

写成Sz表象下列矢量

$$\begin{pmatrix} \cos(\omega_L t/2) \\ -i\sin(\omega_L t/2) \end{pmatrix}.$$
 (3.143)

我们还可以有**第二种解法**.

先求解H的本征方程,

$$H|E\rangle = E|E\rangle. \tag{3.144}$$

容易知道, $E_{1,2} = \pm \frac{\hbar \omega_L}{2}$, $|E_1\rangle \pi |E_2\rangle$ 分别对应 S_x 两个本征态 $|S_x, +\rangle$, $|S_x, -\rangle$. (也可以写成 $|+, x\rangle$, $|-, x\rangle$). 将初始状态展开成H本征态的叠加,

$$|+\rangle = c_1|+, x\rangle + c_2|-, x\rangle. \tag{3.145}$$

求出

$$c_1 = \langle +, x | + \rangle = \frac{1}{\sqrt{2}}, c_2 = \langle -, x | + \rangle = \frac{1}{\sqrt{2}}.$$
 (3.146)

于是,下面的矢量必然满足薛定谔方程:

$$|\alpha(t)\rangle = \frac{1}{\sqrt{2}}e^{-iE_{1}t/\hbar}|+,x\rangle + \frac{1}{\sqrt{2}}e^{-iE_{2}t/\hbar}|-,x\rangle$$
(3.147)

在Sz表象下,就是(3.143).

利用求出的态矢我们可以计算力学量平均值:

$$\langle S_x \rangle = \langle \alpha(t) | S_x | \alpha(t) \rangle = \frac{\hbar}{2} \frac{1}{2} - \frac{\hbar}{2} \frac{1}{2} = 0$$
(3.148)

这个计算也可以利用矩阵在Sz表象里进行

$$\langle S_x \rangle = (\cos(\omega_L t/2), i \sin(\omega_L t/2)) \begin{pmatrix} 0, & \hbar/2 \\ \hbar/2, & 0 \end{pmatrix} \begin{pmatrix} \cos(\omega_L t/2) \\ -i \sin(\omega_L t/2) \end{pmatrix} = 0.$$
(3.149)

同样,利用(3.142)和测量原理

$$\langle S_z \rangle = \frac{\hbar}{2} \cos(\omega_L/2)^2 - \frac{\hbar}{2} \sin(\omega_L/2)^2 = \frac{\hbar}{2} \cos(\omega_L t)$$
(3.150)

或者直接利用期望值公式

$$\langle S_z \rangle = \langle \alpha(t) | S_z | \alpha(t) \rangle$$

$$= \langle \alpha(t) | (\frac{\hbar}{2} \cos(\omega_L t/2) | + \rangle - \frac{\hbar}{2} (-i \sin(\omega_L t/2)) | - \rangle)$$

$$= \frac{\hbar}{2} \cos(\omega_L t)$$

$$(3.151)$$

类似地我们容易算出

$$\langle S_y \rangle = -\frac{\hbar}{2} \sin(\omega_L t)$$
 (3.152)

我们看到期望值与经典力学的结果是一致的!

那么我们能得到什么超出经典力学预期的结论呢?

量子力学的测量原理告诉我们,测量 S_z ,我们不会得到 $\frac{\hbar}{2}\cos(\omega_L t)$.我们只能以几率 $\cos^2(\omega_L t/2)$ 得到 $\hbar/2$,以几率 $\sin^2(\omega_L t/2)$ 得到 $-\hbar/2$.

如果测量 S_x ,测值是 $\hbar/2$, $-\hbar/2$,相应几率都是1/2.

如果测量 S_y ,同样测值是 $\pm \hbar/2$,几率是多大?

此外我们还有一个发现:

 $\langle \mathbf{S} \rangle = (\langle S_x \rangle, \langle S_y \rangle, \langle S_z \rangle)$ 的周期是 $\frac{2\pi}{\omega_L}$. 但是态矢量 $|\alpha(t)\rangle$ 的周期是 $\frac{4\pi}{\omega_L}$! 即角动量期望值旋转一圈,态矢并没有回到初态。两圈之后,态矢才回到初态! 这是另一个可以通过实验观测到的量子力学效应。

3.7 表象变换

我们以自旋为例说明表象变换。

考虑任意一个自旋状态|a),可以展开成Sz的本征矢的叠加,也可以展开成Sx的本征矢的叠加。

$$|\alpha\rangle = c_1|+\rangle + c_2|-\rangle = c_1'|+,x\rangle + c_2'|-,x\rangle$$

$$(3.153)$$

可借助图3.4理解这个展开。

Figure 3.4: 自旋状态的展开

其中

$$c_{1}' = \langle +, x | \alpha \rangle = \langle +, x | c_{1} | + \rangle + \langle +, x | c_{2} | - \rangle$$

$$c_{2}' = \langle -, x | \alpha \rangle = \langle -, x | c_{1} | + \rangle + \langle -, x | c_{2} | - \rangle$$
(3.154)

改写为

$$\begin{pmatrix} c_1'\\ c_2' \end{pmatrix} = \begin{pmatrix} \langle +, x|+\rangle & \langle +, x|-\rangle\\ \langle -, x|+\rangle & \langle -, x|-\rangle \end{pmatrix} \begin{pmatrix} c_1\\ c_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} c_1\\ c_2 \end{pmatrix}$$
(3.155)

这就给出了从Sz表象到Sx表象的变换矩阵。

利用变换矩阵可以方便地计算。比如一个态矢在 S_z 表象下的列矢表示为 $\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$,它在 S_x 表象下的表示 是什么?

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
(3.156)

一般情况: $\partial_{a_i}, i = 1, 2, \cdots$ 是力学量A的本征矢,作为基矢,即A表象。 $\partial_{b_i}, i = 1, 2, \cdots$ 是力学量B的本征矢,作为基矢,即B表象。

任意一个状态 $|\alpha\rangle$

$$|\alpha\rangle = \sum_{i} c_i^{(A)} |a_i\rangle = \sum_{j} c_j^{(B)} |b_j\rangle$$
(3.157)

插入完备性关系

$$|\alpha\rangle = \sum_{i} c_i^{(A)} (\sum_{j} |b_j\rangle \langle b_j|) |a_i\rangle = \sum_{j} (\sum_{i} \langle b_j |a_i\rangle c_i^{(A)}) |b_j\rangle$$
(3.158)

因此

$$c_j^{(B)} = \sum_i \langle b_j | a_i \rangle c_i^{(A)} \tag{3.159}$$

或者

$$c_i^{(B)} = \sum_j \langle b_i | a_j \rangle c_j^{(A)} \tag{3.160}$$

定义矩阵 $S_{ij} = \langle b_i | a_j \rangle$ 为**从表象A到表象B的变换矩阵**. 它的**厄密共轭矩阵**记为 S^{\dagger} . 自然满足

$$(S^{\dagger})_{ij} = (S_{ji})^* = \langle b_j | a_i \rangle^* = \langle a_i | b_j \rangle$$
(3.161)

正是从B表象到A表象的变换矩阵。更严格地

$$S_{ij}^{(A \to B)} = \langle b_i | a_j \rangle \tag{3.162}$$

而

$$S_{ij}^{(B \to A)} = \langle a_i | b_j \rangle = (S^{(A \to B)})_{ij}^{\dagger}$$
(3.163)

关键在于矩阵元的计算中,'新的基矢'取为左矢,'旧'的基矢作为右矢。 特别是,我们注意到 $(S^{\dagger})_{ij} = \langle a_i | b_j \rangle$ 是B表象的基矢 $| b_j \rangle$ 在A表象下列矢的第i个元素.设

$$|b_{j}\rangle = \begin{pmatrix} c_{1}(j) \\ c_{2}(j) \\ \vdots \\ \vdots \\ c_{N}(j) \end{pmatrix}$$
(3.164)

所以

$$S^{\dagger} = \begin{pmatrix} c_{1}(1) & c_{1}(2) & \cdots & c_{1}(N) \\ c_{2}(1) & c_{2}(2) & \cdots & c_{2}(N) \\ \vdots & & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ c_{N}(1) & c_{N}(2) & \cdots & c_{N}(N) \end{pmatrix}, \qquad S = \begin{pmatrix} c_{1}^{*}(1) & c_{2}^{*}(1) & \cdots & c_{N}^{*}(1) \\ c_{1}^{*}(2) & c_{2}^{*}(2) & \cdots & c_{N}^{*}(2) \\ \vdots & & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ c_{1}^{*}(N) & c_{2}^{*}(N) & \cdots & c_{N}^{*}(N) \end{pmatrix}$$
(3.165)

容易证明 $S^{\dagger}S = SS^{\dagger} = 1$:

$$(S^{\dagger}S)_{ik} = \sum_{j} S_{ij}^{\dagger}S_{jk} = \sum_{j} \langle a_i | b_j \rangle \langle b_j | a_k \rangle = \langle a_i | a_k \rangle = \delta_{ik}$$
(3.166)

这个性质称为S是**幺正变换**(Unitary)。

一个算符的矩阵也是依赖于表象的。它在两个表象间怎么变换(从A到B)? Q在B表象的矩阵元 $Q_{i,j}^{(B)} = \langle b_i | Q | b_j \rangle$ 可以写为

$$Q_{i,j}^{(B)} = \langle b_i | Q | b_j \rangle = \sum_{k,l} \langle b_i | a_k \rangle \langle a_k | Q | a_l \rangle \langle a_l | b_j \rangle = \sum_{k,l} S_{ik} Q_{kl}^{(A)} S_{lj}^{\dagger}$$
(3.167)

简写为矩阵形式

$$Q^{(B)} = SQ^{(A)}S^{\dagger} \tag{3.168}$$

例如:
$$\sigma_y \Delta S_z$$
表象下的矩阵 $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$.
在 S_x 表象下:

$$\sigma_y = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$
(3.169)
$$S = S^{\dagger}$$

注意在这个变换中, $S = S^{\dagger}$.

3.8 连续谱,坐标与动量表象

前面的量子力学形式理论以离散谱形式给出,即假设本征值是离散的。实际上力学量的本征值也可以是连续的实数,称为**连续谱**。这里我们结合坐标表象和动量表象给出连续谱下的量子力学形式。

考虑位置算符 x. 其本征方程为

$$\hat{x}|x'\rangle = x'|x'\rangle \tag{3.170}$$

x'是本征值,为连续实数。|x'〉是属于这个本征值的本征矢。

连续谱本征矢满足的正交归一性为

$$\langle x'|x''\rangle = \delta(x' - x'') \tag{3.171}$$

这里dirac函数取代了delta 函数。

自然,以|*x*'>为基矢的表象是坐标(或位置)表象。并且,因为*x*'的取值从负无穷到正无穷连续变换,Hilbert空间是无穷维的!

这组基矢满足完备性关系

$$\int_{-\infty}^{\infty} |x'\rangle \langle x'| \mathrm{d}x' = 1 \tag{3.172}$$

有了完备性关系,任意态矢|a〉都可以展开成基矢的叠加(当然,在我们关心粒子的空间运动的时候)

$$|\alpha\rangle = \int dx' |x'\rangle \langle x' |\alpha\rangle = \int dx' \psi_{\alpha}(x') |x'\rangle$$
(3.173)

这里我们定义了

$$\psi_{\alpha}(x') \equiv \langle x' | \alpha \rangle \tag{3.174}$$

就是我们熟悉的**波函数**。本质上,它是列矢的元素,但由于x'连续,我们并不这么写。

根据测量原理,测量位置应该得到x的本征值x'. 假设我们设置一个探测口径无穷小的探测器: 粒子来到位置x'时,它会发出'滴答'声.之后粒子的态变成' $|x'\rangle$ '.这类似于自旋状态在粒子通过SG装置后变成 $|S_z, +\rangle$ 或者 $|S_z, -\rangle$.

但是现实中,最好的探测器也有个口径(或者分辨率) Δ ,会在粒子落入一定范围($x' - \Delta/2, x' + \Delta/2$)时,发出'滴答'声.那么测量之后的状态是怎样的呢?它'塌缩'为

$$|\alpha\rangle \xrightarrow{measurement} \int_{x'-\Delta/2}^{x'+\Delta/2} \mathrm{d}x'' |x''\rangle \psi_{\alpha}(x'')$$
(3.175)

假设在 Δ 这个尺寸下 $\psi_{\alpha}(x)$ 基本不变,那么听见滴答声的几率就是 $|\psi_{\alpha}(x')|^{2}\Delta$,通常写为 $|\psi_{\alpha}(x')|^{2}dx'$.这正是 我们最早给出的波函数的几率解释, $|\psi_{\alpha}(x')|^{2}$ 是对应的几率密度.

我们要求 $|\alpha\rangle$ 归一, 即 $\langle \alpha | \alpha \rangle = 1$, 则

$$\int \mathrm{d}x' \langle \alpha | x' \rangle \langle x' | \alpha \rangle = \int \mathrm{d}x' \psi_{\alpha}^*(x') \psi_{\alpha}(x') = 1$$
(3.176)

就是我们熟悉的波函数的归一化。

我们可以把以上讨论推广到三维空间.基矢为|x'),是完备的。

$$|\alpha\rangle = \int d^3x' |\mathbf{x}'\rangle \langle \mathbf{x}' |\alpha\rangle \tag{3.177}$$

其中

$$|\mathbf{x}'\rangle \equiv |x', y', z'\rangle \tag{3.178}$$

是力学量x, y, z的共同本征态(共同本征态这个概念我们以后会详细讨论), 满足

$$x|\mathbf{x}'\rangle = x'|\mathbf{x}'\rangle, \quad y|\mathbf{y}'\rangle = y'|\mathbf{y}'\rangle, \quad z|\mathbf{z}'\rangle = z'|\mathbf{z}'\rangle$$
(3.179)

动量的情况类似。记其算符为p. 其本征方程为

$$\hat{p}|p'\rangle = p'|p'\rangle \tag{3.180}$$

p'是本征值,为连续实数。|p'>是属于这个本征值的本征矢。正交归一性

$$\langle p'|p''\rangle = \delta(p'-p'') \tag{3.181}$$

同样满足完备性关系

$$\int |p'\rangle \langle p'| \mathrm{d}p' = 1 \tag{3.182}$$

以|p')为基矢的表象就是动量表象。

因此任意态矢|α〉都可以展开

$$|\alpha\rangle = \int dp'|p'\rangle\langle p'|\alpha\rangle = \int dp'\varphi_{\alpha}(p')|p'\rangle$$
(3.183)

 $\varphi_{\alpha}(p') \equiv \langle p' | \alpha \rangle$ 就是我们熟悉的动量表象波函数。

根据测量原理,测量位置得到 $p' \in (p' - dp'/2, p' + dp'/2)$ 的几率是 $|\varphi_{\alpha}(p')|^2 dp'$.

对一个归一化态矢量 $\langle \alpha | \alpha \rangle = 1, 则$

$$\int dp' \langle \alpha | p' \rangle \langle p' | \alpha \rangle = \int dp' \varphi_{\alpha}^{*}(p') \varphi_{\alpha}(p') = 1$$
(3.184)

就是动量波函数的归一化。

3.8.1 坐标表象下算符的表示

现在的问题是*x*,*p*的'矩阵'怎么写?

按前面的定义,我们似乎应该写出矩阵元

$$\langle x_1 | \hat{x} | x_2 \rangle = \langle x_1 | x_2 | x_2 \rangle = x_2 \delta(x_1 - x_2) \tag{3.185}$$

但实际上这不方便,很笨拙。

我们考虑 \hat{x} 作用到任意态矢 $|\alpha\rangle$ 得到另一个态矢 $|\beta\rangle$:

$$\hat{x}|\alpha\rangle = |\beta\rangle \tag{3.186}$$

看波函数:

$$\langle x|\hat{x}|\alpha\rangle = \langle x|\beta\rangle = \psi_{\beta}(x) \tag{3.187}$$

由于

$$\langle x|\hat{x}|\alpha\rangle = \int \mathrm{d}x' \langle x|\hat{x}|x'\rangle \langle x'|\alpha\rangle = \int \mathrm{d}x' x' \psi_{\alpha}(x') \langle x|x'\rangle = x\psi_{\alpha}(x) \tag{3.188}$$

效果就是

$$x\psi_{\alpha}(x) = \psi_{\beta}(x) \tag{3.189}$$

 \hat{x} 把 $|\alpha\rangle$ 转动为 $|\beta\rangle$,对应于x把波函数 $\psi_{\alpha}(x)$ 变成了 $\psi_{\beta}(x)$.可以看到x是 \hat{x} 的'有效'算符,也就是通常意义上的坐标算符。

那么动量算符 \hat{p} 的表达式,或者说它的"有效"算符是什么呢? 我们可以承认对易关系[\hat{x},\hat{p}] = $i\hbar$ (作为公理),利用(3.189)直接算出

$$\hat{p}\psi(x) = -i\hbar \frac{\partial}{\partial x}\psi(x)$$
(3.190)

得到通常意义上的动量算符 $\hat{p} = -i\hbar \frac{\partial}{\partial x}$.

过程:考虑任意状态 $|\alpha\rangle$

$$[\hat{x}, \hat{p}]|\alpha\rangle = i\hbar|\alpha\rangle \tag{3.191}$$

 $\langle x | (\hat{x}\hat{p} - \hat{p}\hat{x}) | \alpha \rangle = i\hbar \langle x | \alpha \rangle = i\hbar \psi_{\alpha}(x)$

$$x\langle x|\hat{p}|\alpha\rangle - \langle x|\hat{p}\hat{x}|\alpha\rangle = i\hbar\psi_{\alpha}(x) \tag{3.192}$$

假设 $\hat{p}|\alpha\rangle = |\beta\rangle$. 我们寻找一个"有效"算符 $\hat{\hat{p}}$, 满足 $\langle x|\hat{p}|\alpha\rangle = \hat{\hat{p}}\langle x|\alpha\rangle = \hat{\hat{p}}\psi_{\alpha}(x) = \psi_{\beta}(x)$. 那么

$$\langle x|\hat{p}\hat{x}|\alpha\rangle = \hat{\hat{p}}\langle x|\hat{x}|\alpha\rangle = \hat{\hat{p}}(x\psi_{\alpha}(x)) = (\hat{\hat{p}}x)\psi_{\alpha}(x) + x\hat{\hat{p}}\psi_{\alpha}(x)$$

代入(3.192),有

$$x\hat{\hat{p}}\psi_{\alpha}(x) - (\hat{\hat{p}}x)\psi_{\alpha}(x) - x\hat{\hat{p}}\psi_{\alpha}(x) = i\hbar\psi_{\alpha}(x)$$
(3.193)

这要求

$$\hat{\hat{p}}x = i\hbar \tag{3.194}$$

满足这一关系的微分算符就是 $\hat{\hat{p}} = -i\hbar \frac{\partial}{\partial x}$. $\hat{\hat{p}}$ 通常也写作 \hat{p} , 但是注意它是作用在态矢量对应的波函数上的. 另外一个导出动量算符表达式的方式是利用

$$\langle x|p'\rangle = \frac{1}{\sqrt{2\pi\hbar}} \mathrm{e}^{\mathrm{i}p'x/\hbar} \tag{3.195}$$

即动量本征态的波函数是平面波形式,也就是德布罗意关系.

这个函数可以保证动量基矢的连续谱归一化

$$\langle p|p'\rangle = \int \mathrm{d}x \langle p|x\rangle \langle x|p'\rangle = \int \mathrm{d}x \frac{1}{2\pi\hbar} \mathrm{e}^{\mathrm{i}(p'-p)x/\hbar} = \delta(p-p') \tag{3.196}$$

这也是为什么对不可归一化的平面波要选取这样的系数的原因。

再假设动量算符 \hat{p} 作用到 $|\alpha\rangle$ 得到 $|\beta\rangle$,即

$$\hat{p}|\alpha\rangle = |\beta\rangle \tag{3.197}$$

$$\hat{p}|\alpha\rangle = \int \hat{p}|x'\rangle\langle x'|\alpha\rangle dx' = \int dx'|x'\rangle\langle x'|\beta\rangle$$
(3.198)

以(x|跟上式作内积

$$\langle x|\hat{p}|\alpha\rangle = \int \langle x|\hat{p}|x'\rangle \langle x'|\alpha\rangle \mathrm{d}x' = \psi_{\beta}(x)$$
(3.199)

现在的关键是'矩阵元' $\langle x | \hat{p} | x' \rangle = ?$

$$\langle x|\hat{p}|x'\rangle = \int \mathrm{d}p_1 \mathrm{d}p_2 \langle x|p_1\rangle \langle p_1|\hat{p}|p_2\rangle \langle p_2|x'\rangle = \int \langle x|p_1\rangle \langle p_1|x'\rangle p_1 \mathrm{d}p_1 \tag{3.200}$$

利用(3.195), 导出

$$\langle x|\hat{p}|x'\rangle = -\mathrm{i}\hbar\frac{\partial}{\partial x}\int\mathrm{d}p_1\langle x|p_1\rangle\langle p_1|x'\rangle = -\mathrm{i}\hbar\frac{\partial}{\partial x}\delta(x-x') \tag{3.201}$$

带回(3.199),

$$\langle x|\hat{p}|\alpha\rangle = -\mathrm{i}\hbar\frac{\partial}{\partial x}\int\delta(x-x')\psi_{\alpha}(x')\mathrm{d}x' = -\mathrm{i}\hbar\frac{\partial}{\partial x}\psi_{\alpha}(x) = \psi_{\beta}(x)$$
(3.202)

根据 \hat{p} 的效果: 把 $\psi_{\alpha}(x)$ 变成 $\psi_{\beta}(x)$,我们知道 \hat{p} 的表示就是 $-i\hbar\frac{\partial}{\partial x}$.

任意一个算符F(x,p), 如果 $F|\alpha\rangle = |\beta\rangle$, 即

$$\langle x|F|\alpha\rangle = \langle x|\beta\rangle = \psi_{\beta}(x),$$
 (3.203)

都可以找到 $\psi_{\alpha}(x)$ 和 $\psi_{\beta}(x)$ 的如下关系

$$\hat{F}\psi_{\alpha}(x) = F(x, -i\hbar\frac{\partial}{\partial x})\psi_{\alpha}(x) = \psi_{\beta}(x)$$
(3.204)

即其算符在坐标表象下的'有效算符'为 $\hat{F} = F(x, -i\hbar\frac{\partial}{\partial x}).$

3.8.2 坐标表象下的Schrödinger 方程

下面我们根据一般的Schrödinger 方程

$$i\hbar \frac{\partial}{\partial t} |\alpha\rangle = H |\alpha\rangle \tag{3.205}$$

推导出坐标表象下的波函数的薛定鄂方程.

作内积

$$i\hbar \frac{\partial}{\partial t} \langle x | \alpha \rangle = \langle x | H | \alpha \rangle \tag{3.206}$$

引入"有效"算符 \hat{H} , 满足 $\langle x|H|\alpha \rangle = \hat{H}\psi_{\alpha}(x,t)$, 其中 $\hat{H} = H(x, -i\hbar\frac{\partial}{\partial x})$.

因此

$$i\hbar\frac{\partial}{\partial t}\psi_{\alpha}(x,t) = H(x,-i\hbar\frac{\partial}{\partial x})\psi_{\alpha}(x,t) = \left(\frac{-\hbar^{2}\partial^{2}}{2m\partial x^{2}} + V(x)\right)\psi_{\alpha}(x,t)$$
(3.207)

3.8.3 动量表象

自然,在动量表象下假设

$$\hat{p}|\alpha\rangle = |\beta\rangle \tag{3.208}$$

可以得到

$$\langle p|\hat{p}|\alpha\rangle = p\varphi_{\alpha}(p) = \varphi_{\beta}(p) \tag{3.209}$$

即有效算符 $\hat{p} = p$. 由

$$\langle p|\hat{x}|\alpha\rangle = \langle p|\beta\rangle \tag{3.210}$$

根据(p|的平面波形式,容易发现

$$\langle p|\hat{x}|\alpha\rangle = i\hbar \frac{\partial}{\partial p}\varphi_{\alpha}(p) = \varphi_{\beta}(p)$$
(3.211)

即有效算符 $\hat{x} = i\hbar \frac{\partial}{\partial p}$.

3.8.4 坐标表象和动量表象的变换

从动量波函数计算坐标波函数:

$$\psi_{\alpha}(x) = \langle x | \alpha \rangle = \int dp \langle x | p \rangle \langle p | \alpha \rangle = \int \varphi_{\alpha}(p) \frac{e^{ipx/\hbar}}{\sqrt{2\pi\hbar}} dp$$
(3.212)

 $\langle x|p \rangle$ 起到从动量到坐标表象的变换矩阵 S_{xp} 的作用. 这就是我们熟悉的付立叶变换.

从坐标波函数计算动量波函数:

$$\varphi_{\alpha}(p) = \langle p | \alpha \rangle = \int dx \langle p | x \rangle \langle x | \alpha \rangle = \int \psi_{\alpha}(x) \frac{e^{-ipx/\hbar}}{\sqrt{2\pi\hbar}} dx$$
(3.213)

 $\langle p|x\rangle$ 起到从动量到坐标表象的变换的逆变换矩阵 S_{px}^{\dagger} 的作用. 这就是我们熟悉的付立叶变换的逆变换.

3.8.5 坐标表象下的公式

内积

容易证明内积可以通过波函数的积分得到

$$\langle \alpha | \beta \rangle = \int \mathrm{d}x \langle \alpha | x \rangle \langle x | \beta \rangle = \int \psi_{\alpha}^{*}(x) \psi_{\beta}(x) \mathrm{d}x \equiv (\psi_{\alpha}, \psi_{\beta})$$
(3.214)

 $(\psi_{\alpha},\psi_{\beta})$ 是内积的另一种记法.

进一步

$$\langle \alpha | Q | \beta \rangle = \int \mathrm{d}x \langle \alpha | x \rangle \langle x | Q | \beta \rangle = \int \mathrm{d}x \psi_{\alpha}^*(x) Q(x, \hat{p} = i\hbar \frac{\partial}{\partial x}) \psi_{\beta}(x) \equiv (\psi_{\alpha}, \hat{Q}\psi_{\beta}) \tag{3.215}$$

我们还可以得到算符厄密性的另一种表达. 厄密算符满足

$$\langle \alpha | Q | \beta \rangle = \langle \beta | Q | \alpha \rangle^* \tag{3.216}$$

$$\langle \alpha | Q | \beta \rangle = \int \langle \alpha | Q | x \rangle \langle x | \beta \rangle dx = \int \langle x | Q | \alpha \rangle^* \psi_\beta(x) dx = \int (\hat{Q} \psi_\alpha(x))^* \psi_\beta(x) dx$$

= $(\hat{Q} \psi_\alpha, \psi_\beta)$ (3.217)

所以

$$(\psi_{\alpha}, \hat{Q}\psi_{\beta}) = (\hat{Q}\psi_{\alpha}, \psi_{\beta}) \tag{3.218}$$
本征方程

本征方程

$$Q|q\rangle = q|q\rangle \tag{3.219}$$

有

$$\langle x|Q|q\rangle = q\langle x|q\rangle \tag{3.220}$$

得到

$$\hat{Q}\psi_q(x) = q\psi_q(x) \tag{3.221}$$

这里 $\hat{Q} = Q(x, -i\hbar\frac{\partial}{\partial x}).$

波函数的叠加

态叠加是说一个态可以写成其他态的叠加,即

$$|\alpha\rangle = \sum_{n} c_n |n\rangle \tag{3.222}$$

|n>一般是某个力学量的本征态。那么

$$\langle x|\alpha\rangle = \sum_{n} c_n \langle x|n\rangle \tag{3.223}$$

即

$$\psi_{\alpha}(x) = \sum_{n} c_n \psi_n(x) \tag{3.224}$$

态的波函数可以写成其他态的波函数的叠加。

完备性的波函数形式

考虑某表象的一组基矢(离散谱), 满足完备性关系

$$\sum_{i} |i\rangle\langle i| = 1 \tag{3.225}$$

这些基矢可以在坐标表象下写成波函数 $\psi_i(x) = \langle x | i \rangle$.利用

$$\sum_{i} \langle x|i\rangle \langle i|x'\rangle = \delta(x-x') \tag{3.226}$$

又

$$\sum_{i} \langle x|i\rangle \langle i|x'\rangle = \sum_{i} \psi_i(x)\psi_i^*(x')$$
(3.227)

所以

$$\sum_{i} \psi_i(x)\psi_i^*(x') = \delta(x - x')$$
(3.228)

例子:无限深势阱.

本征方程的解 $\psi_n(x)$ 是 $|n\rangle$ 对应波函数. $|n\rangle$ 可以选为基矢. 正交归一性

$$\langle n|n'\rangle = (\psi_n, \psi'_n) = \delta_{nn'} \tag{3.229}$$

完备性

$$\sum_{n} \psi_n(x)\psi_n^*(x') = \delta(x - x')$$
(3.230)

$$\int \mathrm{d}a |a\rangle \langle a| = 1 \tag{3.231}$$

上述结果自然为

$$\int \mathrm{d}a\psi_a(x)\psi_a^*(x') = \delta(x - x') \tag{3.232}$$

比如动量表象,

$$\int \mathrm{d}p\psi_p(x)\psi_p^*(x') = \int \mathrm{d}p \frac{1}{2\pi\hbar} e^{\mathrm{i}px/\hbar} e^{-\mathrm{i}px'/\hbar} = \delta(x-x')$$
(3.233)

此外〈p|p'〉可以通过波函数验证.

$$\langle p|p'\rangle = \int \mathrm{d}x \langle p|x\rangle \langle x|p'\rangle = \int \mathrm{d}x \psi_p^*(x) \psi_{p'}(x) = \int \mathrm{d}x \frac{1}{2\pi\hbar} e^{-\mathrm{i}px/\hbar} e^{\mathrm{i}p'x/\hbar} = \delta(p-p') \tag{3.234}$$

3.9. 能量表象

3.9 能量表象

考虑能量本征态

$$\hat{H}|n\rangle = E_n|n\rangle, \qquad n = 0, 1, 2, \cdots$$
(3.235)

选|n>为基矢,就得到能量表象。

在能量表象下哈密顿量算符的矩阵自然是对角矩阵

$$H_{mn} = \langle m | H | n \rangle = E_n \delta_{mn} \tag{3.236}$$

根据薛定鄂方程

$$i\hbar \frac{\partial}{\partial t} |\alpha(t)\rangle = \hat{H} |\alpha(t)\rangle$$
 (3.237)

$$i\hbar\frac{\partial}{\partial t}\langle m|\alpha(t)\rangle = \sum_{n} \langle m\hat{H}|n\rangle\langle n|\alpha(t)\rangle$$
(3.238)

$$i\hbar\dot{c}_m(t) = E_m c_m(t) \tag{3.239}$$

解为

$$c_m(t) = c_m(0)e^{-iE_m t/\hbar} (3.240)$$

 $c_m(0)$ 由初始条件定

$$|\alpha(0)\rangle = \sum_{m} c_m(0)|m\rangle \tag{3.241}$$

所以

$$|\alpha(t)\rangle = \sum_{m} c_m(t)|m\rangle = \sum_{m} c_m(0) \mathrm{e}^{-\mathrm{i}E_m t/\hbar}|m\rangle$$
(3.242)

若

$$|\alpha(0)\rangle = |n\rangle \tag{3.243}$$

则

$$c_m = \delta_{mn} \tag{3.244}$$

系统处于之前我们研究过定态.

可以看到选取能量算符Ĥ的本征矢作为基矢是非常方便的。

3.9.1 借助波函数完成计算

如果考虑粒子的空间运动,利用坐标(或位置)表象波函数来计算是方便的。 比如计算能量表象下力学量A的矩阵元(*m*|*A*|*n*)

.

$$\langle m|A|n\rangle = (\psi_m, \hat{A}\psi_n) \tag{3.245}$$

其中

$$\hat{H}\psi_m(x) = E_m\psi_m(x) \tag{3.246}$$

是H的本征函数。

 $\langle m | \alpha(t) \rangle$ 的计算也类似

$$\langle m|\alpha(t)\rangle = (\psi_m, \psi_\alpha) \tag{3.247}$$

例:一维谐振子问题.我们来计算能量表象下,算符x的矩阵元

$$x_{n,m} = \langle n|x|m \rangle = \int \langle n|x \rangle \langle x|x|m \rangle \mathrm{d}x \tag{3.248}$$

其中插入了完备性关系。 $\langle n|x\rangle = \psi_n^*, \langle x|x|m\rangle = x\psi_m,$ 利用前面学过的

$$x\psi_n = \frac{1}{\sqrt{2\alpha}}(\sqrt{n}\psi_{n-1} + \sqrt{n+1}\psi_{n+1})$$
(3.249)

和

$$\frac{\mathrm{d}}{\mathrm{d}x}\psi_n = \frac{\alpha}{\sqrt{2}}(\sqrt{n}\psi_{n-1} - \sqrt{n+1}\psi_{n+1}) \tag{3.250}$$

容易算出 x_{nm} 和 p_{nm}

3.10 力学量算符的共同本征函数

我们知道力学量的属于不同本征值的本征矢是正交归一的。但是,严格的说我们并没有仔细研究简并(同一 个本征值有两个以上本征矢)情况。如果出现简并,怎么保证本征矢正交呢?利用两个或多个力学量的共同 本征函数,我们可以解决简并带来的问题。

假设Â与B是两个力学量的算符.存在一种可能:它们具有共同的本征函数

$$\hat{A}|nl\rangle = a_n|nl\rangle, \qquad \hat{B}|nl\rangle = b_l|nl\rangle.$$
(3.251)

 $|nl\rangle$ 称作 \hat{A}, \hat{B} 的共同本征态. 如果粒子处于这样的状态, 测量A得 a_n , 测量B得 b_l . 测量之后的状态不变. 先测 后测无所谓.

$$(\hat{A}\hat{B} - \hat{B}\hat{A})|nl\rangle = (a_n b_l - b_l a_n)|nl\rangle = 0.$$
(3.252)

注意: Â, B对易是在上式对任意波函数都成立的情况下. 上式不足以说他们对易, 但是这意味着Â与B很可能是对易的.

这是可以证明的, 前提是|nl)构成完备函数系, 任何态都可以用它展开

$$|\Psi\rangle = \sum_{nl} C_{nl} |nl\rangle, \qquad (3.253)$$

于是

$$(\hat{A}\hat{B} - \hat{B}\hat{A})|\Psi\rangle = \sum_{nl} C_{nl}(\hat{A}\hat{B} - \hat{B}\hat{A})|nl\rangle = \sum_{nl} C_{nl}(a_nb_l - b_la_n)|nl\rangle = 0.$$
(3.254)

因此, $[\hat{A}, \hat{B}] = 0.$

反过来,我们可以证明:**如果厄密算符**Â, **B对易,则它们必定存在一系列共同本征函数.**

证明:假设 $|\Psi_n\rangle$, $n = 1, 2, \dots, |\Phi_l\rangle$, $l = 1, 2, \dots, \beta$ 别是算符 \hat{A} , \hat{B} 的一组本征态,由于A, B都是力学量, 所以这两组本征态**各自**都是完备的.

$$\hat{A}|\Psi_n\rangle = a_n|\Psi_n\rangle, n = 1, 2, 3, \cdots,
\hat{B}|\Phi_l\rangle = b_l|\Phi_l\rangle, l = 1, 2, 3, \cdots.$$
(3.255)

考虑到可能的简并,我们将 $|\Phi_l$)按本征值分组($b_i \neq b_j$,如果 $i \neq j$)

$$\hat{B}|\Phi_{i\nu}\rangle = b_i|\Phi_{i\nu}\rangle, i = 1, 2, 3, \cdots; \nu = 1, \cdots, f_i.$$
 (3.256)

 f_i 就是 b_i 的简并度。

任意取一个 \hat{A} 的本征函数 $|\Psi_n\rangle$,展开成 $|\Phi_{i\nu}\rangle$ 的叠加

$$|\Psi_n\rangle = \sum_{i\nu} c_{i\nu}^{(n)} |\Phi_{i\nu}\rangle = \sum_i |\tilde{\Phi}_{ni}\rangle$$
(3.257)

其中 $|\tilde{\Phi}_{ni}\rangle = \sum_{\nu} c_{i\nu}^{(n)} |\Phi_{i\nu}\rangle$,仍然是 \hat{B} 的本征函数,属于本征值 b_i .考虑

$$(\hat{A} - a_n)|\Psi_n\rangle = \sum_i (\hat{A} - a_n)|\tilde{\Phi}_{ni}\rangle = 0.$$
(3.258)

由于Â与B对易,我们有

$$\hat{B}(\hat{A} - a_n)|\tilde{\Phi}_{ni}\rangle = (\hat{A} - a_n)\hat{B}|\tilde{\Phi}_{ni}\rangle = b_i(\hat{A} - a_n)|\tilde{\Phi}_{ni}\rangle.$$
(3.259)

如果 $(\hat{A} - a_n)|\tilde{\Phi}_{ni}\rangle$ 不为零,它就是 \hat{B} 的本征态,属于本征值 b_i .但是(3.258)表明这些态是线性相关的.一个 厄密算符的属于不同本征值的本征函数是正交的,不可能线性相关.所以

$$(\hat{A} - a_n) |\tilde{\Phi}_{ni}\rangle = 0. \tag{3.260}$$

也就是说 $|\tilde{\Phi}_{ni}\rangle$ 是Â的本征态,属于本征值 a_n .

至此,我们证明了 $|\tilde{\Phi}_{ni}\rangle$ 是A, B的共同本征态.

由于Eq.(3.257)对任意一个A的本征态都成立,即每一个本征态都可以表示为A, B共同本征态的叠加,而 且 $|\Psi_n\rangle$ 是完备的,所以 $|\tilde{\Phi}_{ni}\rangle$ 也是完备的.

同时,我们惊喜地发现 $|\tilde{\Phi}_{ni}\rangle$, $i = 1, 2, \cdots$,都属于 a_n ,而且彼此正交的,因为他们属于B的不同本征值 b_i . 这使得建立完备的正交归一基矢成为可能。

3.10.1 简并与力学量完全集

如果Â的全部本征态(或本征函数)都是非简并的,那么测量A得到的本征值就可以确定系统塌缩到的本征态|a).

这时也可能有算符 \hat{B} 与之对易. 但是由于非简并, A的每个本征态都是 \hat{B} 的本征态. 其实 \hat{B} 必定是 \hat{A} 的函数. 例如: 一维系统的动能 \hat{T} 与动量 \hat{p} .

- 如果Â的一部分或全部本征值是简并的,那么给定Â的本征值并不足以确定本征态.我们可以找与Â对易的另一力学量算符B,它们存在共同本征态,在确定an后,再测B,确定bl后,就可能确定本征态了,比如|an,bl>.
- 如果Â, B的共同本征态在确定a_n, b_l后仍然有简并,即仍然无法确定本征态. 这时我们需要找第三个力 学量C.
- 一组相互对易又彼此独立的力学量,如果它们的共同本征态不再简并(唯一确定),那么这组力学量称为 系统的力学量完全集.测量它们之后得到的所有本征值就可以完全确定系统的状态(共同本征态).
- 完全集中的力学量的个数其实就是系统的自由度.

例子: 对于一维束缚态粒子运动, 一般能量就可以构成力学量完全集. 对于非束缚态可以选动量为力学 量完全集. 三维粒子的运动需要三个力学量构成完全集. 对于非束缚态可以选*p_x*, *p_y*, *p_z*. 对于中心力束 缚态, 可以选能量, 角动量平方和角动量某个分量. 这在后面的内容里会讲到.

原则上如果找到了力学量完全集,就可以以它们的共同本征态为基矢建立表象,这些基矢是正交归一的。

例如:力学量A,B的共同本征态是 $|lm\rangle$, $A|lm\rangle = a_l|lm\rangle$, $B|lm\rangle = b_m|lm\rangle$.确定 a_l , b_m 就可以确定**唯一的** 共同本征态 $|lm\rangle$.则A,B构成力学量完全集.我们可以采用 $|lm\rangle$ 为基矢建立(A,B)表象.由于 $\langle lm|l'm'\rangle = \delta_{ll'}\delta_{mm'}$,基矢是正交归一的.我们可以给这些基矢按一定规则排序 $|lm\rangle = |i\rangle$,i = 1, 2, ...,就可以回到我们熟悉的正交归一形式 $\langle i|j\rangle = \delta_{ij}$.

任意状态 $|\alpha\rangle$ 可以用 $|lm\rangle$ 展开.

$$|\alpha\rangle = \sum_{lm} c_{lm} |lm\rangle \tag{3.261}$$

系数 $c_{lm} = \langle lm | \alpha \rangle$ 是唯一确定的。

3.11 轨道角动量

3.11.1 对易关系

轨道角动量的定义是

$$\mathbf{L} = \mathbf{r} \times \mathbf{p} \tag{3.262}$$

考虑任意状态 $|\alpha\rangle$,其波函数和被L作用后态的波函数的关系为

$$\langle \mathbf{r} | \mathbf{L} | \alpha \rangle = \hat{\mathbf{L}} \langle \mathbf{r} | \alpha \rangle \tag{3.263}$$

其中L为

$$\hat{\mathbf{L}} = \hat{\mathbf{r}} \times \hat{\mathbf{p}} = -i\hbar\hat{\mathbf{r}} \times \nabla \tag{3.264}$$

在直角坐标系下, $\hat{L}_x = y\hat{p}_z - z\hat{p}_y$ 利用基本对易式

$$[\hat{x}, \hat{p}_x] = i\hbar \tag{3.265}$$

容易证明以下对易关系:

$$[\hat{L}_x, \hat{x}] = 0, \qquad [\hat{L}_x, \hat{p}_x] = 0$$
(3.266)

及其轮转公式.

$$[\hat{L}_x, y] = i\hbar z, \qquad [\hat{L}_x, \hat{p}_y] = i\hbar \hat{p}_z \qquad (3.267)$$

及其轮转公式.

证明中常用的公式

$$[A + B, C] = [A, C] + [B, C]$$
(3.268)

$$[AB, C] = A[B, C] + [A, C]B$$
(3.269)

$$[A, BC] = [A, B]C + B[A, C]$$
(3.270)

$$[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0 (3.271)$$

最后的式子成为Jacobi identity.

下面证明两个重要的对易关系.

- 1. $[\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z$. 及其轮转公式. 证明: 从略
- 2. $[\hat{\mathbf{L}}^2, \hat{L}_z] = 0$ 及其轮转公式. 证明: 从略

3.11.2 \hat{L}^2 , \hat{L}_z 的共同本征态

角动量是在中心力问题里常遇到的力学量,这是因为它是守恒量。在中心力场情况下,采用球坐标是方便的.

$$\nabla = \mathbf{e}_r \frac{\partial}{\partial r} + \mathbf{e}_\theta \frac{\partial}{r\partial \theta} + \mathbf{e}_\phi \frac{\partial}{r\sin\theta\partial\phi}$$
(3.272)

利用Eq.(3.264),可以导出

$$L^{2} = -\hbar^{2} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}} \right)$$

$$L_{z} = \mathbf{e}_{e} \cdot \mathbf{L} = -i\hbar \frac{\partial}{\partial \varphi}$$
(3.273)

(以上公式的一个很好的推导,在钱伯初《量子力学》附录)

由于 L^2 , L_z 对易,我们可以寻找他们的共同本征态(或者说坐标表象下他们的共同本征函数)。设该共同本征函数为 $Y(\theta, \varphi)$:

$$\hat{\mathbf{L}}^2 Y(\theta, \varphi) = \lambda_1 \hbar^2 Y(\theta, \varphi) \tag{3.274}$$

$$\hat{L}_z Y(\theta, \varphi) = \lambda_2 \hbar Y(\theta, \varphi) \tag{3.275}$$

 $\lambda_1 \hbar^2 和 \lambda_2 \hbar 分别 是 L^2 和 L_z$ 的本征值.

分离变量: $Y = \Theta(\theta) \Phi(\varphi)$. 代入上式(3.275)

$$\hat{L}_z \Phi(\varphi) = \lambda_2 \hbar \Phi(\varphi) \tag{3.276}$$

其解为

$$\Phi(\varphi) = C e^{i\lambda_2 \varphi}.\tag{3.277}$$

根据波函数的单值性,得到所谓自然边界条件: $\Phi(\varphi + 2\pi) = \Phi(\varphi)$.这就要求

$$\lambda_2 = 0, \pm 1, \pm 2, \cdots . \tag{3.278}$$

归一化要求 $C = \frac{1}{\sqrt{2\pi}}$. 通常写成

$$\Phi_m(\varphi) = \frac{1}{\sqrt{2\pi}} e^{im\varphi}, \qquad m = 0, \pm 1, \pm 2, \cdots.$$
(3.279)

把此式用到分离变量解,并代入(3.274), L²的本征方程可以化成

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \sin\theta \frac{d}{d\theta} \Theta + (\lambda_1 - \frac{m^2}{\sin^2\theta})\Theta = 0$$
(3.280)

定义 $\xi = \cos \theta$, 化成连带Legendre 方程

$$\frac{d}{d\xi}((1-\xi^2)\frac{d}{d\xi}\Theta) + (\lambda_1 - \frac{m^2}{1-\xi^2})\Theta = 0.$$
(3.281)

物理解为连带Legendre函数

对应的本征值为

$$\lambda_1 = l(l+1), l = 0, 1, 2, \cdots, \qquad (3.283)$$

综合起来,共同本征函数写为球谐函数

$$Y_{l,m}(\theta,\varphi) = N_{l,m} P_l^m(\cos\theta) e^{im\varphi}$$
(3.284)

系数N_{l,m}保证函数的正交归一性:

$$(Y_{l,m}, Y_{l',m'}) = \int \sin\theta d\theta d\varphi Y_{l,m}^* Y_{l',m'} = \delta_{l,l'} \delta_{m,m'}.$$
(3.285)

积分对立体角(或者所有方向).

 $Y_{l,m}(\theta,\varphi)$ 是Hilbert空间矢量 $|lm\rangle$ 对应的波函数:

$$Y_{l,m}(\theta,\varphi) = \langle \mathbf{n} | l, m \rangle \tag{3.286}$$

其中 \mathbf{n} 是球坐标系中(θ, φ)决定的方向矢量. $|\mathbf{n}\rangle$ 是 \mathbf{n} 的本征矢. 因此正交归一关系也可以写成

$$\langle lm|l'm'\rangle = \delta_{l,l'}\delta_{m,m'} \tag{3.287}$$

任意以 (θ, φ) 为自变量的函数都可以用 Y_{lm} 展开,也就是说其完备

$$\sum_{l} \sum_{m=-l}^{m=l} |lm\rangle \langle lm| = 1 \tag{3.288}$$

简并讨论: *l*称为轨道角动量量子数, *m*称为磁量子数(后面内容). 给定*l*, *m*有2*l*+1种可能取值. 或者说简并度 为2*l*+1.

几个特别重要的球谐函数: $Y_{00} = \frac{1}{\sqrt{4\pi}}, Y_{10} = \sqrt{\frac{3}{4\pi}}\cos\theta, Y_{1\pm 1} = \mp \sqrt{\frac{3}{8\pi}}\sin\theta e^{\pm i\varphi}.$

• 例子:考虑一个被限制在半径为a的球面上运动的质量为µ的粒子.

系统的Hamiltonian为

$$H = \frac{\mathbf{L}^2}{2\mu a^2}.\tag{3.289}$$

能量本征方程为

$$\hat{H}\Psi(\theta,\varphi) = E\Psi(\theta,\varphi). \tag{3.290}$$

假设能量本征值 $E_l = l(l+1)\hbar^2/2\mu a^2$.容易看出方程的解,即本征函数可以是

$$\Psi(\theta,\varphi) = \sum_{m=-l}^{l} C_m Y_{l,m}$$
(3.291)

其中C_m是任意常数;

在这个问题中我们看到,能量本征函数不能完全由能量本征值确定.这是因为本征函数有简并.我们需要另外一个力学量 L_z 与H构成力学量完全集.

如果我们知道能量为El,并且lz为mħ,即

$$\hat{H}\Psi(\theta,\varphi) = E_l\Psi(\theta,\varphi).$$

$$\hat{L}_z\Psi(\theta,\varphi) = m\hbar\Psi(\theta,\varphi).$$
(3.292)

就可以完全确定波函数 $\Psi(\theta, \varphi)$ 为 Y_{lm} ,即完全用力学量的本征值来确定本征函数或本征态.

假设系统的状态是

$$|\alpha\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{3}}|10\rangle + \frac{1}{\sqrt{6}}|11\rangle$$
(3.293)

我们先测量H,得到0的几率为1/2,系统会塌缩到本征态 $|00\rangle$. 接着测 L_z ,得到 $L_z = 0$,其几率是1.

如果测量H得到 $\frac{\hbar^2}{\mu a^2}$,那么系统会塌缩到什么状态?应该是其本征函数 $\frac{1}{\sqrt{3}}|10\rangle + \frac{1}{\sqrt{6}}|11\rangle$.

你可能会问:你前面不是说 $E_1 = \hbar^2 / \mu a^2$ 不能确定能量本征函数吗,怎么现在又给我确定了一个本征函数? 不好意思,这两个'确定'不是一个意思.

'本征函数有简并时,能量本征函数不能完全由能量本征值确定'里面,'确定'是指本征态不能直接写成|E〉,因为这么写是没有意义的。

'如果测量H得到 $\frac{\hbar^2}{\mu a^2}$,那么系统会塌缩到确定的态 $\frac{1}{\sqrt{3}}|10\rangle + \frac{1}{\sqrt{6}}|11\rangle'$."确定"是由于我们给定了 $|\alpha\rangle$.再将 $|\alpha\rangle$ 展开成H本征态叠加的时候,这个叠加方式是唯一确定的.

将其归一化,得到 $\sqrt{2}(\frac{1}{\sqrt{3}}|10\rangle + \frac{1}{\sqrt{6}}|11\rangle).|\alpha\rangle$ 可改写为

$$|\alpha\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}(\frac{\sqrt{2}}{\sqrt{3}}|10\rangle + \frac{\sqrt{2}}{\sqrt{6}}|11\rangle)$$
(3.294)

也就是说出现这个测值的几率是1/2. 此时再测量 L_z ,可以得到0或者 \hbar ,几率分别为2/3 和1/3,分别投影 到|10>和|11>. 注意,测量这些态的能量我们仍然得到 $\frac{\hbar^2}{\mu a^2}$. 这是由于[H, L_z] = 0.

一般地,根据量子力学的测量原理,测量得到本征值,系统的状态塌缩到对应的本征态.如果本征态简并,系统塌缩到什么状态?

假设系统的状态是

$$|\alpha\rangle = c_{00}|00\rangle + c_{10}|10\rangle + c_{11}|11\rangle \tag{3.295}$$

如果测量A得到 a_0 (几率为 $|c_{00}|^2$, $c_{00} = \langle 00|\alpha \rangle$),系统会塌缩到A的本征态 $|00\rangle$. 如果测量A得到 a_1 ,那么系统会塌缩到A的本征态 $|\beta\rangle = (c_{10}|10\rangle + c_{11}|11\rangle)/N$,其中我们引入归一化因子

$$1/N = \frac{1}{\sqrt{|c_{10}|^2 + |c_{11}|^2}} \tag{3.296}$$

保证 $\langle \beta | \beta \rangle = 1$. 我们可以改写Eq.(3.295)

$$|\alpha\rangle = c_{\beta}|\beta\rangle + c_{00}|00\rangle \tag{3.297}$$

计算出 $c_{\beta} = \langle \beta | \alpha \rangle = N.$ 它的模方 $|c_{10}|^2 + |c_{11}|^2$ 就是测得 a_1 的几率.

如果测量A得到 a_1 ,接着测量B,得到 b_0 ,则系统 $|\beta\rangle$ 必接着塌缩到B的本征态: $|10\rangle$. 这个态是唯一确定的,发生几率为 $|\langle 10|\beta\rangle|^2 = |c_{10}|^2/N^2$.

总体而言测得A为 a_1 并且测B为 b_0 的几率为 $|c_{10}|^2$.同样,测得A为 a_1 并且测B为 b_1 的几率为 $|c_{11}|^2$. 实际上,测A得 a_1 的几率 $|c_{10}|^2 + |c_{11}|^2$ 是测A得 a_1 并且测B得 b_0 与得 b_1 的几率之和.

3.12 相容与不相容力学量,测不准关系

我们知道如果两个力学量A,B的算符对易,那么它们有一系列共同本征态.系统如果处于这样的状态,我们可以同时准确知道A,B的测值.比如|a,b)是A,B的共同本征态。

$$A|a,b\rangle = a|a,b\rangle; \qquad B|a,b\rangle = b|a,b\rangle \tag{3.298}$$

那么测A,我们百分之百得到a;系统的态由于是A的本征态,测量后不塌缩。再测B,我们百分之百得到b. 颠倒顺序,情况也一样。比如在 Y_{lm} 态下测量 L^2, L_z .

这种情况称A和B是相容的(compatible).

但是,如果A,B的算符不对易.我们称它们是不相容的(incompatible).情况会怎么样?首先不会存在一组完备的A和B的共同本征态,否则[A,B] = 0.但是不排除偶然有共同本征态,比如 Y_{00} 就是 L_x, L_y, L_z 的共同本征态,虽然它们彼此不对易.

Figure 3.5: 顺序选择测量(Sequential selective measurements)

之前我们研究过Stern-Gerlach实验的不相容物理量的测量效应.现在我们给出更一般的讨论.

考虑如图Fig.3.5(a) 所示的顺序选择测量. 第一个测量(*A*)从入射的状态中选择出|*a*'〉,并拒绝掉其他的测量结果. ¹ 第二个测量(*B*)选择出|*b*'〉,并拒绝掉其他的测量结果. 最后的测量(*C*)选择出|*c*'〉,并拒绝其他的结果. 现在我们问得到|*c*'〉的几率是多少? 在确定|*a*'〉的情况下,得到|*b*'〉的概率是|〈*b*'|*a*'〉|². 在确定|*b*'〉的情况下,得到|*c*'〉的概率是|〈*c*'|*b*'〉|². 根据概率的乘法定理,两个相容事件同时实现的概率是

$$|\langle c'|b'\rangle|^2 |\langle b'|a'\rangle|^2 \tag{3.299}$$

那么不论中间过程(或路径)怎样,由|a'〉得到|c'〉的几率多大呢?这意味着我们记录中间路径为b'的概率,然后记录中间路径为下一个b'的几率,如此下去,我们把这些几率求和,得到

$$\sum_{b'} |\langle c'|b'\rangle|^2 |\langle b'|a'\rangle|^2 = \sum_{b'} \langle c'|b'\rangle |\langle b'|a'\rangle \langle a'|b'\rangle |\langle b'|c'\rangle$$
(3.300)

这是符合概率理论的.

现在我们来对比另一种设置,Fig. 3.5(b),问由 $|a'\rangle$ 出发得到 $|c'\rangle$ 的几率多大?显然这个几率是 $|\langle c'|a'\rangle|^2$.我们可以把这个概率改写一下,发现

$$|\langle c'|a'\rangle|^2 = |\sum_{b'} \langle c'|b'\rangle \langle b'|a'\rangle|^2 = \sum_{b'} \sum_{b''} \langle c'|b'\rangle |\langle b'|a'\rangle \langle a'|b''\rangle |\langle b''|c'\rangle$$
(3.301)

¹为简单起见,我们假设A的本征值没有简并, B和C也一样.对于简并的情况,只要把|a')理解为由入射状态确定的本征态, |b'), |c')类似.

我们看到Eq.(3.300)和Eq.(3.301)是不同的,后者比前者多很多项!

注意, A选择测量后得到的|a'>可认为是有B的本征态叠加而成

$$|a'\rangle = \sum_{b'} |b'\rangle\langle b'|a'\rangle \tag{3.302}$$

然而从*C*测量出来的结果却依赖于对*B*的测量是否**真的**进行!如果真的测量*B*,那么结果是Eq.(3.300);如果只在头脑里想象把|*a*'}分解成|*b*'}的叠加,那最后的结果是Eq.(3.301).换句话说,如果你真的记录粒子经过*b*'路径的几率,即使最后对这个几率求和,也会改变最终的几率.这是量子力学的精髓所在。

在什么情况下,两种情形的结果一致?容易看到,测值没有简并的条件下,如果[A, B] = 0,或者[B, C] = 0,两个公式给出的结果是一致的。

上面的实验说明的是不相容物理量的特性.

如果A,B不相容,能否同时测准?结论是一般不能同时测准.它们的不确定度满足如下关系:

$$\Delta A \cdot \Delta B \ge \frac{1}{2} |\langle [\hat{A}, \hat{B}] \rangle| \tag{3.303}$$

其中不确定度为 $\Delta A = \langle (A - \langle A \rangle)^2 \rangle^{1/2}$,是在粒子的运动状态(波函数)下计算的.

证明:

 ∂_{α} 是任意一个态矢量. $(A + i\xi B)|\alpha\rangle$ 是一个右矢,与其对偶的左矢为 $\langle \alpha|(A + i\xi B)^{\dagger} = \langle \alpha|(A - i\xi B)$. 这里利用了A, B是厄密算符. 由于一个右矢与对偶左矢的内积非负,所以可以定义

$$f(\xi) = \langle \alpha | (A - i\xi B) \cdot (A + i\xi B) | \alpha \rangle \ge 0 \tag{3.304}$$

其实就是

$$f(\xi) = \langle \alpha | (A^2 + i\xi(AB - BA) + B^2\xi^2) | \alpha \rangle$$

= $\langle A^2 \rangle + (i\langle [A, B] \rangle)\xi + \langle B^2 \rangle \xi^2$ (3.305)

可以看到 $\langle [A, B] \rangle$ 必为纯虚数, 否则 $i \langle [A, B] \rangle$ 不是实数, $f(\xi)$ 也就不是实数了. (这是由于i[A, B] 是厄密算符. 参见之前作业题.)

根据 $a\xi^2 + b\xi + c \ge 0$ 成立的条件: $4ac \ge b^2$, 我们有

$$4\langle A^2 \rangle \langle B^2 \rangle \ge (i\langle [A, B] \rangle)^2 \tag{3.306}$$

如果从一开始就以 $A - \langle A \rangle$ 代替 $A, B - \langle B \rangle$ 代替B,我们有

$$4\langle (A - \langle A \rangle)^2 \rangle \langle (B - \langle B \rangle)^2 \rangle \ge (i \langle [\hat{A} - \langle A \rangle, \hat{B} - \langle B \rangle] \rangle)^2$$
(3.307)

也就是

$$\Delta A \cdot \Delta B \ge \frac{1}{2} |\langle [A, B] \rangle| \tag{3.308}$$

具体地, 比如 $\hat{A} = x, \hat{B} = \hat{p}_x$, 上式就是我们熟悉的

$$\Delta x \cdot \Delta p_x \ge \frac{1}{2} |\langle [x, \hat{p}_x] \rangle| = \frac{\hbar}{2}.$$
(3.309)

一个简单的例子:如果系统处于Ylm的本征态。我们知道

$$\Delta L_x = \Delta L_y = \sqrt{(l(l+1) - m^2)\hbar^2/2}.$$

并且 $\langle L_z \rangle = m\hbar$.由于 $|m| \leq l$,显然满足上述关系。

考虑原子中的电子. 其活动范围有限, *x*的量级为10⁻¹⁰米. 其动能的一个分量大约 $\langle p_x^2/2m \rangle \simeq 10eV/3$. 考 虑到电子处于束缚态, 我们知道 $\langle p_x \rangle = 0$, 所以 $\Delta p_x \simeq 2 \times 10^3 eV/c$. (电子质量为0.5 × 10⁶ eV/c²) 假设位置的 不确定度就是*x*的量级, 根据 $\Delta x \Delta p \simeq 10^{-15} eV s \simeq \hbar$. 满足测不准关系.

相反,如果电子在宏观尺度上运动,比如在厘米大小的盒子内运动. 假设我们可以在微米尺度上确定他的 位置,即 $\Delta x = 10^{-6}m$,根据测不准关系,动量的最高精度是7×10⁻¹⁰eVs/m. 而动能为1eV的电子的动量大小 为3×10⁻⁵eVs/m,可以看到动量的相对精度很好.

3.13 力学量的时间演化, Schrödinger 与Heisenberg 绘景

3.13.1 力学量的时间演化

系统状态随时间演化, 遵从Schrödinger 方程:

$$i\hbar \frac{\partial |\alpha(t)\rangle}{\partial t} = H|\alpha(t)\rangle$$
 (3.310)

如果初态是能量本征态 $|n\rangle$,

$$H|n\rangle = E_n|n\rangle \tag{3.311}$$

那么系统的演化态是'定态':

$$|\alpha(t)\rangle = \exp(-iE_n t/\hbar)|n\rangle.$$
(3.312)

对于定态,力学量A的期望值

$$\langle A \rangle = \langle \alpha | A | \alpha \rangle = \langle n | e^{iE_n t/\hbar} A e^{-iE_n t/\hbar} | n \rangle = \langle n | A | n \rangle$$
(3.313)

不随时间变化。

一般的情况,如果初态为

$$|\alpha\rangle = \sum_{n} c_n |n\rangle \tag{3.314}$$

那么t时刻

$$|\alpha(t)\rangle = \sum_{n} c_{n} \mathrm{e}^{-iE_{n}t/\hbar} |n\rangle$$
(3.315)

A的期望值

$$\langle A \rangle = \langle \alpha(t) | A | \alpha(t) \rangle \tag{3.316}$$

怎么随时间变化?

$$\frac{d\langle A\rangle}{dt} = \left(\frac{\partial}{\partial t}\langle \alpha | \right)A|\alpha\rangle + \langle \alpha | A\frac{\partial}{\partial t} | \alpha\rangle$$
(3.317)

这里我们假设A算符本身不随时间变。根据薛定谔方程

$$\frac{d\langle A\rangle}{dt} = \frac{1}{\mathrm{i}\hbar} \langle [A,H] \rangle. \tag{3.318}$$

我们看到, $\langle A \rangle$ 是否随时间变化取决于A = H是否对易. 对易就意味着A的期望值不随时间变换,是守恒量。 从另一个角度看, [A, H] = 0, 则A = H有共同本征态,并可以选为基矢。设该基矢为 $|E, a\rangle$.

$$H|E,a\rangle = E|E,a\rangle, \quad A|E,a\rangle = a|E,a\rangle.$$
(3.319)

任意态的时间演化可以写为:

$$|\alpha(t)\rangle = \sum_{E,a} c_{E,a}(t)|E,a\rangle\rangle = \sum_{E,a} c_{E,a}(0)e^{-iEt/\hbar}|E,a\rangle$$
(3.320)

让我们简写(E,a)为k.

$$\frac{d}{dt}|c_k(t)|^2 = \dot{c}_k^* c_k + c_k^* \dot{c}_k \tag{3.321}$$

 c_k 是能量表象里的分量, 所以 $\dot{c}_k = \frac{E}{i\hbar}c_k$, $\dot{c}_k^* = -\frac{E}{i\hbar}c_k$, 于是

$$\frac{\mathrm{d}}{\mathrm{d}t}|c_k(t)|^2 = 0 \tag{3.322}$$

我们知道, $|c_k|^2$ 是测量H为E, 同时测量A为a的几率, 这就是说 $\langle A \rangle$ 守恒, 并且A 的各个测量值出现的几率也守恒。

例: 粒子在半径为R的球面上运动。 $H = \frac{L^2}{2\mu R^2}$.力学量完全集选为 (H, L_z) ,共同本征函数 Y_{lm} . 假设初态

$$\psi(\theta,\phi) = \frac{1}{\sqrt{2}}Y_{10} + \frac{1}{\sqrt{2}}Y_{21} \tag{3.323}$$

则

$$\psi(\theta,\phi;t) = \frac{1}{\sqrt{2}} Y_{10} \mathrm{e}^{-\mathrm{i}E_1 t/\hbar} + \frac{1}{\sqrt{2}} Y_{21} \mathrm{e}^{-\mathrm{i}E_2 t/\hbar}$$
(3.324)

其中 $E_1 = \frac{2\hbar^2}{2\mu R^2}, E_2 = \frac{6\hbar^2}{2\mu R^2}.$ 由于 $[H, L_z] = 0,$ 所以 L_z 是守恒量。

$$\langle L_z \rangle = \frac{1}{2} \times 0 + \frac{1}{2} \times \hbar = \frac{1}{2}\hbar \tag{3.325}$$

并且, 取0和ħ的几率不变。

如果初态是

$$\psi(\theta,\phi) = \frac{1}{\sqrt{2}}Y_{10} + \frac{1}{\sqrt{2}}Y_{11}$$
(3.326)

则

$$\psi(\theta,\phi;t) = \left(\frac{1}{\sqrt{2}}Y_{10} + \frac{1}{\sqrt{2}}Y_{21}\right)e^{-iE_1t/\hbar}$$
(3.327)

 $\langle L_z \rangle = \frac{1}{2}\hbar$, 测 L_z 得0, \hbar 的几率还是 $\frac{1}{2}, \frac{1}{2}$. 注意:

- 1. Lz守恒,并不是说Lz的测量值唯一。
- 2. 各守恒量不一定同时有确定值。与H 对易的物理量之间不一定对易。例如对于定态: $\psi(\theta, \phi; t) = Y_{11}e^{-iE_1t/\hbar}$, L_z 有唯一确定且不变的测值 \hbar . 但是 $\langle L_x \rangle = 0$, $\langle L_x^2 \rangle = \hbar^2/2$, 是有不确定度的。(具体见习题). 容易算出, L_x 的测值为 $-\hbar$, 0, \hbar 的几率分别为0.25, 0.5, 0.25. 不随时间变化。
- 存在互不对易的守恒量时,一般能级简并。
 证明: 设[H, F] = [H,G] = 0, 但是[F,G] ≠ 0.

$$H|E,f\rangle = E|E,f\rangle; \qquad F|E,f\rangle = f|E,f\rangle \qquad (3.328)$$

由于[H,G] = 0,

$$HG|E, f\rangle = GH|E, f\rangle = EG|E, f\rangle$$
(3.329)

所以 $G|E, f\rangle$ 也是H的本征矢。属于本征值E.

 $\mathbb{X}[G,F] \neq 0,$

$$FG|E, f\rangle \neq GF|E, f\rangle = fG|E, f\rangle$$

$$(3.330)$$

即 $G|E, f\rangle$ 不是F的本征矢。也就是说, $G|E, f\rangle$ 与 $|E, f\rangle$ 不同, 能级是简并的。 可能存在的例外是: $[G, F] \neq 0$, 但是如果 $G|E, f\rangle = 0$, 那么

$$FG|E, f\rangle = 0; \quad GF|E, f\rangle = fG|E, f\rangle = 0 \tag{3.331}$$

此时 $G|E, f\rangle$ 还是F的本征矢,因此不能证明 $G|E, f\rangle$ 与 $|E, f\rangle$ 是不同的量子态。这是氢原子能级基态的情况.

3.13.2 Schrödinger 和Heisenberg 绘景(picture)

引入时间演化算符U(t,0)

$$|\alpha(t)\rangle = U(t,0)|\alpha(0)\rangle \tag{3.332}$$

那么根据薛定鄂方程

$$i\hbar \frac{\partial}{\partial t} U(t,0) |\alpha(0)\rangle = H U(t,0) |\alpha(0)\rangle$$
(3.333)

由于初态任意,

$$i\hbar \frac{\partial}{\partial t} U(t,0) = HU(t,0)$$
(3.334)

这是个算符的时间演化方程,表明 $U(t,0) = e^{-iHt/\hbar}$.即

$$U(t,0) = \sum_{n} \left(\frac{-\mathrm{i}Ht}{\hbar}\right)^{n} / n! \tag{3.335}$$

由于 $H^{\dagger} = H$,所以 $U^{\dagger}(t,0) = e^{iHt/\hbar}$.

$$U^{\dagger}(t,0)U(t,0) = U(t,0)U^{\dagger}(t,0) = 1$$
(3.336)

U(t,0)是幺正算符。

 $U(t,0)|\alpha(0)\rangle$ 是 $|\alpha(t)\rangle$, $\langle \alpha(0)|U^{\dagger}(t,0)$ 是 $|\alpha(t)\rangle$ 的左矢. 由于

$$\langle \alpha(0) | U^{\dagger}(t,0) | \alpha(t) \rangle = 1, \qquad (3.337)$$

也可以理解为 $U^{\dagger}(t,0)|\alpha(t)\rangle$ 将 $|\alpha(t)\rangle$ 时光倒流回 $|\alpha(0)\rangle$ 态.

计算任意力学量A的期望值

$$\langle A \rangle = (\langle \alpha(0) | U^{\dagger}(t,0) \rangle A(U(t,0) | \alpha(0) \rangle) = \langle \alpha(0) | U^{\dagger}(t,0) AU(t,0) | \alpha(0) \rangle$$
(3.338)

定义

$$A_H(t) \equiv U^{\dagger}(t,0)AU(t,0)$$
 (3.339)

此即Heisenberg picture下的A算符. 原来的算符可以理解为 A_S ,即Schrödinger Picture下的算符.

Heisenberg Picture 规定:态矢不随时间演化,一直是 $|\alpha(0)\rangle$,但是力学量随时间演化。 与此相反,Schrödinger Picture 下,态矢随时间演化,但力学量的算符本身不演化, $A_s(t) = A$.两种Picture下,力学量的期望值是一样的。 我们从另一个角度看,

$$\frac{dA_H}{dt} = \frac{\partial U^{\dagger}}{\partial t} A_S U + U^{\dagger} A_S \frac{\partial U}{\partial t} = \frac{1}{-i\hbar} U^{\dagger} H A_S U + U^{\dagger} A_S \frac{1}{i\hbar} H U = \frac{1}{i\hbar} (U^{\dagger} A_S U U^{\dagger} H U - U^{\dagger} H U U^{\dagger} A_S U)$$
(3.340)

由于[H,U] = 0,所以 $U^{\dagger}HU = H$,即 $H_H = H_S$.

$$\frac{dA_H}{dt} = \frac{1}{i\hbar}[A_H, H] \tag{3.341}$$

此即Heisenberg运动方程。它起到Schrödinger 方程一样的作用。

例子: H picture下对一维谐振子的运动的描述。

 $x_H = U^{\dagger} x U, \, p_H = U^{\dagger} p U.$ 满足

$$\dot{x}_{H} = \frac{1}{i\hbar}[x_{H}, H] = \frac{1}{i\hbar}U^{\dagger}[x, H]U = \frac{p_{H}}{m}$$
(3.342)

同样

$$\dot{p}_H = -m\omega^2 x_H \tag{3.343}$$

以上两式与经典方程形式上是一样的!区别是现在是算符的方程。 容易解出:

$$x_H(t) = c_1 \cos \omega t + c_2 \sin \omega t \tag{3.344}$$

$$p_H(t) = -m\omega c_1 \sin \omega t + m\omega c_2 \cos \omega t \tag{3.345}$$

注意这里c1,c2是不随时间变化的算符。

$$\psi(t) = \frac{1}{\sqrt{2}} e^{-i\omega t/2} \psi_0(x) + \frac{1}{\sqrt{2}} e^{-i3\omega t/2} \psi_1(x)$$
(3.346)

利用(3.249)和(3.250),容易算出

$$\langle x \rangle(t) = \frac{1}{\sqrt{2}\alpha} \cos(\omega t)$$
 (3.347)

在Heisenberg Picture 下,我们写出
$$x_H(t)$$
,然后计算 $\langle x \rangle$.
利用初始条件 $c_1 = x_S, c_2 = p_S/m\omega$,计算初态下期望值 $\langle x_s \rangle = \frac{1}{\sqrt{2\alpha}}, \langle p_S \rangle = 0$,根据Eq. (3.344),我们得到

$$\langle x_H(t) \rangle = \frac{1}{\sqrt{2\alpha}} \cos(\omega t)$$
 (3.348)

结果都是一样的。

最后再看第3.6节中讨论过的自旋在均匀磁场中的进动问题。根据 $H = \hbar\omega_L \sigma_x/2$,我们写成自旋的Heisenberg 运动方程:

$$\frac{dS_x}{dt} = \frac{1}{i\hbar} [S_x, H] = 0,$$

$$\frac{dS_y}{dt} = \frac{1}{i\hbar} [S_y, H] = -\omega_L S_z,$$

$$\frac{dS_z}{dt} = \frac{1}{i\hbar} [S_z, H] = \omega_L S_y$$
(3.349)

其中算符都是在Heisenberg 绘景, 我省略了下标H. 在计算对易式时,用到

$$[S_y, H] = U^{\dagger}(t)[S_y(0), H]U(t) = -U^{\dagger}(t)\omega_L i\hbar S_z(0)U(t) = -i\hbar\omega_L S_z$$
(3.350)

此方程跟我们之前用到的经典方程(3.134)一致! 其解为

$$S_x(t) = S_x(0),$$

$$S_y(t) = S_y(0)\cos(\omega_L t) - S_z(0)\sin(\omega_L t),$$

$$S_z(t) = S_z(0)\cos(\omega_L t) + S_y(0)\sin(\omega_L t)$$

(3.351)

根据初始条件 $|\alpha(0)\rangle = |+, z\rangle$,利用 $\langle +, z|S_x(0)|+, z\rangle = \langle +, z|S_y(0)|+, z\rangle = 0$,容易算出

$$\langle S_x(t)\rangle = 0, \tag{3.352}$$

$$\langle S_y(t)\rangle = \frac{\hbar}{2}\sin(\omega_L t),\tag{3.353}$$

$$\langle S_z(t) \rangle = \frac{\hbar}{2} \cos(\omega_L t). \tag{3.354}$$

与Schrödinger picture下以及经典物理计算一致.

3.14 升降算符法

3.14.1 求解一维谐振子问题

之前我们在坐标表象求解了一维谐振子的定态方程(微分方程)

$$H\psi_n(x) = E_n\psi_n(x) \tag{3.355}$$

现在我们介绍代数方法。

引入

$$Q = \alpha x = \sqrt{\frac{m\omega}{\hbar}} x,$$

$$P = \frac{p}{\hbar\alpha} = \frac{p}{\sqrt{m\hbar\omega}}$$
(3.356)

P与Q满足

$$[Q, P] = i,$$
 (3.357)

这里利用了1/α是特征长度, ħα是特征动量。并且

$$H = \frac{\hbar\omega}{2} (P^2 + Q^2) \tag{3.358}$$

定义 $a \equiv \frac{1}{\sqrt{2}}(Q + iP), a^{\dagger} \equiv \frac{1}{\sqrt{2}}(Q - iP).$ 注意 $a \neq a^{\dagger}$,不是厄密的。 容易得到

$$[a, a^{\dagger}] = 1, \tag{3.359}$$

以及

$$a^{\dagger}a = \frac{1}{2}(P^2 + Q^2 - 1). \tag{3.360}$$

于是

$$H = (a^{\dagger}a + \frac{1}{2})\hbar\omega. \tag{3.361}$$

假设我们不知道*H*的本征值是 $(n + \frac{1}{2})\hbar\omega$,也不知道*H*的本征态是 $\psi_n = N_n e^{-\frac{\alpha^2 x^2}{2}} H_n(\alpha x)$.我们来求解

$$H|n\rangle = \lambda_n |n\rangle \tag{3.362}$$

这里 λ_n 和 $|n\rangle$ 都是未知的。由于

$$[a,H] = [a,a^{\dagger}a]\hbar\omega = a\hbar\omega, \qquad (3.363)$$

我们有

$$Ha|n\rangle = (aH - \hbar\omega a)|n\rangle = (\lambda_n - \hbar\omega)a|n\rangle$$
(3.364)

即 $a|n\rangle$ 也是H的本征态,属于本征值 $\lambda_n = \hbar\omega$.同理, $\lambda_n = 2\hbar\omega, \lambda_n = 3\hbar\omega, \cdots,$ 都是本征值,对应本征态 是 $a^2|n\rangle, a^3|n\rangle, \cdots$.

由于

$$\langle \psi | H | \psi \rangle = \langle \psi | a^{\dagger} a | \psi \rangle + \frac{1}{2} \hbar \omega \ge 0$$
(3.365)

所以本征值一定有个最小值 λ_0 ,对应的本征态 $|0\rangle$ 满足 $a|0\rangle = 0$.

$$H|0\rangle = \hbar\omega a^{\dagger}a|0\rangle + \frac{1}{2}\hbar\omega|0\rangle = \frac{1}{2}\hbar\omega|0\rangle.$$
(3.366)

因此 $\lambda_0 = \frac{1}{2}\hbar\omega$. 所有的能级也确定了: $\lambda_n = (n + \frac{1}{2})\hbar\omega$. 其中 $n = 0, 1, 2, \cdots$.

会不会存在另外一个本征值 λ'_n ,对应本征态 $|n'\rangle$.由此出发得到一系列本征态 $a|n'\rangle$, $a^2|n'\rangle$,…,对应一系列本征值 λ'_n , $\lambda'_n = \hbar\omega$,…? 从而得到另外一套本征谱? 答案是否定的。因为如果有,那么这一套本征值

也有个最小值 λ'_0 , 对应 $|0'\rangle$, 必须满足 $a|0'\rangle = 0$. 因此可以算出 $H|0'\rangle = \frac{1}{2}\hbar\omega|0'\rangle$. 谐振子问题没有简并, 所 以 $|0\rangle$ 与 $|0'\rangle$ 是一个态。所以'两套'能谱是一样的.

利用 $[a^{\dagger}, H] = -a^{\dagger} \hbar \omega$,可以推出 $a^{\dagger} | n \rangle$ 是H的本征态,本征值为 $\lambda_n + \hbar \omega$.

会不会存在一个最大的 n_max ,使得 $a^{\dagger}|n_{max}$ 〉等于零?不会,我们反证之.假设对于某个 $|n_{max}\rangle$, $a^{\dagger}|n_{max}\rangle = 0$ 。由于

$$H = (aa^{\dagger} - \frac{1}{2})\hbar\omega \tag{3.367}$$

所以

$$H|n_{max}\rangle = \hbar\omega a a^{\dagger}|n_{max}\rangle - \hbar\omega|n_{max}\rangle = -\frac{1}{2}\hbar\omega|n_{max}\rangle$$
(3.368)

违背了(3.365): 任意状态的能量期望值大于等于零. 因此*n* = 0,1,2,...,没有上限。 注意到

$$a^{\dagger}a|n\rangle = n|n\rangle \tag{3.369}$$

所以a[†]a是量子数算符。

 $a|n\rangle$ 是能量本征态,且根据Eq.(3.364), $a|n\rangle$ 等价于 $|n-1\rangle$ (考虑到一维束缚态没有简并.)但是并不一定是 归一化的本征态。我们设

$$a|n\rangle = c(n)|n-1\rangle, \tag{3.370}$$

那么

$$\langle n|a^{\dagger} = c^{*}(n)\langle n-1|.$$
 (3.371)

同样, $a^{\dagger}|n\rangle = d(n)|n+1\rangle$, 所以 $\langle n|a = d^{*}(n)\langle n+1|$. 计算

 $\langle n|a^{\dagger}a|n\rangle = |c(n)|^2 = n \tag{3.372}$

$$\langle n|aa^{\dagger}|n\rangle = |d(n)|^2 = n+1$$
 (3.373)

我们得到

$$a|n\rangle = \sqrt{n}|n-1\rangle$$
 $a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$ (3.374)

或者

$$a^{\dagger}|n-1\rangle = \sqrt{n}|n\rangle \tag{3.375}$$

因此,任意能量本征态|n>可以认为是由基态生成出来的

$$|n\rangle = \frac{1}{\sqrt{n!}} (a^{\dagger})^n |0\rangle \tag{3.376}$$

坐标表象下的波函数非常有用。我们怎么求波函数呢?我们可以利用 $a|0\rangle = 0$ 来确定基态波函数。根据a的定义,我们知道在坐标表象下

$$\left(\frac{i}{\hbar\alpha}\left(\frac{-i\hbar\mathrm{d}}{\mathrm{d}x}\right) + \alpha x\right)\psi_0(x) = 0 \tag{3.377}$$

即

$$\left(\frac{\mathrm{d}}{\mathrm{d}x} + \alpha^2 x\right)\psi_0(x) = 0 \tag{3.378}$$

得

$$\psi_0(x) = N_0 \mathrm{e}^{-\frac{\alpha^2 x^2}{2}} \tag{3.379}$$

归一化,可以定出 N_0 . 再利用 $a^{\dagger}|0\rangle = |1\rangle$,

$$\psi_1(x) = \frac{1}{\sqrt{2}} (\alpha x - \frac{1}{\alpha} \frac{\mathrm{d}}{\mathrm{d}x}) \psi_0(x) = N_1 \alpha x \mathrm{e}^{-\frac{\alpha^2 x^2}{2}}$$
(3.380)

普遍地,

$$\psi_n(x) = \frac{1}{\sqrt{n}} a^{\dagger} \psi_{n-1}(x) = \frac{1}{\sqrt{2n}} (\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}) \psi_{n-1}$$
(3.381)

这里a[†]是作用到波函数上的有效算符,其中

$$\xi = \alpha x \tag{3.382}$$

依次类推

$$\psi_n(x) = \sqrt{\frac{N_0}{2^n n!}} (\xi - \frac{\mathrm{d}}{\mathrm{d}\xi})^n \mathrm{e}^{-\xi^2/2} \equiv N_n H_n(\xi) \mathrm{e}^{-\xi^2/2}$$
(3.383)

下降算符a的本征态非常重要,称作相干态(coherent state):

$$a|\alpha\rangle = \alpha|\alpha\rangle. \tag{3.384}$$

其中本征值习惯上写为 α ,由于a不是厄米算符,所以 α 为一个复数(注意不是前面的 $\alpha = \sqrt{m\omega/\hbar}$).设

$$|\alpha\rangle = \sum_{n=0}^{\infty} C_n(\alpha) |n\rangle \tag{3.385}$$

所以

$$a|\alpha\rangle = \sum_{n} C_{n}(\alpha)\sqrt{n}|n-1\rangle = \alpha \sum_{n} C_{n}(\alpha)|n\rangle$$
(3.386)

比较求和中 $|n-1\rangle$ 项系数,

$$C_n(\alpha) = \frac{\alpha}{\sqrt{n}} C_{n-1}(\alpha) = \frac{\alpha^n}{\sqrt{n!}} C_0(\alpha)$$
(3.387)

考虑归一化

$$\langle \alpha | \alpha \rangle = |C_0|^2 \sum_n \frac{|\alpha|^2}{n!} = 1 \tag{3.388}$$

其中求和为e^{|α|²}, 所以

$$C_0 = e^{-|\alpha|^2/2} \tag{3.389}$$

$$|\alpha\rangle = C_0(\alpha) \sum_n \frac{\alpha^n}{\sqrt{n!}} |n\rangle \tag{3.390}$$

粒子处于|n〉的几率

$$|C_n|^2 = \frac{|\alpha|^{2n}}{n!} e^{-|\alpha|^2}$$
(3.391)

为泊松分布. 容易算出 $\langle \alpha | a^{\dagger} a | \alpha \rangle = |\alpha|^2, a^{\dagger} + a$ 的标准偏差为 $|\alpha|$ 。 如果零时刻粒子处于 $|\alpha\rangle$,那么t时刻就是

$$|t\rangle = C_0 \mathrm{e}^{-\mathrm{i}\omega t/2} \sum_n \frac{\alpha^n}{\sqrt{n!}} |n\rangle \mathrm{e}^{-\mathrm{i}\omega nt}$$
(3.392)

$$\langle x(t) \rangle = \frac{x_0}{\sqrt{2}} \langle (a+a^{\dagger}) \rangle = \sqrt{2} |\alpha| x_0 \cos(\omega t + \phi)$$
(3.393)

(ϕ 是初相, 由 α 决定, $x_0 = \sqrt{\hbar/m\omega}$ 是谐振子特征长度). 标准偏差多大? 为什么说相干态最接近经典状态? 对于相干态, 测不准关系是?

矩阵表示

我们来计算能量表象下各算符的矩阵形式 根据Eq(3.374),

$$a_{n-1,n} = \langle n-1|a|n \rangle = \sqrt{n} \tag{3.394}$$

$$a_{n+1,n}^{\dagger} = \langle n+1|a^{\dagger}|n\rangle = \sqrt{n+1} \tag{3.395}$$

即矩阵元为 $a_{n,m} = \sqrt{m}\delta_{n+1,m}, a_{n,m}^{\dagger} = \sqrt{m+1}\delta_{n-1,m}.$ 注意, $n, m = 0, 1, 2, \cdots$. 利用

$$Q = \frac{1}{\sqrt{2}}(a+a^{\dagger}), \qquad P = \frac{i}{\sqrt{2}}(a^{\dagger}-a)$$
(3.396)

容易得到

$$Q_{n,m} = \frac{1}{\sqrt{2}} (\sqrt{m}\delta_{n+1,m} + \sqrt{m+1}\delta_{n-1,m})$$
(3.397)

$$P_{n,m} = \frac{i}{\sqrt{2}} (\sqrt{m+1}\delta_{n-1,m} - \sqrt{m}\delta_{n+1,m})$$
(3.398)

 $x_{n,m}, p_{n,m}$ 也就得到了。

3.14. 升降算符法

3.14.2 角动量

在研究轨道角动量的时候,我们知道 L^2, L_z 对易,其共同本征态为 $|l, m\rangle$.

$$L^{2}|l,m\rangle = l(l+1)\hbar^{2}|l,m\rangle; \quad L_{z}|l,m\rangle = m\hbar|l,m\rangle$$
(3.399)

在坐标表象下,就是

$$L^{2}Y_{lm} = l(l+1)\hbar^{2}Y_{lm}; \quad L_{z}Y_{lm} = m\hbar Y_{lm}$$
(3.400)

我们可以用代数方法得到任意角动量J的类似结果,包括自旋角动量,以及轨道角动量和自旋角动量的 矢量和对应的总角动量.其关键是任意角动量都满足角动量对易关系!

$$[J_x, J_y] = \mathrm{i}\hbar J_z. \tag{3.401}$$

容易推导出

$$[J_{\alpha}, J^2] = 0, \qquad \alpha = x, y, z \tag{3.402}$$

那么就可以假设J_z, J²的共同本征态为|β, m). 这里对β和m不作任何限制,除了知道其为实数外.

$$J^2|\beta,m\rangle = \beta\hbar^2|\beta,m\rangle \tag{3.403}$$

$$J_z|\beta,m\rangle = m\hbar|\beta,m\rangle \tag{3.404}$$

 $\dot{\alpha}_{\beta,m}$ 下计算 J^2 得 $\beta\hbar^2$,应该大于 $\langle J_z^2 \rangle = m^2\hbar^2$,所以 $\beta \ge m^2$.我们定义

$$J_{+} = J_{x} + iJ_{y}, \qquad J_{-} = J_{x} - iJ_{y}$$
(3.405)

容易知道

$$[J_+, J^2] = 0, \qquad [J_-, J^2] = 0 \tag{3.406}$$

而且

$$[J_z, J_+] = \hbar J_+, \qquad [J_z, J_-] = -\hbar J_- \qquad (3.407)$$

这类似于 $[a, H] = a\hbar\omega, [a^{\dagger}, H] = -a^{\dagger}\hbar\omega.$ 此外还有

$$J_{+}J_{-} = J^{2} - J_{z}^{2} + \hbar J_{z}, \qquad J_{-}J_{+} = J^{2} - J_{z}^{2} - \hbar J_{z} \qquad (3.408)$$

这类似于 $a^{\dagger}a + \frac{1}{2} = H/\hbar\omega$. 或者 $aa^{\dagger} - \frac{1}{2} = H/\hbar\omega$. 我们有

$$J^{2}J_{+}|\beta,m\rangle = J_{+}J^{2}|\beta,m\rangle = \beta\hbar^{2}J_{+}|\beta,m\rangle$$
(3.409)

在考虑Eq.(3.407)

$$J_z J_+|\beta, m\rangle = J_+(J_z + \hbar)|\beta, m\rangle = (m+1)\hbar J_+|\beta, m\rangle$$
(3.410)

这表明 $J_+|\beta,m\rangle$ 是 J^2, J_z 的共同本征态,对应本征值为 $\beta\hbar^2$ 和 $(m+1)\hbar$.所以

$$J_{+}|\beta,m\rangle = \hbar a_{\beta m}|\beta,m+1\rangle \tag{3.411}$$

 $a_{\beta m}$ 是个归一化常数。类似地,

$$J_{-}|\beta,m\rangle = \hbar b_{\beta m}|\beta,m-1\rangle \tag{3.412}$$

 $b_{\beta m}$ 是常数。重复上面的过程,由于 $\beta \ge m^2$,所以必然存在一个m的上限m,和下限<u>m</u>

$$J_{+}|\beta,\overline{m}\rangle = 0, \qquad J_{-}|\beta,\underline{m}\rangle = 0 \qquad (3.413)$$

利用(3.408)

$$J_{-}J_{+}|\beta\overline{m}\rangle = (J^{2} - J_{z}^{2} - \hbar J_{z})|\beta\overline{m}\rangle = (\beta - \overline{m}^{2} - \overline{m})\hbar^{2}|\beta,\overline{m}\rangle$$
(3.414)

因此

$$\beta = \overline{m}(\overline{m} + 1) \tag{3.415}$$

类似地,

$$\beta = -\underline{m}(-\underline{m}+1) \tag{3.416}$$

所以 $\overline{m} = -\underline{m}$. 我们记 $j \equiv \overline{m}$, 有

$$\beta = j(j+1), \tag{3.417}$$

在正负j之间,所有可能的m为

$$m = -j, -j + 1, \cdots, j - 1, j$$
 (3.418)

但是注意j本身并不一定是整数。而 $m - \underline{m} = 2j$ 必须是正整数或零,否则从<u>m</u>出发,无法加到 $m = -\underline{m}$.所以可能的j为

$$j = 0, \frac{1}{2}, 1, \frac{3}{2}, \cdots$$
 (3.419)

具体*j*应该取什么值,要看物理问题。比如电子自旋角动量, $j = \frac{1}{2}$ 。基本粒子的*j*都是一个特定的永不改变的,称为自旋。 π 介子自旋为零,电子1/2,光子1, Δ 粒子3/2,引力子2;轨道角动量 $j = 0, 1, 2, \cdots$.

我们前面讨论过电子的自旋. $|+, S_z\rangle$ 其实就是 $|\frac{1}{2}, \frac{1}{2}\rangle$; $|-, S_z\rangle$ 其实就是 $|\frac{1}{2}, -\frac{1}{2}\rangle$. $j = \frac{1}{2}$, 对应 S^2 的本征值 为 $\frac{3}{4}\hbar = \frac{1}{2}(\frac{1}{2} + 1)\hbar$. $m = \pm \frac{1}{2}$, 对应 S_z 的本征值为 $\pm \frac{1}{2}\hbar$.

现在我们来确定a_{im}, b_{im}.

$$\langle jm|J_{-}J_{+}|jm\rangle = \hbar^{2}|a_{jm}|^{2} \tag{3.420}$$

利用(3.408),

$$\hbar^2 |a_{jm}|^2 = (j(j+1) - m^2 - m)\hbar^2 \tag{3.421}$$

所以

$$a_{jm} = \sqrt{j(j+1) - m(m+1)} = \sqrt{(j+m+1)(j-m)}$$
(3.422)

类似地

$$b_{jm} = \sqrt{j(j+1) - m^2 + m} = \sqrt{(j-m+1)(j+m)}$$
(3.423)

即

$$J_{+}|jm\rangle = \hbar\sqrt{(j+m+1)(j-m)}|j,m+1\rangle$$
(3.424)

$$J_{-}|jm\rangle = \hbar\sqrt{(j-m+1)(j+m)}|j,m-1\rangle,$$
 (3.425)

可以看到 $J_+|j,j\rangle = 0, J_-|j,-j\rangle = 0.$

3.15 Ehrenfest定理

考虑d维系统. x_i 是x的一个分量, p_i 是动量p的一个分量. 容易证明

$$[x_i, F(\mathbf{p})] = \mathrm{i}\hbar \frac{\partial F}{\partial p_i},\tag{3.426}$$

$$[p_i, G(\mathbf{x})] = -i\hbar \frac{\partial G}{\partial x_i}.$$
(3.427)

这里算符都是在S-pic下.

对于自由粒子, $H = p^2/2m$. H-Pic 下

$$\frac{\mathrm{d}p_i^{(H)}}{\mathrm{d}t} = \frac{1}{\mathrm{i}\hbar}[p_i^{(H)}, H] = 0 \tag{3.428}$$

$$\frac{\mathrm{d}x_i^{(H)}}{\mathrm{d}t} = \frac{1}{\mathrm{i}\hbar}[x_i^{(H)}, H] = \frac{p_i^{(S)}}{m}$$
(3.429)

这里用到了3.426以及 $[p_i, H] = 0.$ 求解上式得

$$x_i^{(H)} = x_i^{(H)}(0) + \frac{p_i^{(S)}}{m}t$$
(3.430)

(以下算符如果带时间变量表示H-pic.)

虽然

$$[x_i(0), x_i(0)] = 0 \tag{3.431}$$

但是

$$[x_i(t), x_i(0)] = [p_i^{(S)}, x_i(0)] \frac{t}{m} = -\frac{\mathrm{i}\hbar t}{m}$$
(3.432)

利用测不准关系,

$$\Delta x_i(t) \Delta x_i(0) \ge \frac{\hbar t}{2m} \tag{3.433}$$

物理上表明,波包会扩散,扩散的速度恒定。 如果粒子在势场中运动, $H = \frac{\mathbf{p}^2}{2m} + V(\mathbf{x})$.类似的,在H-pic下,(以下省略上标H)

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \frac{1}{\mathrm{i}\hbar}[\mathbf{p}, H] = -\nabla V(\mathbf{x}) \tag{3.434}$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \frac{\mathbf{p}}{m} \tag{3.435}$$

即

$$m\frac{\mathrm{d}^2\mathbf{x}}{\mathrm{d}t^2} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = -\nabla V(\mathbf{x}) \tag{3.436}$$

这与牛顿方程形式上是一样的。但是,是算符方程。计算期望值

$$m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\langle \mathbf{x}\rangle = -\langle \nabla \mathbf{V}\rangle. \tag{3.437}$$

说明期望值满足经典牛顿方程,即Ehrenfest 定理。以上公式也可有直接利用期望值的时间演化公式(3.318)得到。

类似的,我们容易得到

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle \mathbf{L} \rangle = \langle \mathbf{M} \rangle \tag{3.438}$$

其中

$$\mathbf{M} = \mathbf{r} \times (-\nabla \mathbf{V}) \tag{3.439}$$

以上类似Ehrenfest 定理

3.16 海尔曼(Hellmann)定理和维里(Virial)定理

3.16.1 海尔曼定理及应用

考虑一个能量本征态|n>,满足

$$H|n\rangle = E_n|n\rangle. \tag{3.440}$$

设λ是H中的一个参数(可以是质量,甚至ħ). 对其求导

$$\left(\frac{\partial H}{\partial \lambda} - \frac{\partial E_n}{\partial \lambda}\right)|n\rangle + (H - E_n)\frac{\partial|n\rangle}{\partial \lambda} = 0$$
(3.441)

这里看到对|n>的偏导,大家不要惊慌,可以理解为对分量,或波函数求偏导.

计算内积

$$\langle n|(H-E_n)\frac{\partial|n\rangle}{\partial\lambda} = -\langle n|(\frac{\partial H}{\partial\lambda} - \frac{\partial E_n}{\partial\lambda})|n\rangle = \frac{\partial E_n}{\partial\lambda} - \langle \frac{\partial H}{\partial\lambda}\rangle_n \tag{3.442}$$

等式左边的H算符向左作用,得

$$\frac{\partial E_n}{\partial \lambda} = \langle \frac{\partial H}{\partial \lambda} \rangle_n \tag{3.443}$$

这就是Hellmann定理.

例一. 谐振子, 对ħ求偏导, 得到定态动能期望值.

$$\frac{\partial H}{\partial \hbar} = -\frac{\hbar}{m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} = \frac{2}{\hbar} T \tag{3.444}$$

$$\frac{2}{\hbar} \langle T \rangle_n = \frac{\partial E_n}{\partial \hbar} = (n + \frac{1}{2})\omega = E_n/\hbar$$
(3.445)

即动能在能量本征态的期望值是能量的一半。(取 $\hbar = m, \omega$ 也同样可以)。

例二. 电场中的谐振子

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 - q\epsilon x$$
(3.446)

令其能级为
$$E_n(\epsilon)$$
, 很明显 $E_n(0) = (n+1/2)\hbar\omega$.

计算对易式 $[p, H] = m\omega^2 x - q\epsilon$, 定态下 $\langle [p, H] \rangle = 0$, 得到 $\langle x \rangle = \frac{q\epsilon}{m\omega^2}$.

$$\left\langle \frac{\partial H}{\partial \epsilon} \right\rangle = \frac{\partial E_n}{\partial \epsilon} = -q \langle x \rangle \tag{3.447}$$

对 ϵ 积分,我们得到

$$E_n = (n + \frac{1}{2})\hbar\omega - \frac{q^2\epsilon^2}{2m\omega^2}.$$
 (3.448)

物理解释: $V(x) = \frac{1}{2}m\omega^2(x-x_0)^2 - c.$ 效果是平衡点移动,势能下降。

3.16.2 维里定理及应用

经典力学表述:

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{r}\cdot\mathbf{p}) = \frac{\mathbf{p}^2}{m} - \mathbf{r}\cdot\nabla V \tag{3.449}$$

如果粒子是束缚在有限范围里(比如在封闭轨道上周期运动),**r**·**p**是有限的,其时间导数的长时间平均等 于零(否则积分起来发散)。那么____

$$\frac{\mathbf{p}^2}{m} = \overline{\mathbf{r} \cdot (-\nabla V)}.$$
(3.450)

量子力学表述: 在H-pic下运动方程(3.449)是一样的。对束缚定态取期望值, 方程左边一定是零(一切物理 量在定态下都不随时间变化)

$$\langle \frac{\mathbf{p}^2}{2m} \rangle_n = \frac{1}{2} \langle \mathbf{r} \cdot \nabla V \rangle_n \tag{3.451}$$

对于势能函数是齐次的情况,此定理特别有用. 所谓齐次函数就是满足下式的函数:

$$V(\lambda x_1, \lambda x_2, \cdots) = \lambda^m V(x_1, x_2, \cdots)$$
(3.452)

 $对\lambda$ 求导

$$\sum_{i} x_i \frac{\partial V}{\partial(\lambda x_i)} = m\lambda^{m-1}V \tag{3.453}$$

上式对任意 λ 成立,我们取 $\lambda = 1$,

$$\sum_{i} x_i \frac{\partial V}{\partial x_i} = mV \tag{3.454}$$

或者写为

$$\mathbf{r} \cdot \nabla V(\mathbf{r}) = mV(\mathbf{r}) \tag{3.455}$$

所以

$$\langle T \rangle_n = \frac{m}{2} \langle V \rangle_n \tag{3.456}$$

例一. 谐振子, 势能就是齐次势, m = 2: $(\lambda x)^2 = \lambda^2 x^2$. 所以

$$\langle T \rangle_n = \langle V \rangle_n = E_n/2 \tag{3.457}$$

例二. 氢原子, $V(r) = -e^2/r$. 齐次, m = -1.

$$\langle T \rangle_n = -\frac{1}{2} \langle V \rangle = -E_n \tag{3.458}$$

Chapter 4

中心力场

4.1 中心力场的一般规律

考虑粒子在三维空间的中心力场V(r)中运动,注意是r的函数,不是r.各向同性。受力

$$\mathbf{F} = -\nabla V(r) = -\frac{\mathrm{d}V}{\mathrm{d}r}\mathbf{e_r} \tag{4.1}$$

由于力矩 $\mathbf{r} \times \mathbf{F} = \mathbf{0}$,所以轨道角动量是守恒的。在量子力学里也该如此。这可以从对易关系[L^2, H] = $[L_z, H] = [L_x, H] = [L_y, H] = 0$ 得到.

我们在球坐标系里写系统的哈密顿量H. 由于

$$\nabla^2 = \nabla \cdot \nabla = \frac{1}{r} \frac{\partial^2}{\partial r^2} r + \frac{1}{r^2} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right)$$
(4.2)

(注意后面跟波函数,否则不对)

$$L^{2} = -\hbar^{2} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right)$$
(4.3)

因此

$$-\hbar^2 \nabla^2 = -\frac{\hbar^2}{r} \frac{\partial^2}{\partial r^2} r + \frac{L^2}{r^2}$$

$$\tag{4.4}$$

两边除以2μ,(为避免与量子数m混淆,我们用μ表示粒子质量)

$$H = -\frac{\hbar^2}{2\mu} \frac{1}{r} \frac{\partial^2}{\partial r^2} r + \frac{L^2}{2\mu r^2} + V(r) = \frac{p_r^2}{2\mu} + \frac{L^2}{2\mu r^2} + V(r)$$
(4.5)

第一项是径向动能, 第二项是角动能或离心'势能'。其中径向动量pr为

$$p_r = -i\hbar \frac{1}{r} \frac{\partial}{\partial r} r \tag{4.6}$$

. 容易看到,因为 $p_r, V(r)$ 都只是r的函数,而 L^2, L_z 中只包含对角度的微分,所以

$$[L^2, H] = 0, \quad [\mathbf{L}, H] = 0 \tag{4.7}$$

但是注意到 $[L_x, L_y] \neq 0$,所以我们选 H, L^2, L_z 为力学量完全集(只需要三个,自由度是3).虽然 L_x, L_y 也和 H, L^2 对易,但是他们与 L_z 并不对易。出现这种情况说明能级一般会有简并.(参见3.13.1)他们的共同本征函数自然可以写成

$$\psi_E = R(r)Y_{lm}(\theta,\phi) \tag{4.8}$$

带入能量本征方程

$$H\psi_E = E\psi_E \tag{4.9}$$

约去角度部分

$$-\frac{1}{r}\frac{\partial^2}{\partial r^2}(rR) + \frac{l(l+1)}{r^2}R + \frac{2\mu V(r)R}{\hbar^2} = \frac{2\mu E}{\hbar^2}R$$
(4.10)

定义径向波函数 $\chi \equiv rR(r)$,

$$\chi'' + \left[\frac{2\mu(E-V)}{\hbar} - \frac{l(l+1)}{r^2}\right]\chi = 0$$
(4.11)

定义径向能量

$$E_r = E - \frac{l(l+1)\hbar^2}{2\mu r^2},\tag{4.12}$$

就是总能量减去离心势能(或角动能), 径向方程化为

$$\chi'' + \frac{2\mu(E_r - V(r))}{\hbar^2}\chi = 0$$
(4.13)

这可以看作是个一维运动粒子的定态方程!不过要注意:中心力问题的边界条件特殊: $r \to 0$ 波函数不能发散。

Figure 4.1: 中心力问题一般能级示意图.

一般而言, $V(r) \propto \frac{1}{r^2}$, 2 > x > 0. (如果x > 2, 参考朗道、栗弗希兹著《量子力学》). 在 $r \to 0$ 时, 径向方程中可以只保留离心势能。(*E*是定值,势能发散速度慢).

$$\chi'' - \left[\frac{l(l+1)}{r^2}\right]\chi = 0 \tag{4.14}$$

设 $\chi(r) \propto r^{s+1}$,代入Eq.(4.14)

$$(s+1)s - l(l+1) = 0 (4.15)$$

解为s = l,或者,s = -(l+1),但是后者导致波函数发散。

 $\operatorname{cr} \to \infty$ 时, 径向方程可以写为(离心能和势能都可以忽略)

$$\chi'' + \frac{2\mu E}{\hbar^2}\chi = 0 \tag{4.16}$$

定义 $\beta^2 = -2\mu E/\hbar^2$, (束缚态 $E < V(\infty) = 0$) 解为

$$\chi \propto e^{\beta r}; \tag{4.17}$$

或

$$\chi \propto e^{-\beta r} \tag{4.18}$$

略去前者(发散)。

那么一般情况下的解可以写为

$$\chi(r) = r^{l+1} \mathrm{e}^{-\beta r} u(r) \tag{4.19}$$

u(r)是待定函数,需要将上述解带入径向方程Eq.(4.11)确定。

原则上,根据束缚态边界条件,可以知道解由某个量子数 n_r 确定,注意到径向方程Eq.(4.11)本身携带角动量量子数l,所以实际是由两个量子数确定,即解可以写为 $\chi_{n_r,l}$.给定角动量l,能量 $E_{n_r,l}$ 由径向量子数 $n_r = 0, 1, \ldots$,确定. n_r 越大,能量越高。对于确定 n_r ,角动量l越大,能量越高。大致而言, $n_r + l$ 决定了能量的高低。参见图4.1.

按原子光谱习惯, l = 0, 1, 2, 3, 对应s, p, d, f, 轨道。

每个能级的简并度至少为2l+1,因为有这么多个不同的m:角动量z分量。

但是,后面我们会看到,某些情况下会出现新的简并,比如氢原子: $n_r + l = n$ 的能级也是简并的,能级可以记为 E_n .

4.2 氢原子与类氢原子

这是第一个严格求解的量子力学问题。电子的势能为(高斯单位制)

$$V(r) = -\frac{e^2}{r} \tag{4.20}$$

我们进一步考虑以 \hbar 度量角动量, e度量电量, m_e 度量质量, 那么长度的单位就是 $a = \frac{\hbar^2}{m_e e^2}$, 即玻尔半径。能量的单位就是

$$\frac{e^2}{a} = \frac{m_e e^4}{\hbar^2}$$
 (大约27.2ev). (4.21)

径向方程

$$\chi'' + (2E + \frac{2}{r} - \frac{l(l+1)}{r^2})\chi = 0$$
(4.22)

带入一般解,

$$ru'' + (2(l+1) - 2\beta r)u' - 2((l+1)\beta - 1)u = 0$$
(4.23)

 β 物理上是波矢,定义无量纲量 $\xi = 2\beta r$,有

$$\xi \frac{\mathrm{d}^2 u}{\mathrm{d}\xi^2} + (\gamma - \xi) \frac{\mathrm{d}u}{\mathrm{d}\xi} - \alpha u = 0 \tag{4.24}$$

其中 $\gamma = 2(l+1), \alpha = l+1-1/\beta$. 以上方程是著名的合流超几何方程。 它的解是无穷级数

$$F(\alpha,\gamma,\xi) = 1 + \frac{\alpha}{\gamma}\xi + \frac{\alpha(\alpha+1)}{\gamma(\gamma+1)}\frac{\xi^2}{2!} + \cdots$$
(4.25)

当 ξ → ∞, 该级数按exp(ξ)发散。导致 χ 发散。因此, 必须中止为多项式。 寄希望于 $\alpha = 0, -1, -2, \dots = -n_r$. 这样

$$l + 1 - \frac{1}{\beta} = -n_r \tag{4.26}$$

(注意分子1是有量纲的) $iln \equiv n_r + l + 1 = 1, 2, 3, \cdots,$ 称为主量子数。

$$\beta = \frac{1}{n} \tag{4.27}$$

由于 $\beta^2 = -2E$,所以

$$E = -\frac{1}{2n^2}$$
(4.28)

注意单位是能量单位e²/a. 这就是氢原子的能级公式了。

氢原子的波函数可以写为

$$\psi_{nlm} = R_{nl} Y_{lm} \tag{4.29}$$

其中

$$R_{nl} = \chi_{n_r l} / r = N_{nl} \xi^l e^{-\xi/2} F(-n_r, 2l+2, \xi)$$
(4.30)

其中

$$\xi = 2\beta r = \frac{2r}{na} \tag{4.31}$$

N_{nl}是归一化常数,使得波函数满足正交归一性

$$(\psi_{n'l'm'},\psi_{nlm}) = \int r^2 \mathrm{d}r \mathrm{d}\Omega \psi^*_{n'l'm'} \psi_{nlm} = \delta_{n,n'} \delta_{ll'} \delta_{mm'} = \langle n'l'm'|nlm\rangle$$
(4.32)

注意空间积分在球坐标下是

$$\int r^2 \mathrm{d}r \mathrm{d}\Omega \tag{4.33}$$

4.2. 氢原子与类氢原子

基态波函数为

$$\begin{split} \psi_{100} &= R_{10}Y_{00} \\ &= N_{10}e^{-\frac{r}{a}}\frac{1}{\sqrt{4\pi}} = (\frac{1}{\pi a^3})^{\frac{1}{2}}e^{-\frac{r}{a}} \end{split}$$

如果不看 $e^{-r/a}$,波函数相当于在半径为 $a(3/4)^{1/3}$ 的球内均匀分布. 讨论:

1 简并度

能量完全由n定。 $l = 0, 1, \dots, n-1, \pm n$ 个可能。每个l有2l + 1个m。所以自由度

$$f_n = \sum_{l=0}^{n-1} (2l+1) = n^2 \tag{4.34}$$

比一般中心力问题高。

2 径向几率分布: 在r - r + dr球壳层里找到电子的几率

$$r^{2}\mathrm{d}r\int|\psi_{nlm}|^{2}\mathrm{d}\Omega = \chi_{nl}^{2}\mathrm{d}r$$
(4.35)

Figure 4.2: 径向密度(取自钱伯初《量子力学》)

3 几率密度随角度的变化

$$Y_{lm}|^2 \mathrm{d}\Omega \int \mathrm{d}r R_{nl}^2 r^2 = P_l^m (\cos\theta)^2 \mathrm{d}\Omega$$
(4.36)

例: $Y_{00} = \frac{1}{4\pi}$,因此是不随角度变化的。

 $Y_{10} = \sqrt{\frac{3}{4\pi}} \cos \theta$,因此随 $\cos^2 \theta$ 分布。 $Y_{1,\pm 1} = \mp \sqrt{\frac{3}{8\pi}} \sin \theta e^{\pm i\phi}$.因此角度分布是正比于 $\sin^2 \theta$ 的. 4 等密度面,参考图4.3

5 密度图,每个图都是绕z轴(竖直方向)旋转对称。参见图4.4

Figure 4.3: 等密度 $|\psi|^2$ 面。 (Griffiths, 量子力学导论)

Figure 4.4: 密度 $|\psi|^2$ 分布。 (Griffiths, 量子力学导论)

4 类氢原子

一个电子绕有Z个质子的原子核运动,如:He+,Li++,其势能可以写成:

$$V(r) = -\frac{Ze^2}{r} \tag{4.37}$$

径向波函数同样可以写成

$$\chi = r^{l+1} e^{-\beta r} u, \tag{4.38}$$

其中

$$\beta = \sqrt{\frac{-2uE}{\hbar^2}}.\tag{4.39}$$

同样引入

$$\xi = 2\beta r,\tag{4.40}$$

得到

$$\xi \frac{\mathrm{d}^2 u}{\mathrm{d}\xi^2} + (2(l+1) - \xi) \frac{\mathrm{d}u}{\mathrm{d}\xi} - (l+1 - \frac{Z}{\beta})u = 0$$
(4.41)

与氢原子唯一的区别: $\frac{1}{\beta} \rightarrow \frac{Z}{\beta}$. 所以 $\frac{Z}{\beta} = n_r + l + 1 = n$

$$E_n = -\frac{Z^2}{2n^2} \left(\frac{e^2}{a}\right) = -\frac{Z^2 \mu e^4}{2n^2 \hbar^2}$$
(4.42)

其中 $a = \frac{\hbar^2}{\mu e^2}$. 注意 $\beta = Z/n$, 单位是1/a, 因此 $\xi = 2\beta r = \frac{2Zr}{na}$, 这表明Z越大, 原子越"紧凑": $\chi = N_{nl}\xi^{l+1}e^{-\frac{\xi}{2}}F(-n_r, 2l+2, \xi)$

我们来看基态:

$$\psi_{100} = R_{10}Y_{00}$$
$$= N_{10}e^{-\frac{Zr}{a}}\frac{1}{\sqrt{4\pi}} = (\frac{Z^3}{\pi a^3})^{\frac{1}{2}}e^{-\frac{Zr}{a}}$$

 N_{10} 是归一化因子。此波函数比氢原子"小":特征长度 $\frac{a}{Z}$.

(4.43)

5 轨道磁矩

奥斯特最早注意到"电生磁",之后安培的分子环流理论基于下面事实:周期运动的电荷相当于一个环形电流回路,其电流强度为*I* = q/τ, τ是周期。(高斯单位制下)磁矩

$$\vec{\mu} = \frac{I\vec{A}}{c},\tag{4.44}$$

c是光速, *A*是轨道包围的面积矢量, 它可以表示成粒子的角动量的函数:

$$\vec{A} = \frac{\vec{r} \times \vec{p}}{2m_e} \tau = \frac{\vec{L}\tau}{2m_e},\tag{4.45}$$

其中利用了 $\vec{v} = \vec{p}/m_e$,周长等于 $v\tau = 2\pi r. m_e$ 是粒子质量. 电流强度 $I = q/\tau.$ 所以

$$\vec{\mu} = \frac{q\vec{L}}{2m_e c} \tag{4.46}$$

即磁矩矢量与角动量矢量的关系。这一关系应该在量子力学中仍然成立。 在量子力学中,对于一个定态*ψ_{nlm}*,直接有

$$\langle \vec{\mu} \rangle = \frac{q}{2m_e c} \langle \vec{L} \rangle, \tag{4.47}$$

只有µz可能不为零:

$$\langle \mu_z \rangle = m \frac{q\hbar}{2m_e c} = m\mu_B. \tag{4.48}$$

其中 $\frac{q\hbar}{2m_ec} \equiv \mu_B$ 即玻尔磁子.

我们还可以通过计算定态 ψ_{nlm} 下的电流,导出上面的公式.

引入电流密度 $\vec{J}_e = q\vec{J}, \vec{J}$ 是几率流密度:单位时间通过单位面积的几率

$$\vec{J}_e = \frac{q}{2m_e} (\psi^* \hat{p} \psi - \psi \hat{p} \psi^*)$$
(4.49)

在球坐标系处理较方便,

$$\nabla = \frac{\partial}{\partial r}\vec{e}_r + \frac{1}{r}\frac{\partial}{\partial\theta}\vec{e}_\theta + \frac{1}{r\sin\theta}\frac{\partial}{\partial\varphi}\vec{e}_\varphi.$$
(4.50)

因此可以得到沿ēr和ēb方向的电流密度

$$j_r^e = -\frac{i\hbar q}{2m_e} (\psi_{nlm}^* \frac{\partial}{\partial r} \psi_{nlm} - \psi_{nlm} \frac{\partial}{\partial r} \psi_{nlm}^*)$$
(4.51)

$$j_{\theta}^{e} = -\frac{i\hbar q}{2m_{e}r} (\psi_{nlm}^{*} \frac{\partial}{\partial \theta} \psi_{nlm} - \psi_{nlm} \frac{\partial}{\partial \theta} \psi_{nlm}^{*})$$

$$(4.52)$$

由于 $\psi_{nlm} = R_{nl}(r)P_l^m(\cos\theta)e^{im\varphi}$ 中 R_{nl}, P_l^m 都是实的,以上 $j_r^e = j_{\theta}^e = 0.$ 然而

$$j_{\varphi}^{e} = -\frac{i\hbar q}{2m_{e}} \frac{1}{r\sin\theta} (\psi_{nlm}^{*} \frac{\partial}{\partial\varphi} \psi_{nlm} - \psi_{nlm} \frac{\partial}{\partial\varphi} \psi_{nlm}^{*})$$

$$= -\frac{i\hbar q}{2m_{e}} \frac{1}{r\sin\theta} R_{nl}^{2} P_{l}^{m2} (im + im)$$

$$= -\frac{q\hbar m}{m_{e} r\sin\theta} |\psi_{nlm}|^{2}$$

即在空间 $\vec{r} = (r, \theta, \varphi)$ 附近的电流密度只有 \vec{e}_{φ} 方向分量,可以不为零,其大小与 φ 角无关,由 r, θ 决定. 考虑一个半径为r,截面积为 $d\sigma$ 的圆环, $d\sigma = rd\theta dr$.此圆环内的电流强度为 $dI = j_{\varphi}^{e}d\sigma$,处处一致(因为与 φ 无关。产生的磁矩为

$$d\mu_z = \frac{1}{c} dI \pi (r \sin \theta)^2 \tag{4.53}$$

$$\mu_z = \int \mathrm{d}\mu_z,\tag{4.54}$$

是对空间中所有圆环积分,即dσ 排满半个平面

$$\mu_z = \frac{1}{c} \int \frac{q\hbar m}{m_e r \sin \theta} |\psi_{nlm}|^2 \pi r^2 \sin^2 \theta d\sigma$$
$$= \frac{q\hbar m}{2m_e c} \int |\psi_{nlm}|^2 2\pi r \sin \theta d\sigma$$
$$= m \frac{q\hbar}{2m_e c}$$
$$= m\mu_B$$

这样我们得到了Eq.(4.48).

m是磁量子数, $\frac{\mu_z}{L_z} = \frac{q}{2m_e c}$ 是磁旋比g因子.

4.3 球形势阱

我们现在研究一个特殊的中心势,即球形无限深势阱:

$$V(r) = \begin{cases} 0, & r < a;\\ \infty, & r \ge a \end{cases}$$

$$(4.55)$$

*a*为球形空腔的半径. 粒子在其中自由运动,但不能穿透势阱.因此 $\psi(r, \theta, \phi) = 0$,当 $r \ge a$.能量本征函数仍然可以写为 $\psi(r, \theta, \phi) = R(r)Y_{lm}$.

在阱内r < a, 粒子满足的径向方程为

$$-\frac{\hbar^2 d^2 \chi}{2\mu dr^2} + \frac{l(l+1)\hbar^2}{2\mu r^2} \chi = E\chi$$
(4.56)

其中 $\chi \equiv rR(r)$.

如果l=0,即s波情况,方程简化为

$$\chi_0'' + \beta \chi_0 = 0, \tag{4.57}$$

其中 $\beta = \sqrt{\frac{2\mu E}{\hbar}}$,注意本问题虽然讨论束缚态,但总能量E > 0,因为阱外势能无穷大,阱内势能为零. 此方程的解为

$$\chi_0 = A\sin(\beta r) + B\cos(\beta r). \tag{4.58}$$

考虑边界条件. $r \to 0$ 时, 应该满足 $\chi_0(0) = 0$. 因此我们舍弃第二项. 再考虑r = a时波函数为零, 因此 $\beta a = (n_r + 1)\pi, n_r = 0, 1, 2, \cdots$. 即粒子能级为

$$E_{n_r,0} = \frac{\pi^2 \hbar^2 (n_r + 1)^2}{2\mu a^2}.$$
(4.59)

下面考虑l ≠ 0的情形. 将径向方程可以写为

$$rR'' + 2R' + (\beta^2 - \frac{l(l+1)}{r^2})rR = 0$$
(4.60)

即

$$R_l'' + \frac{2}{r}R_l' + (\beta^2 - \frac{l(l+1)}{r^2})R_l = 0$$
(4.61)

这里我们将R写为R_l,因为此解依赖于角动量量子数l.

引入 $\rho = \beta r$, 方程改写为

$$\frac{\mathrm{d}^2 R_l}{\mathrm{d}\rho^2} + \frac{2}{\rho} \frac{\mathrm{d}R_l}{\mathrm{d}\rho} + (1 - \frac{l(l+1)}{\rho^2})R_l = 0$$
(4.62)

此为球Bessel方程. 其解为Bessel函数 $j_l(\rho)$ 和诺伊曼函数 $n_l(\rho)$.

$$j_l(\rho) \to \frac{\rho^l}{(2l+1)!!} \tag{4.63}$$

$$n_l(\rho) \to -(2l-1)!!\rho^{-l-1}.$$
 (4.64)

而物理边界条件是 $r \to 0$ 时, $\chi \propto r^{l+1}$, 即 $R_l \propto r^l$, 所以 $R_l \propto j_l(\beta r)$, 舍去 $n_l(\beta r)$. 在r = a处波函数等于零,因此

$$j_l(\beta a) = 0. \tag{4.65}$$

而 $j_l(x) = 0$ 的'根'是 $x_{n_r,l}$,可以查到,其中 $n_r = 0, 1, 2, \cdots$ 是根的序号.此方程非常类似 $sin(x) = 0, x_{n_r,l}$ 类似 于 $n\pi$.特别是 $j_0(x) = sin(x)/x$,对应前面讨论过的l = 0的情况.

这些根给出β值,也就给出能量本征值

$$E_{n_r,l} = \frac{\hbar^2}{2\mu a^2} x_{n_r,l}^2 \tag{4.66}$$

Figure 4.5: Bessel函数的根.

Chapter 5

定态问题近似求解

5.1 非简并微扰论

5.1.1 一般公式

量子力学基本问题是求解能量本征方程:

$$H|\psi\rangle = E|\psi\rangle \tag{5.1}$$

给出能级,能量本征态。然而严格求解往往有困难.这就需要运用微扰方法. 将待求解H分为两部分: H = H₀ + H',其中H'对能量贡献较小,H₀的本征方程可严格解出

$$H_0|k^{(0)}\rangle = E_k^{(0)}|k^{(0)}\rangle \tag{5.2}$$

k 为能级编号,可以是一组量子数,比如 $(n,l,m) \rightarrow k$. 本节研究非简并的能级 $E_n^{(0)}$,有唯一本征态 $|n^{(0)}\rangle$.比如氢原子基态: $n \rightarrow (1,0,0)$. 考虑H的第n个能级与 H_0 的第n个能级差距不大,我们有

$$(H_0 + H')|n\rangle = E_n|n\rangle \tag{5.3}$$

其中 $E_n \approx E_n^{(0)}, |n\rangle 与 |n^{(0)}\rangle$ 相近.

任意态都可以展开成H₀本征态的叠加,所以我们假设:

$$|n\rangle = |n^{(0)}\rangle + \sum_{k \neq n} C_k |k^{(0)}\rangle, \qquad (5.4)$$

其中 $|C_k| \ll 1$ 是微扰的效果,严格地说此波函数没有归一化,但这不影响它是本征态。

将(5.4)代入(5.3)

$$(E_n^{(0)} + H')|n^{(0)}\rangle + \sum_{k \neq n} C_k (E_k^{(0)} + H')|k^{(0)}\rangle = E_n |n^{(0)}\rangle + E_n \sum_{k \neq n} C_k |k^{(0)}\rangle$$
(5.5)

计算内积(n⁽⁰⁾|(5.5))

$$E_n^{(0)} + H'_{nn} + \sum_{k \neq n} C_k H'_{nk} = E_n$$
(5.6)

其中 $H'_{nn} = \langle n^{(0)} | H' | n^{(0)} \rangle$ 是 H_0 表象中H'的n行n列矩阵元, 也是H'在 $| n^{(0)} \rangle$ 态的期望值, 它与 C_k, H'_{nk} 都为"小"量.

将 E_n 写为 $E_n^{(0)} + E_n^{(1)} + E_n^{(2)} + \cdots$. 那么一级修正

$$E_n^{(1)} = H'_{nn}, (5.7)$$

而 $\sum_{k \neq n} C_k H'_{nk}$ 贡献更高阶的修正.为得到高阶修正,或者得到波函数的一阶修正,我们需要计算 C_k .

为此我们计算内积 $\langle m^{(0)}|(5.5)\rangle$,其中 $m \neq n$,得到

$$H'_{mn} + C_m E_m^{(0)} + \sum_{k \neq n} C_k H'_{mk} = E_n C_m$$
(5.8)

上式保留一级小量,得到

$$H'_{mn} + C_m E_m^{(0)} = E_n^{(0)} C_m (5.9)$$

我们得到

$$C_m = \frac{H'_{mn}}{E_n^{(0)} - E_m^{(0)}} \tag{5.10}$$

将这样得到的C_m记为C⁽¹⁾.再代入(5.6),我们得到能级的二级修正:

$$E_n^{(2)} = \sum_{k \neq n} C_k^{(1)} H'_{nk} = \sum_{k \neq n} \frac{H'_{kn} H'_{nk}}{E_n^{(0)} - E_m^{(0)}} = \sum_{k \neq n} \frac{|H'_{nk}|^2}{E_n^{(0)} - E_k^{(0)}}$$
(5.11)

例:原子的一个价电子的等效势可以写为

$$V(r) = -\frac{Ze^2}{r} - \lambda a \frac{e^2}{r^2}, \qquad 0 \le \lambda \ll 1$$
(5.12)

求基态能级.

解:

$$H_0 = \frac{p^2}{2\mu} - \frac{Ze^2}{r}, \qquad H' = -\lambda a \frac{e^2}{r^2}$$
(5.13)

 H_0 为类氢原子哈密顿量,所以 $E_k^{(0)} = -\frac{Z^2 e^2}{2n^2 a}$,基态 $E_1^{(0)} = -\frac{Z^2 e^2}{2a}$,

$$\psi_1^{(0)} = \psi_{100} = \sqrt{\frac{Z^3}{\pi a^3}} e^{-\frac{Zr}{a}}.$$
(5.14)

基态非简并。

能级的一级修正是

$$E_{1}^{(1)} = H_{11}' = -\frac{\lambda a e^{2} Z^{3}}{\pi a^{3}} \int e^{-\frac{Zr}{a}} (\frac{1}{r^{2}}) e^{-\frac{Zr}{a}} r^{2} dr d\Omega$$
$$= -\frac{\lambda a e^{2} Z^{3}}{\pi a^{3}} \times 4\pi \int_{0}^{\infty} e^{-\frac{2Zr}{a}} dr$$
$$= -\frac{2\lambda Z^{2} e^{2}}{a}$$

因此基态能量为 $E_1 = E_1^{(0)} + E_1^{(1)} = -\frac{Z^2 e^2}{2a}(1+4\lambda)$ 这里对 H'_{11} 的计算,可以通过下式得到.

$$\langle \frac{1}{r^2} \rangle_{nlm} = \frac{Z^2}{a^2 n^3 (l + \frac{1}{2})}.$$
 (5.15)

这个公式可以利用Hellmann定理证明.

证明: 根据类氢原子的哈密顿量

$$H = \frac{P_r^2}{2\mu} + \frac{l(l+1)\hbar^2}{2\mu r^2} - \frac{e^2}{r}$$
(5.16)

写出径向本征方程

$$-\frac{\hbar^2}{2\mu}\chi'' + V\chi + \frac{l(l+1)\hbar^2}{2\mu r^2}\chi = E_{nl}\chi$$
(5.17)

我们可以理解为一个一维问题,其哈密顿为 $H = p^2/2m + V + l(l+1)\hbar^2/2\mu r^2$. Hellman 定理告诉我们

$$\langle \frac{\partial H}{\partial l} \rangle_{nlm} = \langle (l + \frac{1}{2}) \frac{\hbar^2}{\mu r^2} \rangle_{nlm} = \frac{\partial E_{nl}}{\partial l}$$
(5.18)

能级虽然由量子数n决定,但是由于 $n = n_r + l + 1$,所以 $\frac{\partial E_{nl}}{\partial l} = \frac{\partial E_{nl}}{\partial n}$,因此

$$(l+\frac{1}{2})\frac{\hbar^2}{\mu}\langle \frac{1}{r^2} \rangle_{nlm} = \frac{Z^2 e^2}{an^3}$$
(5.19)

也就是

$$\langle \frac{1}{r^2} \rangle_{nlm} = \frac{Z^2 e^2 \mu}{a n^3 (l + \frac{1}{2}) \hbar^2} = \frac{Z^2}{a^2 n^3 (l + \frac{1}{2})}$$
(5.20)

此问题实际是可严格求解的。我们写出径向运动方程:

$$\chi'' + \frac{2\mu}{\hbar^2} \left(E + \frac{e^2}{r} + \frac{\lambda a e^2}{r^2} - \frac{l(l+1)\hbar^2}{2\mu r^2}\right)\chi = 0,$$
(5.21)

注意 $ae^2 = \frac{\hbar^2}{\mu e^2} \times e^2 = \frac{2\hbar^2}{2\mu}$, 微扰势能是与角动量离心能类似的:

$$\chi'' + \frac{2\mu}{\hbar^2} \left(E + \frac{e^2}{r} - \frac{(l(l+1) - 2\lambda)\hbar^2}{2\mu r^2}\right)\chi = 0,$$
(5.22)

令 $l(l+1) - 2\lambda = l'(l'+1), 则(5.22)$ 改写成

$$\chi'' + \frac{2\mu}{\hbar^2} \left(E + \frac{e^2}{r} - \frac{l'(l'+1)\hbar^2}{2\mu r^2}\right)\chi = 0,$$
(5.23)

同样化为合流超几何方程. 定义主量子数n' = l' + n_r + 1(非整数),

$$E_{n'} = -\frac{e^2}{2a} \frac{1}{n'^2} \tag{5.24}$$

用*l*和λ解出*l*':

$$l' = \frac{1}{2} \left[-1 + \sqrt{1 + 4(l^2 + l - 2\lambda)} \right]$$
(5.25)

注意,取"+"根是由于 $\lambda = 0$ 时l' = l.

当 $l = 0, n_r = 0$ (基态), 泰勒展开到一阶 $l' \approx -2\lambda$, 所以 $n' \approx 1 - 2\lambda$,

$$E_0 \approx -\frac{e^2}{2a} \frac{1}{(1-2\lambda)^2} \approx \frac{-e^2}{2a} (1+4\lambda) \quad (-\%)$$
(5.26)

例:一维谐振子 ω ,受微扰 $H' = \frac{1}{2}\lambda m\omega^2 x^2$. 严格解: $E_n = (n + \frac{1}{2})\hbar\omega\sqrt{1+\lambda}$ 现利用微扰论计算

 $H_0 = \frac{1}{2}m\omega^2 x^2 + \frac{p^2}{2m}, E_n^{(0)} = (n + \frac{1}{2})\hbar\omega,$ (5.27)

$$\psi_n^{(0)} = N_n H_n(\alpha x) e^{-\frac{\alpha^2 x^2}{2}}, \alpha = \sqrt{\frac{m\omega}{\hbar}}$$
(5.28)

每个能级都是非简并的,可以计算修正

$$E_n^{(1)} = \langle n^{(0)} | H' | n^{(0)} \rangle = \lambda \langle n^{(0)} | \frac{1}{2} m \omega^2 x^2 | n^{(0)} \rangle$$
(5.29)

利用维里定理: $E_n^{(1)} = \frac{\lambda E_n^{(0)}}{2}$,也可直接计算.

利用 $x^2 | n^{(0)} \rangle$ 与 $| n - 2^{(0)} \rangle$, $| n^{(0)} \rangle$, $| n + 1^{(0)} \rangle$ 的关系

$$E_n^{(2)} = \sum_{k \neq n} \frac{|H'_{nk}|^2}{E_n^{(0)} - E_k^{(0)}} = \left(\frac{1}{2}m\omega^2\lambda\right)^2 \sum_{k \neq n} \frac{|\langle n^{(0)}|x^2|k^{(0)}|^2}{(n-k)\hbar\omega}$$
(5.30)

$$\langle n^{(0)} | x^2 | k^{(0)} \rangle = \sum_{l} \langle n^{(0)} | x | l^{(0)} \rangle \langle l^{(0)} | x | k^{(0)} \rangle$$
(5.31)

又因为

$$x|k^{(0)}\rangle = \frac{1}{\alpha} \left[\sqrt{\frac{k}{2}}|k-1^{(0)}\rangle + \sqrt{\frac{k+1}{2}}|k+1^{(0)}\rangle\right]$$
(5.32)

所以 $n = k \pm 2$,上式不为0, (注意 $n \neq k$)

$$E_n^{(2)} = \frac{(\lambda m \omega^2)^2}{4} \frac{1}{\alpha^4} \left[\frac{n(n-1)}{2 \times 2} - \frac{(n+1)(n+2)}{2 \times 2}\right] / 2\hbar\omega$$

$$E_n^{(2)} = \frac{-1}{8} \lambda^2 E_n^{(0)}$$

对比严格解: $\sqrt{1+\lambda} = 1 + \frac{\lambda}{2} - \frac{1}{8}\lambda^2 + \cdots$ 泰勒展开

5.2 简并态微扰论

*H*₀描述的系统加入微扰*H*′后能级会变化.上节讨论了*H*₀的某个非简并能级在*H*′作用下的变化,本节讨论简并的能级的情况:

$$H_0|n\nu\rangle^{(0)} = E_0^{(0)}|n\nu\rangle^{(0)}, \qquad \nu = 1, 2, \cdots, f.$$
 (5.33)

f为能级简并度.比如氢原子的n = 2能级,

$$\begin{array}{ll} \psi_{200}, & \psi_{210}, & \psi_{211}, & \psi_{21-1}, \\ \nu = 1, & \nu = 2, & \nu = 3, & \nu = 4 \end{array} \quad f = 4$$

H'是另外的能量,比如外加电场中电子获得的势能.我们需要求解

$$(H_0 + H')|n\rangle = E_n|n\rangle. \tag{5.34}$$

假设

$$|n\rangle = C_1 |n1\rangle^{(0)} + C_2 |n2\rangle^{(0)} + \dots + C_f |nf\rangle^{(0)} + \sum_{k \neq n\nu} C_k^{(1)} |k\rangle^{(0)}$$
(5.35)

其中 $\sum_{\nu} C_{\nu} |n\nu\rangle^{(0)}$ 起到非简并情况下 $|n^{(0)}\rangle$ 的作用,是零级波函数, $|C_{\nu}|$ 并不要求是小量。但是 $C_{k}^{(1)}$ 是小量。上式于是也可以写成

$$|n\rangle = |n^{(0)}\rangle + \sum_{k \neq n\nu} C_k^{(1)} |k\rangle^{(0)}$$
(5.36)

代入(5.34), 只考虑一阶小量:

$$E_n^{(0)} \sum_{\nu=1}^f C_\nu |n\nu\rangle^{(0)} + \sum_k E_k^{(0)} C_k^{(1)} |k\rangle^{(0)} + H' \sum_{\nu=1}^f C_\nu |n\nu\rangle^{(0)}$$

= $E_n (\sum_{\nu=1}^f C_\nu |n\nu\rangle^{(0)} + \sum_{k\neq n} C_k^{(1)} |k\rangle^{(0)})$ (5.37)

将 E_n 写成各级近似之和: $E_n = E_n^{(0)} + E_n^{(1)} + E_n^{(2)} + \cdots$ 我们发现,在n能级各简并态张开的子空间中有

$$H' \sum_{\nu} C_{\nu} |n\nu\rangle^{(0)} = E_n^{(1)} \sum_{\nu} C_{\nu} |n\nu\rangle^{(0)}.$$
(5.38)

计算与(0) $(n\nu')$ 的内积:

$$\sum_{\nu} H'_{\nu'\nu} C_{\nu} = E_n^{(1)} C_{\nu'} \tag{5.39}$$

上式可以写成明显的矩阵形式:

$$\begin{pmatrix} H'_{11} & H'_{12} & \cdots & H'_{1f} \\ H'_{21} & H'_{22} & \cdots & H'_{2f} \\ \vdots & \ddots & & \\ H'_{f1} & H'_{f2} & \cdots & H'_{ff} \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_f \end{pmatrix} = E_n^{(1)} \begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_f \end{pmatrix}$$
(5.40)

是H'的本征方程.

一般情况,
$$E_n^{(1)}$$
有 f 个解, 每个解对应一个矢量 $\begin{pmatrix} C_1 \\ \vdots \\ C_f \end{pmatrix}$. 这 f 个解如果不相同, 就是简并解除了!

我们记 $E_n^{(1)}$ 的f个解为 $E_n^{(1)}(\mu), \mu = 1, \dots, f$. 对应的矢量 C_{ν} 记为 $C_{\nu}^{(0)}(\mu)$, 零级波函数写为

$$|n^{(0)}\rangle_{\mu} = \sum_{\nu} C^{(0)}_{\nu}(\mu) |n\nu\rangle^{(0)}$$
(5.41)

此波函数相当于非简并情况的|n⁽⁰⁾>。

用类似的方法我们得到Eq.(5.42)

$$C_m^{(1)}(\mu) = \frac{H'_{mn}}{E_n^{(0)} - E_m^{(0)}}$$
(5.42)

只不过其中

$$H'_{mn} = \langle m^{(0)} | H' | n^{(0)} \rangle_{\mu}$$
(5.43)

最初假设的波函数Eq.(5.35) 就是

$$|n\rangle_{\mu} = |n^{(0)}\rangle_{\mu} + \sum_{k \neq n\nu} C_k^{(1)}(\mu)|k\rangle^{(0)}$$
(5.44)

这是对 $|n^{(0)}\rangle_{\mu}$ 的一级修正.

我们可以进而得到

$$E_n^{(2)}(\mu) = \sum_{k \neq n} \frac{|H'_{nk}|^2}{E_n^{(0)} - E_k^{(0)}}$$
(5.45)

这里

$$|H'_{nk}|^2 = |\langle k^{(0)}|H'|n^{(0)}\rangle_{\mu}|^2 = \sum_{\nu'} \sum_{\nu} C_{\nu}(\mu) C^*_{\nu'}(\mu) \langle {}^{(0)}n\nu'|H'|k^{(0)}\rangle\langle k^{(0)}|H|n\nu^{(0)}\rangle.$$
(5.46)

我们看到公式与非简并能级的情况一样,只是零级波函数要用Eq.(5.41).

如果 $[H', H_0] = 0$, 两者可以有共同本征态, (5.40)中H'就可能是对角的. 那么 $E_n^{(1)}(\mu) = H'_{\mu\mu}$, 对应本征态

$$\oplus C^{(0)}_{\mu}(\mu) = 1, C^{(0)}_{\nu \neq \mu}(\mu) = 0 \rightarrow \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}_{\mu}$$

例:氢原子的Stark效应

氢原子的第一激发态四重简并: $\psi_{200}, \psi_{210}, \psi_{211}, \psi_{21-1}$. 加上电场,这一能级会分裂(解除简并). 哈密顿 量可以写成两部分之和

$$H_0 = \frac{P_r^2}{2\mu} + \frac{L^2}{2\mu r^2} + \left(-\frac{e^2}{r}\right)$$
(5.47)

$$H' = e\vec{\mathcal{E}} \cdot \mathbf{r} = e\mathcal{E}r\cos\theta = e\mathcal{E}z \tag{5.48}$$

取电场方向为z, z = 0为零势面.

在通常的实验条件下 $\mathcal{E} < 10^5 v/cm$, H'中的z按波尔半径计算, 可以得到微扰能量 $\approx 10^{-2} ev \ll 13.6 ev$. 可以看作微扰。

对基态 ψ_{100} , $\langle H' \rangle = 0$, 这是因为 $r \cos \theta = z$ 是奇宇称物理量,基态波函数是偶宇称的,所以 $\langle z \rangle = 0$,能级在一级近似下不移动.

而对于n = 2的能级,它是简并的: $\psi_{200}, \psi_{210}, \psi_{211}, \psi_{21-1}$.需要用简并态微扰法处理.四个态具体的波函数为

$$\psi_{200} = R_{20}Y_{00}, \quad \psi_{210} = R_{21}Y_{10}, \quad \psi_{211} = R_{21}Y_{11}, \quad \psi_{21-1} = R_{21}Y_{1-1}$$
(5.49)

我们将四个态分别记为 $\psi_{21}^{(0)}, \psi_{22}^{(0)}, \psi_{23}^{(0)}, \psi_{24}^{(0)},$ 来计算H'的矩阵元 $H_{\nu\nu'}, \quad (\nu, \nu' = 1, 2, 3, 4.)$ 利用公式

$$\cos\theta Y_{lm} = a_{lm}Y_{l+1,m} + a_{l-1,m}Y_{l-1,m},\tag{5.50}$$

其中

$$a_{lm} = \sqrt{\frac{(l+1)^2 - m^2}{(2l+1)(2l+3)}},$$
(5.51)

我们知道所有对角矩阵元都为零,并且非对角矩阵元中也只有 $H'_{12} = (H'_{21})^* \neq 0$:

$$H'_{12} = \int R_{20}Y_{00}(e\mathcal{E}r\cos\theta)R_{21}Y_{10}r^2drd\Omega$$
$$= \frac{e\mathcal{E}}{\sqrt{3}}\int_0^\infty R_{20}R_{21}r^3dr$$
$$= -3e\mathcal{E}a = H'_{21}$$

因为其它非对角矩阵元的m不同,导致内积为零。

H'的其它矩阵元为零还可以这样证明:

$$\therefore [z, L_z] = 0$$

$$\therefore (Y_{l'm'}, zL_zY_{lm}) = (Y_{l'm'}, L_zzY_{lm})$$

$$\therefore m\hbar(Y_{l'm'}, zY_{lm}) = m'\hbar(Y_{l'm'}, zY_{lm})$$

当 $m \neq m'$ 时,对应的H'矩阵元为0.

此外由于z是奇函数 (奇宇称), 而 $\psi_{200}, \psi_{210}, \psi_{211}, \psi_{21-1}$ 具有宇称性: 当 $\mathbf{r} \to -\mathbf{r}$, 也就是 $r \to r, \theta \to \pi - \theta, \phi \to \phi + \pi$ 时, $Y_{lm} \to (-1)^l Y_{lm}$. 这容易从 Y_{00} 等于常数, $Y_{10} \propto \cos\theta, Y_{1,1} \propto \sin\theta \exp(i\phi), Y_{1,-1} \propto \sin\theta \exp(-i\phi)$ 看出.因此, $H' \div \psi_{200}, \psi_{210}, \psi_{211}, \psi_{21-1}$ 中的期望值为零。

H'的本征方程为

本征值为

$$E_2^{(1)}(1) = 3e\mathcal{E}a, E_2^{(1)}(2) = -3e\mathcal{E}a, E_2^{(1)}(3) = 0, E_2^{(1)}(4) = 0,$$

分别对应四个本征态

$$\begin{array}{c} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{array} \right)_{1} \left(\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{array} \right)_{2} \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} \right)_{3} \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right)_{4} \right)_{4}$$

可以写为

$$\langle \mathbf{r} | 2^{(0)} \rangle_1 \equiv \psi_{21} = \frac{1}{\sqrt{2}} \psi_{200} - \frac{1}{\sqrt{2}} \psi_{210}, \langle \mathbf{r} | 2^{(0)} \rangle_2 \equiv \psi_{22} = \frac{1}{\sqrt{2}} \psi_{200} + \frac{1}{\sqrt{2}} \psi_{210} \langle \mathbf{r} | 2^{(0)} \rangle_3 \equiv \psi_{23} = \psi_{211}, \langle \mathbf{r} | 2^{(0)} \rangle_4 \equiv \psi_{24} = \psi_{21-1}$$

物理理解:氢原子的电偶极矩为 $\vec{D} = -e\mathbf{r}$.在未加电场时,氢原子在 $\psi_{200}, \psi_{210}, \psi_{211}, \psi_{21-1}$ 的电偶极 矩 $\langle \vec{D} \rangle = 0$.

Figure 5.1: H_0 的四个简并的本征态组合成新的 $H_0 + H'$ 的近似本状态,能级简并部分解除。

加上电场之后,对于 ψ_{21} 态

$$\langle D_z \rangle_{\psi_{21}} = -e(\sqrt{\frac{1}{2}}(\psi_{200} - \psi_{210}), z\sqrt{\frac{1}{2}}(\psi_{200} - \psi_{210}))$$

$$= e(\frac{1}{2}(\psi_{200}, z\psi_{210}) + \frac{1}{2}(\psi_{210}, z\psi_{200}))$$

$$= -3ea$$

我们看到叠加态破坏了原本征态的宇称性,导致原子表现出非零的偶极矩.

类似可以计算x,y分量,均为零.

而对于 ψ_{22} 态

$$\langle D_x \rangle_{\psi_{22}} = \langle D_y \rangle_{\psi_{22}} = 0, \quad \langle D_z \rangle_{\psi_{22}} = 3ea$$

具有偶极矩的原子在外电场中获得势能: $-\langle D_z \rangle | \mathcal{E} |$,因此 ψ_{21} 能量升高,而 ψ_{22} 能量下降.

Chapter 6

角动量耦合

6.1 电子的轨道角动量与自旋角动量的耦合

在之前的学习中,我们分别研究了自旋1/2粒子的自旋自由度和粒子的空间自由度.对粒子的完整描述当然 应该同时包括空间和自旋(内部)自由度.为此我们需要的基矢是

$$|\mathbf{r},\pm\rangle = |\mathbf{r}\rangle \otimes |\pm\rangle \tag{6.1}$$

一个粒子的量子态在这个坐标加自旋Sz表象下可以写为

$$|\alpha\rangle = \int d\mathbf{r}(\psi_1(\mathbf{r})|\mathbf{r}, +\rangle + \psi_2(\mathbf{r})|\mathbf{r}, -\rangle)$$
(6.2)

波函数可写成

$$\langle \mathbf{r} | \alpha \rangle = \psi_1(\mathbf{r}) | + \rangle + \psi_2(\mathbf{r}) | - \rangle \tag{6.3}$$

表示成二分量形式:

$$\begin{pmatrix}
\psi_1(\mathbf{r}) \\
\psi_2(\mathbf{r})
\end{pmatrix}$$
(6.4)

也称旋量波函数(spinor wavefunction). $\psi_{1,2}(\mathbf{r})$ 分别是粒子在**r**处出现,同时自旋朝上(朝下)的几率幅密度. 满足

$$\int dr (|\psi_1(\mathbf{r})|^2 + |\psi_2(\mathbf{r})|^2) = 1$$
(6.5)

这一推广并不奇怪. 在处理一维问题时, 坐标表象基矢是 $|x\rangle$. 我们自然地推广到三维空间, 基矢为 $|\mathbf{r}\rangle = |x, y, z\rangle$.

$$|\alpha\rangle = \int \mathrm{d}x \mathrm{d}y \mathrm{d}z \psi(x, y, z) |x, y, z\rangle \tag{6.6}$$

其中 $|x, y, z\rangle = |x\rangle \otimes |y\rangle \otimes |z\rangle$. 一维的完备性关系 $\int dx |x\rangle \langle x| = 1$ 变成

$$\int dx dy dz |x, y, z\rangle \langle x, y, z| = 1$$
(6.7)

原子中的电子既有轨道角动量又有自旋角动量,它们的矢量和为总角动量: J = L + S. 即各分量满足: $L_{\alpha} + S_{\alpha} = J_{\alpha}, \alpha = x, y, z$. 在量子力学里面我们要注意: 轨道角动量算符作用到空间运动状态,而自旋算符 作用到自旋状态.可以这样表示:

$$\mathbf{J} = \mathbf{L} \otimes 1 + 1 \otimes \mathbf{S} \tag{6.8}$$

'1'分别表示位置空间和自旋空间的单位算符.

设想我们计算一个由**S**, L构成的物理量 $F = S_z L_z$ 作用到 $|\alpha\rangle$

$$\langle \mathbf{r} | S_z L_z | \alpha \rangle = S_z(\hat{L}_z \psi_1(\mathbf{r}) | + \rangle + \hat{L}_z \psi_2(\mathbf{r}) | - \rangle) = \frac{\hbar}{2} \hat{L}_z \psi_1(\mathbf{r}) | + \rangle - \frac{\hbar}{2} \hat{L}_z \psi_2(\mathbf{r}) | - \rangle)$$
(6.9)

这里用到 $\langle \mathbf{r} | L_z | \psi \rangle = \hat{L}_z \psi(\mathbf{r})$. 上式可以写成 S_z 表象下旋量形式

$$\langle \mathbf{r}|F|\alpha \rangle = \begin{pmatrix} \hbar/2 & 0\\ 0 & -\hbar/2 \end{pmatrix} \begin{pmatrix} \hat{L}_z \psi_1(\mathbf{r})\\ \hat{L}_z \psi_2(\mathbf{r}) \end{pmatrix}$$
(6.10)

或者

$$\langle \mathbf{r}|F|\alpha \rangle = \frac{\hbar}{2} \begin{pmatrix} \hat{L}_z & 0\\ 0 & -\hat{L}_z \end{pmatrix} \begin{pmatrix} \psi_1(\mathbf{r})\\ \psi_2(\mathbf{r}) \end{pmatrix}$$
(6.11)

根据Dirac相对论性电子运动方程,中心力场中运动的电子具有自旋轨道耦合能:

$$\xi(r)\mathbf{S} \cdot \mathbf{L} = \xi(r) \frac{J^2 - L^2 - S^2}{2},$$
(6.12)

其中

$$\xi(r) = \frac{1}{2\mu^2 c^2 r} \frac{\mathrm{d}V}{\mathrm{d}r},\tag{6.13}$$

因此我们关心J!

由于 $[L_{\alpha}, S_{\alpha}] = 0$, (不同自由度对易),易证

$$[J_x, J_y] = [L_x, L_y] + [S_x, S_y] = i\hbar J_z.$$
(6.14)

即满足角动量基本对易式,并且 $[J^2, J_z] = 0$.这表明总角动量也是一种"角动量".

由前面讲过的代数法:

- J²的本征值为j(j+1)ħ,j为正整数,或半整数.
- J_z 的本征值为 $m_j\hbar, m_j = j, j 1, \dots, -j + 1, -j.$

要描述 $\mathbf{S} \cdot \mathbf{L}$,我们需要知道 J^2, L^2, S^2 .它们是否彼此对易,或具有共同本征态?容易看到

$$[J^2, L^2] = [L^2 + S^2 + 2\mathbf{L} \cdot \mathbf{S}, L^2] = 0, \quad S^2 = \frac{3\hbar^2}{4}$$
(6.15)

它们确实彼此对易.

由于角向总共的自由度为4,还需一个与它们对易的物理量构成完全集,那就是J_z:

$$[J_z, L^2] = [L_z + S_z, L^2] = 0, \quad [J_z, S^2] = 0$$
(6.16)

所以J², L², S², J_z构成描述角动量自由度的完全集.

但这不是唯一的构成力学量完全集的方式,完全集也可以是L²,L_z,S²,S_z.但它们与S·L不是全都对易:

$$[L_z, \mathbf{S} \cdot \mathbf{L}] \neq 0, \quad [S_z, \mathbf{S} \cdot \mathbf{L}] \neq 0, \tag{6.17}$$

这导致描述自旋轨道耦合能不方便.

现在我们来求 J^2, J_z, L^2, S^2 的共同本征态, 记为 $|\phi\rangle$.

由于角动量与径向运动无关,我们写空间运动的波函数时只考虑角向部分.先写出|φ)的旋量波函数的一般形式

$$\langle \mathbf{n}(\theta,\varphi)|\phi\rangle = c_1\phi_1(\theta,\varphi)|+\rangle + c_2\phi_2(\theta,\varphi)|-\rangle = \begin{pmatrix} c_1\phi_1(\theta,\varphi)\\ c_2\phi_2(\theta,\varphi) \end{pmatrix}.$$
(6.18)

 c_1, c_2, ϕ_1, ϕ_2 待定.

 $|+\rangle$, $|-\rangle$ 可以更广义地写为 $|s, m_s\rangle$, s = 1/2是自旋量子数, m_s 是z分量量子数, 前者 $|1/2, 1/2\rangle$, 后者就 是 $|1/2, -1/2\rangle$. 还可以写为 χ_{m_s} .

上式可以这样理解:电子的空间运动用坐标表象表述,而它的自旋状态用 S_z 表象描述. $c_1\phi_1$ 是电子位 于 (θ, φ) 且自旋向上的几率振幅.其中我们要求 ϕ_1 和 ϕ_2 的模方对立体角积分归一,于是根据6.5,有 $|c_1|^2 + |c_2|^2 = 1$.

首先 $|\phi\rangle$ 是 L^2 的本征态,本征值是 $l(l+1)\hbar^2$.

$$L^2|\phi\rangle = l(l+1)\hbar^2|\phi\rangle \tag{6.19}$$

因此

$$\langle \mathbf{n}(\theta,\varphi)|\phi\rangle = c_1 Y_{lm_1}|+\rangle + c_2 Y_{lm_2}|-\rangle \tag{6.20}$$

也就是

$$|\phi\rangle = c_1|l, m_1\rangle|+\rangle + c_2|l, m_2\rangle|-\rangle = c_1|l, m_1, \frac{1}{2}, \frac{1}{2}\rangle + c_2|l, m_2, \frac{1}{2}, -\frac{1}{2}\rangle$$
(6.21)

其次, $|\phi\rangle$ 是 J_z 的本征态, 本征值是 $m_i\hbar$.

$$J_z |\phi\rangle = m_j \hbar |\phi\rangle \tag{6.22}$$

即

$$(\hat{L}_{z} + \hat{S}_{z})(c_{1}Y_{lm_{1}}|+\rangle + c_{2}Y_{lm_{2}}|-\rangle)$$

$$= c_{1}m_{1}\hbar Y_{lm_{1}}|+\rangle + c_{2}m_{2}\hbar Y_{lm_{2}}|-\rangle + \frac{\hbar}{2}c_{1}Y_{lm_{1}}|+\rangle - \frac{\hbar}{2}c_{2}Y_{lm_{2}}|-\rangle$$

$$= (m_{1} + \frac{1}{2})\hbar c_{1}Y_{lm_{1}}|+\rangle + (m_{2} - \frac{1}{2})\hbar c_{2}Y_{lm_{2}}|-\rangle$$

$$(6.23)$$

所以令 $m_1 = m, m_2 = m + 1, 则m_j = m + \frac{1}{2},$ 就可以满足(6.22).

最后 $|\phi\rangle$ 是 J^2 的本征态,本征值必须写成 $j(j+1)\hbar$ 的形式,j为整数或半整数.

$$J^{2}|\phi\rangle = j(j+1)\hbar^{2}|\phi\rangle \tag{6.24}$$

考虑 $\mathbf{S} \cdot \mathbf{L} = S_x L_x + S_y L_y + S_z L_z$, 在 S_z 表象下,利用Eq.(6.11)

$$\mathbf{S} \cdot \mathbf{L} = \frac{\hbar}{2} \begin{pmatrix} L_z & L_x - iL_y \\ L_x + iL_y & -L_z \end{pmatrix}$$
(6.25)

利用

$$(L_x - iL_y)Y_{lm+1} = \sqrt{(l-m)(l+m+1)}\hbar Y_{lm}$$
$$(L_x + iL_y)Y_{lm} = \sqrt{(l-m)(l+m+1)}\hbar Y_{lm+1}$$

我们可以计算出

$$\begin{aligned} \langle \theta, \varphi | J^2 | \phi \rangle &= L^2(c_1 Y_{lm} | + \rangle + c_2 Y_{lm+1} | - \rangle) + S^2(c_1 Y_{lm} | + \rangle + c_2 Y_{lm+1} | - \rangle) \\ &+ 2\mathbf{L} \cdot \mathbf{S}(c_1 Y_{lm} | + \rangle + c_2 Y_{lm+1} | - \rangle) \end{aligned}$$

在Sz表象下写为

$$\begin{aligned} \langle \theta, \varphi | J^2 | \phi \rangle &= (l(l+1)\hbar^2 + \frac{3}{4}\hbar^2) \begin{pmatrix} c_1 Y_{lm} \\ c_2 Y_{lm+1} \end{pmatrix} \\ &+ \hbar^2 \begin{pmatrix} c_1 m Y_{lm} + \sqrt{(l-m)(l+m+1)}c_2 Y_{lm} \\ c_1 \sqrt{(l-m)(l+m+1)}Y_{lm+1} - c_2(m+1)Y_{lm+1} \end{pmatrix} \\ &= j(j+1)\hbar^2 \begin{pmatrix} c_1 Y_{lm} \\ c_2 Y_{lm+1} \end{pmatrix} \end{aligned}$$

显然

$$c_1 m + \sqrt{(l-m)(l+m+1)}c_2 = \lambda c_1$$

$$c_1 \sqrt{(l-m)(l+m+1)} - c_2(m+1) = \lambda c_2$$
(6.26)

其中 $\lambda = j(j+1) - l(l+1) - \frac{3}{4}$. 这是关于 c_1, c_2 的线性齐次方程,或本征方程.易得

$$\lambda_1 = l, \tag{6.27}$$

对应的本征态为

$$\frac{c_1}{c_2} = \sqrt{\frac{l+m+1}{l-m}}$$
(6.28)

归一化得

$$c_1 = \sqrt{\frac{l+m+1}{2l+1}}, c_2 = \sqrt{\frac{l-m}{2l+1}}.$$
 (6.29)

另一个本征值

$$\lambda_2 = -l - 1, \tag{6.30}$$

归一化得

$$c_1 = -\sqrt{\frac{l-m}{2l+1}}, c_2 = \sqrt{\frac{l+m+1}{2l+1}}$$
(6.31)

Figure 6.1: 角动量耦合示意图: 总角动量的大小可以比轨道角动量大,也可以比它小.

对于 $\lambda = l, j(j+1) = (l + \frac{1}{2})(l + \frac{3}{2}), j = l + \frac{1}{2}$,可理解为L与S同向.

$$\begin{aligned} \langle \mathbf{n}(\theta,\varphi) | \phi \rangle &= \sqrt{\frac{l+m+1}{2l+1}} Y_{lm} | + \rangle + \sqrt{\frac{l-m}{2l+1}} Y_{lm+1} | - \rangle \\ &= \frac{1}{\sqrt{2l+1}} \begin{pmatrix} \sqrt{l+m+1} Y_{lm} \\ \sqrt{l-m} Y_{lm+1} \end{pmatrix} \equiv \phi_{ljm_j} \end{aligned}$$

这个旋量波函数按习惯通常写为*ϕljmi*. 其转置复共轭是对应左本征矢的旋量波函数

$$\langle \phi | \mathbf{n}(\theta, \varphi) \rangle = \frac{1}{\sqrt{2l+1}} \left(\sqrt{l+m+1} Y_{lm}^*, \sqrt{l-m} Y_{lm+1}^* \right) = \phi_{ljm_j}^{\dagger}$$
(6.32)

可以直接利用Dirac记号记为 $|lsjm_j\rangle, (j = l + 1/2), s = 1/2$ 是电子自旋量子数.

$$|lsjm_{j}\rangle = \sqrt{\frac{l+m+1}{2l+1}}|l,m,\frac{1}{2},\frac{1}{2}\rangle + \sqrt{\frac{l-m}{2l+1}}|l,m+1,\frac{1}{2},-\frac{1}{2}\rangle$$
(6.33)

对于 $\lambda = -l - 1, j = l - \frac{1}{2},$ 可理解为L与S 反向!

$$\langle \mathbf{n}(\theta,\varphi)|\phi
angle = \frac{1}{\sqrt{2l+1}} \left(\begin{array}{c} -\sqrt{l-m}Y_{lm}\\ \sqrt{l+m+1}Y_{lm+1} \end{array}
ight)$$

这个旋量波函数按还是写为 ϕ_{ljm_j} , 只不过j = l - 1/2. 其厄密共轭 $\phi^{\dagger}_{ljm_j}$ 描述对偶的左矢. 我们也可以把它记为 $|lsjm_j\rangle$, (j = l - 1/2)

$$|lsjm_{j}\rangle = -\sqrt{\frac{l-m}{2l+1}}|l,m,\frac{1}{2},\frac{1}{2}\rangle + \sqrt{\frac{l+m+1}{2l+1}}|l,m+1,\frac{1}{2},-\frac{1}{2}\rangle$$
(6.34)

J², J_z, L², S²的共同本征矢满足正交归一性关系

$$\langle lsjm_j | l's'j'm'_j \rangle = (\phi_{ljm_j}, \phi_{l'j'm'_j}) = \int d\Omega \phi^{\dagger}_{ljm_j} \phi_{l'j'm'_j} = \delta_{ll'} \delta_{jj'} \delta_{m_jm'_j}$$
(6.35)

 $\phi^{\dagger}_{ljm_j}\phi_{l'j'm'_j}$ 按矩阵乘法进行.利用球谐函数的正交归一性容易证明.

6.2 碱金属原子能级的精细结构

碱金属的最外层电子在核与内层电子的综合库仑场的作用下运动,势能可近似为中心势V(r),但并不 $\mathbb{E}-\frac{Ze^2}{r}$ 这样的类氢形式.该电子的能级主要由V(r)与动能决定

$$H_0 = \frac{p_r^2}{2\mu} + \frac{L^2}{2\mu r^2} + V(r).$$
(6.36)

对它的精细修正来自自旋轨道耦合能(由狄拉克给出)

$$H' = \xi(r)\mathbf{S} \cdot \mathbf{L} \tag{6.37}$$

其中

$$\xi(r) = \frac{1}{2\mu^2 c^2} \frac{1}{r} \frac{dV}{dr}$$
(6.38)

公式中出现光速,这是相对论效应的标志.

我们来对其大小进行粗略估计:原子大小取 $r \sim a$,势能估计为 $V \sim \frac{e^2}{a}$,其导数估计为 $\frac{dV}{dr} \sim \frac{e^2}{a^2}$, S·L ~ \hbar^2 . 于是

$$H' \sim \frac{\hbar^2}{\mu^2 c^2} \frac{e^2}{a^3} \sim 10^{-3} ev \tag{6.39}$$

由于 $a^2 = \frac{\hbar^4}{\mu^2 e^4}$,上式可改写为

$$H' = \frac{e^2}{a} (\frac{e^2}{\hbar c})^2$$
(6.40)

其中 $\frac{e^2}{\hbar c} \sim \frac{1}{137}$ 就是著名的**精细结构常数**.

之前我们在处理中心力问题时,力学量完全集选为 H_0, L^2, L_z .考虑到自旋自由度,实际上还包括 S^2, S_z . 但是由于它们不体现在哈密顿量里,所以一般不写出来. L^2, L_z, S_z 的共同本征态是 $Y_{lm}\chi_{ms}$. $m_s = 1/2, -1/2$ 分别表示自旋朝上与朝下态.量子数 l, m, m_s 称为'好量子数',因为对应力学量与 H_0 对易,是守恒量.

首先,我们考虑H₀的本征方程

$$H_0\psi_n^{(0)} = E_n^{(0)}\psi_n^{(0)} \tag{6.41}$$

可以设

$$\psi_n^{(0)} = R_{nl}^{(0)} Y_{lm} \chi_m$$

记为 $\psi_{nlmm_s}^{(0)}$. 代入(6.41)

$$H_0 R_{nl}^{(0)} Y_{lm} \chi_{m_s} = \left[\frac{p_r^2}{2\mu} + \frac{l(l+1)\hbar^2}{2\mu r^2} + V(r)\right] R_{nl}^{(0)} Y_{lm} \chi_{m_s} = E_n^{(0)} R_{nl}^{(0)} Y_{lm} \chi_{m_s}$$
(6.42)

化为径向方程:

$$\left[\frac{p_r^2}{2\mu} + \frac{l(l+1)\hbar^2}{2\mu r^2} + V(r)\right]R_{nl}^{(0)} = E_{nl}^{(0)}R_{nl}^{(0)}$$
(6.43)

这里注意到 $E_{nl}^{(0)}$ 由n, l共同决定, n是主量子数. (参考微扰理论部分对非类氢势能原子能级的计算).

现在 $H = H_0 + H'$,自旋自由度进入了总的Hamiltonian,我们选 (H, L^2, J^2, J_z) 为力学量完全集.这是由于我们注意到了 H_0, H' 都与 L^2, J^2, J_z 对易, l, j, m_j 在H包不包含H'时都是'好量子数',这为后面的微扰计算带来极大方便.

先看H₀的本征方程(6.41). 可以设

$$\psi_n^{(0)} = R_{nl}^{(0)} \phi_{ljm_j},$$

记为 $\psi_{nlim_i}^{(0)}$. 代入(6.41)

$$H_0 R_{nl}^{(0)} \phi_{ljm_j} = \left[\frac{p_r^2}{2\mu} + \frac{l(l+1)\hbar^2}{2\mu r^2} + V(r)\right] R_{nl}^{(0)} \phi_{ljm_j} = E_{nl}^{(0)} R_{nl}^{(0)} \phi_{ljm_j} \tag{6.44}$$

Figure 6.2: 碱金属外层电子的'不精细'能级.

同样得到径向方程(6.43),因此能级与选l,m,ms为量子数是一样的.

如图Fig. 6.2, 以3p为例(p表示l = 1), 能级是6重简并的:

在以 H_0, L^2, L_z, S_z 完全集时(也称非耦合表象), 6个简并态波函数 $\psi_{nlmm_s}^{(0)}$ 分别是 $\psi_{311\frac{1}{2}}^{(0)}, \psi_{310\frac{1}{2}}^{(0)}, \psi_{310\frac{1}{2}}^{(0)}, \psi_{310-\frac{1}{2}}^{(0)}, \psi_$

而在以 H_0, L^2, J^2, J_z 完全集时(耦合表象), 6个简并态是 $\psi_{nljm_i}^{(0)}$,其中

$$l = 1, \quad j = \frac{3}{2}, m_j = -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{3}{2}$$

再看3s能级:

以 H_0, L^2, L_z, S_z 完全集时, 2个简并态分别是 $\psi_{300\frac{1}{2}}^{(0)}, \psi_{300-\frac{1}{2}}^{(0)},$ 对应 $n = 3, l = 0, m = 0, m_s = 1/2$ 和 $n = 3, l = 0, m = 0, m_s = -1/2$.

而在以 H_0, L^2, J^2, J_z 完全集时,还是2个简并态 $\psi_{nljm_j}^{(0)}$,其中 l = 0, j只能是 $\frac{1}{2}, m_j = \pm \frac{1}{2}$,两重简并.容易验证,这两个态跟非耦合表象的两个态一样.

注意,由于 $H' = J^2, J_z, L^2$ 对易, l, j, m_j 仍然是好量子数,但是 m, m_s 不再是好量子数了.因此在包含H'时选择 H_0, L^2, J^2, J_z 作为完全集是方便的.

现在我们利用简并态微扰论来计算能级修正到一级. 以为3s例,记

$$R_{30}^{(0)}\phi_{0\frac{1}{2}\frac{1}{2}} \to \psi_{3s,1}^{(0)}, \qquad R_{30}^{(0)}\phi_{0\frac{1}{2}\frac{-1}{2}} \to \psi_{3s,2}^{(0)}$$

首先, 写零级波函数: $\psi_{3s}^{(0)} = c_1 \psi_{3s,1}^{(0)} + c_2 \psi_{3s,2}^{(0)}$. H'的矩阵元

$$\begin{aligned} H'_{\nu,\nu'} &= (\psi^{(0)}_{3s,\nu}, H'\psi^{(0)}_{3s,\nu'}) \\ &= (\psi^{(0)}_{3s,\nu}, \xi(r) \mathbf{S} \cdot \mathbf{L} \psi^{(0)}_{3s,\nu'}) \end{aligned}$$

注意 $\mathbf{S} \cdot \mathbf{L} = (J^2 - L^2 - S^2)/2$, 因此

$$\begin{aligned} H_{\nu,\nu'}' &= \frac{j(j+1) - l(l+1) - 3/4}{2} (\psi_{3s,\nu}^{(0)},\xi(r)\psi_{3s,\nu'}^{(0)}) \\ &= \frac{j(j+1) - l(l+1) - 3/4}{2} \int r^2 dr d\Omega R_{30}^{(0)} \phi_{0\frac{1}{2}m_j}^{\dagger} \xi(r) R_{30}^{(0)} \phi_{0\frac{1}{2}m_j'}^{\dagger} \\ &= \frac{j(j+1) - l(l+1) - 3/4}{2} (R_{30}^{(0)},\xi(r) R_{30}^{(0)}) (\phi_{0\frac{1}{2}m_j},\phi_{0\frac{1}{2}m_j'}) \end{aligned}$$

其中

$$(R_{30}^{(0)},\xi(r)R_{30}^{(0)}) \equiv \int R_{30}^{(0)}\xi(r)R_{30}^{(0)}r^2dr$$
(6.45)

$$(\phi_{0\frac{1}{2}m_j}, \phi_{0\frac{1}{2}m'_j}) \equiv \int d\Omega \phi^{\dagger}_{0\frac{1}{2}m_j} \phi_{0\frac{1}{2}m'_j}$$
(6.46)

由于正交归一性

$$(\phi_{ljm_j}, \phi_{l'j'm'_j}) = \delta_{ll'}\delta_{jj'}\delta_{m_jm'_j} \tag{6.47}$$

 $当 \nu \neq \nu'$ 时(即 $m_j \neq m'_j$),角度部分正交!H'只有对角元! 但是当由于j = 1/2, l = 0,对角元也是零.所以能级的一级修正

$$E_{3s}^{(1)} = 0 \tag{6.48}$$

能级没有变化.

现在来分析3P能级. 假设微扰后零级波函数可以写为

$$\psi_{3P}^{(0)} = \sum_{\nu} c_{\nu} \psi_{3p,\nu}^{(0)} \tag{6.49}$$

其中

$$\psi_{3p,\nu}^{(0)} = R_{31}^{(0)}\phi_{1,3/2,m_j}, \quad m_j = -3/2, -1/2, 1/2, 3/2, \quad \forall \vec{\boxtimes}\nu = 1, 2, 3, 4$$
(6.50)

$$\psi_{3p,\nu}^{(0)} = R_{31}^{(0)} \phi_{1,1/2,m_j}, \quad m_j = -1/2, 1/2, \quad \forall \vec{\Sigma} \nu = 5, 6 \tag{6.51}$$

同样,由于 ϕ_{ljm_j} 也是H'的本征态,H'只有对角元不为零,本征值就是对角元. $E_{3p\nu}^{(1)} = H'_{\nu\nu}$ 只有两个不同值:

j = 3/2时

$$\begin{aligned} (R_{31}^{(0)}\phi_{1\frac{3}{2},m_{j}},H'R_{31}^{(0)}\phi_{1\frac{3}{2},m_{j}}) &= (R_{31}^{(0)},\xi(r)R_{31}^{(0)})\frac{(\frac{3}{2}\times\frac{5}{2}-2-\frac{3}{4})}{2} \\ &= \langle\xi(r)\rangle_{31}\frac{\hbar^{2}}{2} \end{aligned}$$

対应 $m_j = \pm \frac{3}{2}, \pm \frac{1}{2}.$ j = 1/2时

$$(R_{31}^{(0)}\phi_{1\frac{1}{2},m_j}, H'R_{31}^{(0)}\phi_{1\frac{1}{2},m_j}) = \langle \xi(r) \rangle_{31}(-\hbar^2)$$
(6.52)

对应对应 $m_j = \pm \frac{1}{2}$.

Figure 6.3: 碱金属外层电子的精细结构

能级分裂成两个,如图Fig.6.3所示. 以上计算可以推广到任意*l*:

$$E_{nlj}^{(1)} = \begin{cases} \langle \xi(r) \rangle_{nl} \frac{l\hbar^2}{2}, & j = l + \frac{1}{2} \\ -\langle \xi(r) \rangle_{nl} \frac{(l+1)\hbar^2}{2}, & j = l - \frac{1}{2} \end{cases}$$
(6.53)

我们可以从另一个角度研究精细结构:

求解 $(H_0 + H')\psi_{nl} = E\psi_{nl}$ 时,由于 ϕ_{ljm_i} 也是H'的本征态,所以代入试探解 $R_{nl}^{(0)}\phi_{ljm_i}$:

$$(H_0 + H')R_{nl}^{(0)}\phi_{ljm_j} = (E_{nl}^{(0)} + E_{nl}^{(1)})R_{nl}^{(0)}\phi_{ljm_j}$$
(6.54)

$$\left[\frac{P_r^2}{2\mu} + \frac{l(l+1)\hbar^2}{2\mu r^2} + V(r) + \xi(r)\frac{l\hbar^2}{2}\right]R_{nl}^{(0)} = (E_{nl}^{(0)} + E_{nl}^{(1)})R_{nl}^{(0)}$$
(6.55)

这是一维径向方程,无简并(因为m_i不出现, j也固定).因此

$$\langle H' \rangle_{nl} = E_{nl}^{(1)} = (R_{nl}^{(0)}, \xi(r) \frac{l\hbar^2}{2} R_{nl}^{(0)}) = \langle \xi \rangle_{nl} \frac{l\hbar^2}{2}$$
(6.56)

这就是能级的向上移动 $E_{nlj=l+1/2}^{(1)}$.

 $\stackrel{\text{\tiny{le}}}{\exists} j = l - \frac{1}{2}$

$$\left[\frac{P_r^2}{2\mu} + \frac{l(l+1)\hbar^2}{2\mu r^2} + V(r) + \xi(r)\frac{-(l+1)}{2}\hbar^2\right]R_{nl}^{(0)} = (E_{nl}^{(0)} + E_{nl}^{(1)})R_{nl}^{(0)}$$
(6.57)

$$E_{nl}^{(1)} = \langle H' \rangle_{nl} = -\frac{l+1}{2}\hbar^2 \langle \xi \rangle_{nl}$$
(6.58)

这就是能级的向下移动 $E_{nlj=l-1/2}^{(1)}$.

例:计算 ϕ_{ljm_i} 下磁矩z分量的期望值.

在前面讨论氢原子磁性时,我们知道磁矩与角动量的关系.现在推广到与总角动量的关系: $\vec{\mu} = -\frac{e}{2uc}(\mathbf{J} + \mathbf{S})$,注意由于旋磁比的不同,多了一倍的自旋角动量.

$$\mu_z = -\frac{e}{2\mu c} (J_z + S_z) \tag{6.59}$$

由于是本征态, Jz的贡献易算.

关键是计算 $S_z = \frac{\hbar}{2}\sigma_z$,也就是算 $\langle \sigma_z \rangle$. 1. 当 $j = l + \frac{1}{2}$,

$$\sigma_z \phi_{ljm_j} = \frac{1}{\sqrt{2l+1}} (\sqrt{l+m+1}Y_{lm}|+) - \sqrt{l-m}Y_{lm+1}|-)$$

$$\langle \sigma_z \rangle = \int d\Omega \phi^+_{ljm_j} \sigma_z \phi_{ljm_j} = \frac{1}{2l+1} [(l+m+1) - (l-m)] = \frac{2m+1}{2l+1} = \frac{m_j}{j}$$

2. $\exists j = l - \frac{1}{2}$

$$\sigma_{z}\phi_{ljm_{j}} = \frac{1}{\sqrt{2l+1}} (-\sqrt{l-m}Y_{lm}|+) - \sqrt{l+m+1}Y_{lm+1}|-)$$

$$\langle \sigma_{z} \rangle = \int d\Omega \phi_{ljm_{j}}^{+} \sigma_{z}\phi_{ljm_{j}} = \frac{1}{2l+1} (l-m-(l+m+1)) = -\frac{m_{j}}{j+1}$$

计算中用到 $(Y_{lm}, Y_{lm}) = \int d\Omega Y_{lm}^* Y_{lm} = 1.$

我们还可以看到,虽然 S_z 与 J^2 不对易,但是由于 S_z 与 J_z 对易,在 $\phi_{ljm_j}, m_j = -j, \ldots, j$ 张开的2j + 1维空间内, S_z 的"矩阵"是对角的

$$(S_z)_{m_j,m_j'} = \int d\Omega \phi_{ljm_j'}^+ S_z \phi_{ljm_j} = \delta_{m_j,m_j'} \langle S_z \rangle_{ljm_j}$$
(6.60)

证明:

$$\begin{aligned} (\phi_{ljm'_j}, S_z J_z \phi_{ljm_j}) &= m_j \hbar(\phi_{ljm'_j}, S_z \phi_{ljm_j}) \\ &= (\phi_{ljm'_j}, J_z S_z \phi_{ljm_j}) \\ &= (J_z \phi_{ljm'_j}, S_z \phi_{ljm_j}) \\ &= m'_j \hbar(\phi_{ljm'_j}, S_z \phi_{ljm_j}) \end{aligned}$$

因此只有 $m_j = m'_j$ 时才可能有 $(S_z)_{m_j,m'_j} \neq 0$.

但是对角只是在l, j确定的"子空间".比如, $(\phi_{lj'=l+\frac{1}{2},m_j}, S_z\phi_{lj=l-\frac{1}{2},m_j})$ 可以不为零, 成为一个非零的非 对角 $(j' \neq j)$ 矩阵元.

6.3. 塞曼效应

6.3 塞曼效应

以*Na*原子光谱为例. 在磁场中光谱线发生变化:分裂成几条线,这就是Zeeman效应. 究其根源是价电子获得一个新的势能:

$$H' = -\mathbf{B} \cdot (\boldsymbol{\mu}_L + \boldsymbol{\mu}_S) = \frac{eB}{2m_e c} (L_z + 2S_z)$$
(6.61)

 μ_L 是轨道运动产生的磁矩, μ_S 是自旋产生的磁矩,前面讨论氢原子磁矩时引入了轨道运动的磁矩,即它与角动量的关系.自旋角动量同样产生磁矩,但是两者磁旋比不同,这造成因子2的出现.上式中,我们已经令磁场方向为*z*.

在没有磁场时, Na原子价电子的哈密顿量可以写成

$$H_0 = \frac{P^2}{2m_e} + V(r) + \xi(r)\vec{S}\cdot\vec{L},$$
(6.62)

最后一项是上节讨论过的导致能级精细结构的自旋轨道耦合能 (H_f) .

- 如果磁场很强,即 $\langle H' \rangle \gg \langle \xi(r) \vec{S} \cdot \vec{L} \rangle$ (可根据特征数量估计)我们忽略 H_f ,此时的Zeeman效应称为强场Zeeman效应
- 如果磁场很弱, H_f 相对而言就是重要的,称弱场Zeeman效应

6.3.1 强场Zeeman效应

$$H_0 = \frac{P_r^2}{2m_e} + \frac{L^2}{2m_e r^2} + V(r)$$
(6.63)

$$H = H_0 + H' = H_0 + \frac{eB}{2m_e c} (L_z + 2S_z)$$
(6.64)

 H, H_0, L^2, L_z, S_z 彼此对易, n, l, m, m_s 是"好"量子数, 即本征态可以写为 $R_{nl}Y_{lm}\chi_{m_s}$.

相反, *J*²与*H*′与不对易, *j*不是"好"量子数,本征态不能写为*R_{nl}* ϕ_{ljm_j} . 我们可以写出本征方程:

$$HR_{nl}Y_{lm}\chi_{m_s} = ER_{nl}Y_{lm}\chi_{m_s} \tag{6.65}$$

将其化为径向方程:

$$\frac{P_r^2}{2m_e} + \frac{l(l+1)\hbar^2}{2m_e r^2} + V(r) + \frac{e\hbar B}{2m_e c}(m+2m_s)]R_{nl} = ER_{nl}$$
(6.66)

我们知道

$$\left[\frac{P_r^2}{2m_e} + \frac{l(l+1)\hbar^2}{2m_e r^2} + V(r)\right]R_{nl}^{(0)} = E_{nl}^{(0)}R_{nl}^{(0)}$$
(6.67)

这是没有磁场时的径向方程. $E_{nl}^{(0)}$ (被视为) 已知. 很明显 $R_{nl}^{(0)}$ 还是(6.66)的解,不过

$$E = E_{nl}^{(0)} + \frac{eB\hbar}{2m_ec}(m+2m_s)$$
$$= E_{nl}^{(0)} + \mu_B B(m+2m_s)$$

我们可以把这个能级记为Enlmms,由四个"好"量子数决定.

ſ

考虑跃迁定则:

$$\Delta l = \pm 1, \quad \Delta m = 0, \quad \pm 1, \quad \Delta m_s = 0 \tag{6.68}$$

Figure 6.4: 强场Zeeman效应.

跃迁前后自旋状态不能改变使得谱线分裂成三条.

$$\hbar\omega = E_{3P}^{(0)} - E_{3S}^{(0)} + \Delta E_m \tag{6.69}$$

其中 $\Delta E_m = \mu_B Bm, m = 1, 0, -1.$ 相邻谱线频率差:

$$\Delta \omega = \frac{\mu_B B}{\hbar} = \frac{eB}{2m_e c}$$

能级的改变情况和跃迁情况,如图Fig. 6.4所示.

6.3.2 弱场Zeeman效应

历史上又称反常Zeeman效应.

 $H_f = \xi(r) \vec{S} \cdot \vec{L} = H' = \frac{eB}{2m_e c} (J_z + S_z) 旗 菣相当.$

我们把 H_0+H_f 当作新的 H_0 ,作为主导能量.以 H_0, J^2, J_z, L^2, S^2 为完全集,这样 H_0 的本征态写为 $R_{nl}\phi_{ljm_j}$. n, l, j, m_j 是"好"量子数. H_0 的本征方程为

$$H_0 R_{nl} \phi_{ljm_j} = E_{nlj}^{(0)} R_{nl} \phi_{ljm_j} \tag{6.70}$$

能级就是精细结构能级. 每个能级简并度2j+1.

我们选看3P1表能量在磁场作用下的移动.

记

$$R_{31}\phi_{1\frac{1}{2},\frac{1}{2}} \to |n_1^{(0)}\rangle$$
$$R_{31}\phi_{1\frac{1}{2},-\frac{1}{2}} \to |n_2^{(0)}\rangle$$

(6.70)就是

$$H_0\psi_{n\nu}^{(0)} = E_n^{(0)}\psi_{n\nu}^{(0)}, \quad \nu = 1, 2. \quad E_n^{(0)} = E_{31\frac{1}{2}}^{(0)}$$
(6.71)

简并微扰:

$$\psi_n^{(0)} = c_1 \psi_{n1}^{(0)} + c_2 \psi_{n2}^{(0)}, \tag{6.72}$$

 $\vec{\mathcal{K}}E_n = E_n^{(0)} + E_n^{(1)}.$

这需要计算H'的矩阵元:

$$H'_{\nu,\nu'} = \langle n_{\nu}{}^{(0)} | H' | n_{\nu'}{}^{(0)} \rangle \tag{6.73}$$

由于 $[J_z, S_z] = 0$,因此H'对角 $(S_z$ 对角).我们只需计算

$$\begin{aligned} H_{11}' &= (R_{31}\phi_{1\frac{1}{2}\frac{1}{2}}, (J_z + S_z)R_{31}\phi_{1\frac{1}{2}\frac{1}{2}})\frac{eB}{2m_ec} \\ &= (\phi_{1\frac{1}{2}\frac{1}{2}}, (\frac{\hbar}{2} + S_z)\phi_{1\frac{1}{2}\frac{1}{2}})\frac{eB}{2m_ec} \end{aligned}$$

在 $j = l - \frac{1}{2}$ 时, $\langle S_z \rangle = -\frac{\frac{1}{2}}{1 + \frac{1}{2}}\frac{\hbar}{2} = -\frac{\hbar}{6}$. 因此 $H'_{11} = \frac{1}{3}\mu_B B$. 它也就是本征值,因此 $E_n = E^{(0)}_{31\frac{1}{2}} + H'_{11}$ 本征态就是 $R_{31}\phi_{1\frac{1}{2}\frac{1}{2}}$. 同样

$$H_{22}' = (R_{31}\phi_{1\frac{1}{2}-\frac{1}{2}}, (J_z + S_z)R_{31}\phi_{1\frac{1}{2}-\frac{1}{2}})\frac{eB}{2m_ec} = -\frac{1}{3}\mu_B B$$

因此 $E_n = E_{3P_{\frac{1}{2}}}^{(0)} + H'_{22}$, 对应本征态: $R_{31}\phi_{1\frac{1}{2}-\frac{1}{2}}$. 容易推广到一般情况:

$$E_{nljm_j} = E_{nlj}^{(0)} + E_{nljm_j}^{(1)}$$
$$E_{nljm_j}^{(1)} = \frac{eB}{2m_e c} (m_j \hbar + \langle S_z \rangle)$$

由于

$$\langle S_z \rangle = \frac{\hbar}{2} (\phi_{ljm_j}, \sigma_z \phi_{ljm_j})$$

$$= \frac{\hbar}{2} \{ \frac{m_j}{j}, \quad \stackrel{\text{if}}{=} j = l + \frac{1}{2}$$

$$-\frac{m_j}{j+1}, \quad \stackrel{\text{if}}{=} j = l - \frac{1}{2}$$

所以

$$\begin{split} E_{nljm_j}^{(1)} &= B\mu_B m_j (1 + \frac{\langle S_z \rangle}{m_j \hbar}) \quad \text{括号中为朗德因子g} \\ g &= \left\{ \begin{array}{cc} 1 + \frac{1}{2j}, & j = l + \frac{1}{2} \\ 1 - \frac{1}{2j+2}, & j = l - \frac{1}{2} \end{array} \right. \end{split}$$

能级的改变情况如图Fig. 6.3.2所示. 考虑跃迁定则:

$$\Delta j = 0, \pm 1, \quad \Delta m_j = 0, \pm 1$$

我们知道一共会出现10条谱线,与精细结构对应,分别称D₁,D₂.

Figure 6.5: 弱场Zeeman效应.

6.4 超精细结构,自旋单态与三重态

我们来考虑氢原子,其电子和质子都是自旋;5粒子.质子的磁矩

$$\vec{\mu_p} = \frac{g_p e}{2m_p c} \vec{S_p}$$

其中 $g_p = 5.59$,大于电子的g = 2.

质子与电子除了库仑相互作用外,还有正比于 $\vec{S}_p \cdot \vec{S}_e$ 的磁相互作用,称为自旋-自旋耦合.

我们现在考虑自旋-自旋耦合对氢原子能级的修正.显然总角动量的平方和其z分量应该是守恒的好力学量.

我们把问题推广到任意两个自旋1/2粒子.首先定义其总角动量和它的三个分量

$$\vec{S} \equiv \vec{S}_1 + \vec{S}_2, \tag{6.74}$$

$$S_z = S_z^{(1)} + S_z^{(2)}, \quad S_x = S_x^{(1)} + S_x^{(2)}, \quad S_y = S_y^{(1)} + S_y^{(2)}.$$
(6.75)

易证

$$[S_x, S_y] = i\hbar S_z, \quad [S_\alpha, S^2] = 0. \quad \alpha = x, y, z$$
(6.76)

这样

$$\vec{S}_1 \cdot \vec{S}_2 = \frac{S^2 - S_1^2 - S_2^2}{2} = \frac{S^2}{2} - \frac{3}{4}\hbar^2$$

即 S^2, S_z 都与 $\vec{S}_1 \cdot \vec{S}_2$ 对易.

要描述氢原子里面电子和质子的自旋状态,简单地看有四种可能↑_e↑_p,↑_e↓_p,↓_e↑_p,↓_e↓_p,以及它们的各种 叠加态.注意这里我们首次面临两个粒子的量子态的问题,处理起来很简单,就是各自描述,再并在一起. 也可以写为|+〉_e|+〉_p,|+〉_e|−〉_p,|−〉_e|+〉_p,|−〉_p.

这种方式其实就是采用基矢 $\chi_{m_s}(1)\chi_{m'_s}(2), m_s = \pm 1/2, m'_s = \pm 1/2, 它们是S^2(1), S_z(1), S^2(2), S_z(2)$ 的共同本征态. 也可以写成

 $\alpha(1)\alpha(2), \quad \alpha(1)\beta(2), \quad \beta(1)\alpha(2), \quad \beta(1)\beta(2)$

 $\alpha(1) = \chi_{\frac{1}{2}}(1), \ \beta(2) = \chi_{-\frac{1}{2}}(2); \ \vec{x}$

 $|+\rangle_1|+\rangle_2, |+\rangle_1|-\rangle_2, |-\rangle_1|+\rangle_2, |-\rangle_1|-\rangle_2.$

用它们作基矢描述系统的自旋状态称为非耦合表象.

我们看到它们也是Sz的本征函数:

$$S_{z}\chi_{m_{s}}(1)\chi_{m'_{s}}(2) = (S_{z}(1) + S_{z}(2))\chi_{m_{s}}(1)\chi_{m'_{s}}(2)$$

$$= m_{s}\hbar\chi_{m_{s}}(1)\chi_{m'_{s}}(2) + m'_{s}\hbar\chi_{m_{s}}(1)\chi_{m'_{s}}(2)$$

$$= (m_{s} + m'_{s})\hbar\chi_{m_{s}}(1)\chi_{m'_{s}}(2)$$

这里注意:两个算符各自作用到自己空间的态.我们得到*S*_z的本征值有ħ,0,-ħ 三种可能. 我们想知道*S*²,*S*_z的共同本征态与本征值.它们是:

$$\alpha_1\alpha_2, \beta_1\beta_2, \frac{1}{\sqrt{2}}(\alpha_1\beta_2 + \beta_1\alpha_2), \frac{1}{\sqrt{2}}(\alpha_1\beta_2 - \beta_1\alpha_2)$$

证明:

$$S_z \alpha_1 \alpha_2 = \hbar \alpha_1 \alpha_2, \tag{6.77}$$

$$S_z\beta_1\beta_2 = -\hbar\beta_1\beta_2. \tag{6.78}$$

$$S_z \frac{1}{\sqrt{2}} (\alpha_1 \beta_2 + \beta_1 \alpha_2) = \frac{1}{\sqrt{2}} (\frac{\hbar}{2} \alpha_1 \beta_2 - \frac{\hbar}{2} \beta_1 \alpha_2) + \frac{1}{\sqrt{2}} (-\frac{\hbar}{2} \alpha_1 \beta_2 + \frac{\hbar}{2} \beta_1 \alpha_2) = 0$$
(6.79)

$$S_z \frac{1}{\sqrt{2}} (\alpha_1 \beta_2 - \beta_1 \alpha_2) = 0 \tag{6.80}$$

再看

$$S^{2}\alpha_{1}\alpha_{2} = \left(\frac{3\hbar^{2}}{2} + 2\vec{S}_{1}\cdot\vec{S}_{2}\right)\alpha_{1}\alpha_{2}$$

$$= \left[\frac{3\hbar^{2}}{2} + \frac{2\hbar^{2}}{4}(\sigma_{x}^{(1)}\sigma_{x}^{(2)} + \sigma_{y}^{(1)}\sigma_{y}^{(2)} + \sigma_{z}^{(1)}\sigma_{z}^{(2)})\right]\alpha_{1}\alpha_{2}$$

$$= \frac{3\hbar^{2}}{2}\alpha_{1}\alpha_{2} + \frac{\hbar^{2}}{2}[\beta_{1}\beta_{2} - \beta_{1}\beta_{2} + \alpha_{1}\alpha_{2}] = 2\hbar^{2}\alpha_{1}\alpha_{2}$$

这里用到 $\sigma_x \alpha = \beta, \sigma_y \alpha = i\beta$. 下面还要用到 $\sigma_x \beta = \alpha, \sigma_y \beta = -i\alpha$. 同理

$$S^2\beta_1\beta_2 = 2\hbar^2\beta_1\beta_2$$

再看第三个态

$$S^{2} \frac{1}{\sqrt{2}} (\alpha_{1}\beta_{2} + \beta_{1}\alpha_{2})$$

$$= \frac{3\hbar^{2}}{2} \frac{1}{\sqrt{2}} (\alpha_{1}\beta_{2} + \beta_{1}\alpha_{2}) + \frac{\hbar^{2}}{2} \frac{1}{\sqrt{2}} [(\beta_{1}\alpha_{2} + \alpha_{1}\beta_{2}) \times 2 + (-\alpha_{1}\beta_{2} - \beta_{1}\alpha_{2})]$$

$$= 2\hbar^{2} \frac{1}{\sqrt{2}} (\alpha_{1}\beta_{2} + \beta_{1}\alpha_{2})$$

和第四个态

$$S^{2} \frac{1}{\sqrt{2}} (\alpha_{1}\beta_{2} - \beta_{1}\alpha_{2})$$

$$= \frac{3\hbar^{2}}{2} \frac{1}{\sqrt{2}} (\alpha_{1}\beta_{2} - \beta_{1}\alpha_{2}) + \frac{\hbar^{2}}{2} \frac{1}{\sqrt{2}} [(\beta_{1}\alpha_{2} - \alpha_{1}\beta_{2}) + (\beta_{1}\alpha_{2} - \alpha_{1}\beta_{2}) + (-\alpha_{1}\beta_{2} + \beta_{1}\alpha_{2})]$$

$$= 0$$

我们引入记号 χ_{SM_S} ,其中S = 0,或者1,为总自旋量子数; M_S 有2S + 1可能,为总自旋z分量量子数.当S = 1,

$$\chi_{SM_S} = \begin{cases} \alpha_1 \alpha_2 = \chi_{11}, & S = 1, M_S = 1\\ \beta_1 \beta_2 = \chi_{1-1}, & S = 1, M_S = -1\\ \frac{1}{\sqrt{2}} (\alpha_1 \beta_2 + \beta_1 \alpha_2) = \chi_{10}, & S = 1, M_S = 0 \end{cases}$$
(6.81)

称为自旋三重态(triplet). 当S = 0时,

$$\chi_{00} = \frac{1}{\sqrt{2}} (\alpha_1 \beta_2 - \beta_1 \alpha_2) \tag{6.82}$$

或者写为 $\frac{1}{\sqrt{2}}(|+-\rangle - |-+\rangle)$,称为自旋单态(*singlet*).非常重要!

回过头来看氢原子的能级修正.当电子与质子形成三重态时能量上升,而形成单态时能量下降.造成大约5.88×10⁻⁶eV的能级劈裂,这称为超精细结构.

6.4.1 量子测量的Bell基

另外一种基矢选择是:

$$\frac{1}{\sqrt{2}}(\alpha_1\beta_2 + \beta_1\alpha_2) \to \psi^+, \frac{1}{\sqrt{2}}(\alpha_1\beta_2 - \beta_1\alpha_2) \to \psi^-$$
$$\frac{1}{\sqrt{2}}(\alpha_1\alpha_2 + \beta_1\beta_2) \to \phi^+, \frac{1}{\sqrt{2}}(\alpha_1\alpha_2 - \beta_1\beta_2) \to \phi^-$$

以上4个基矢构成*Bell*基,他们都是"纠缠态"(*entangled*),它们是 $S_z(1)S_z(2)$ 与 $S_x(1)S_x(2)$ 的共同本征态. 纠缠态不能写成两个自旋态的"直接乘积".下面这个态是直接乘积态:

$$(c_1\alpha(1) + c_2\beta(1))(c'_1\alpha(2) + c'_2\beta(2))$$

= $c_1c'_1\alpha(1)\alpha(2) + c_2c'_1\beta(1)\alpha(2) + c_1c'_2\alpha(1)\beta(2) + c_2c'_2\beta(1)\beta(2)$

不论怎么选择 c_1, c_2, c'_1, c'_2 都不能表示 $\psi^+, \psi^-, \phi^+, \phi^-$ 这样的态.

Schrödinger的"猫":

$$|\psi\rangle = \frac{1}{\sqrt{2}} (|+\rangle_e | \Im_{cat} - |-\rangle_e | \mathcal{R} \rangle_{cat}), \tag{6.83}$$

设想我们观测电子的自旋.测量后波函数塌缩到电子自旋的本征态|+〉_e|活〉_{cat}或者|-〉_e|死〉_{cat},我们看到:猫的死活取决于对电子自旋的"观察"或"测量",就是典型的纠缠态.更奇妙的是这种"关联"似乎是'非定域'的.我们在后面Bohm的理想实验部分再详细讨论这一点.

6.5 任意两个角动量的耦合, C-G系数

之前我们研究了轨道角动量与自旋角动量的耦合,两个自旋角动量的耦合;我们可以问任意两个角动量**J**₁,**J**₂的耦合规律是怎样的?

设 $\mathbf{J}_1 + \mathbf{J}_2 = \mathbf{J}$ 为总角动量. 容易证明

$$[J_x, J_y] = i\hbar J_z \tag{6.84}$$

即总角动量满足角动量对易关系.

非耦合表象基矢为 $|j_1m_1\rangle|j_2m_2\rangle$. 设 j_1, j_2 为两个角动量的量子数,则Hilbert空间的维度为 $(2j_1 + 1)(2j_2 + 1)$.

耦合表象的基矢应该是 J_1^2, J_2^2, J^2, J_z 的共同本征态,记为 $|j_1 j_2 j m_j\rangle$.满足

$$J_1^2 |j_1 j_2 j m_j\rangle = j_1 (j_1 + 1) \hbar^2 |j_1 j_2 j m_j\rangle$$
(6.85)

$$J_2^2 |j_1 j_2 j m_j\rangle = j_2 (j_2 + 1) \hbar^2 |j_1 j_2 j m_j\rangle$$
(6.86)

$$J^{2}|j_{1}j_{2}jm_{j}\rangle = j(j+1)\hbar^{2}|j_{1}j_{2}jm_{j}\rangle$$
(6.87)

$$J_z |j_1 j_2 j m_j\rangle = m_j \hbar |j_1 j_2 j m_j\rangle \tag{6.88}$$

现在的问题是将两个表象的基矢的关系找到. 我们假设

$$|j_1 j_2 j m_j\rangle = \sum_{m_1, m_2} C^{j, m_j}_{m_1, m_2} |j_1 m_1\rangle |j_2 m_2\rangle$$
(6.89)

由于 $J_z = J_z(1) + J_z(2),$

$$J_{z}|j_{1}j_{2}jm_{j}\rangle = \sum_{m_{1},m_{2}} (m_{1}+m_{2})\hbar C_{m_{1},m_{2}}^{j,m_{j}}|j_{1}m_{1}\rangle|j_{2}m_{2}\rangle$$
(6.90)

如果求和只包含 $m_1 + m_2 = m_j$ 的项:

$$|j_1 j_2 j m_j\rangle = \sum_{m_1 + m_2 = m_j} C^{j, m_j}_{m_1, m_2} |j_1 m_1\rangle |j_2 m_2\rangle$$
(6.91)

就可以满足 $m_j = m_1 + m_2$,并且是 J_z 的本征态.

此外给定 j_1, j_2 可以得到的j并不唯一. 比如轨道和自旋角动量耦合时j = l + 1/2, 也可以是j = l - 1/2. 由于 m_1 最多为 j_1, m_2 最多为 j_2 , 所以 m_j 最多可以是 $j_1 + j_2$, 这说明j最多为

$$j_1 + j_2 = j_{max}.$$
 (6.92)

我们可以通过比较耦合表象与非耦合表象的Hilbert空间维度来找到j的最小取值.

$$\sum_{j=j_{min}}^{j_{max}} (2j+1) = (2j_1+1)(2j_2+1)$$
(6.93)

其中

$$\sum_{j=j_{min}}^{j_{max}} (2j+1) = (j_{max} + j_{min} + 1)(j_{max} - j_{min} + 1).$$
(6.94)

我们得到

$$j_{min}^2 = (j_1 - j_2)^2 \tag{6.95}$$

所以 $j_{min} = |j_1 - j_2|$. 这也可以用三角形三边关系形象地表示.

 $|a_{j_1} - j_2| \le j \le j_1 + j_2$ 给定的情况下, m_j 可以取 $-j, -j + 1, \ldots, j$. 给定 $j, m_j, C_{m_1, m_2}^{j, m_j}$ 是确定的,称为C-G系数. 可以理解为两个表象基矢的内积

$$C_{m_1,m_2}^{j,m_j} = \langle j_2, m_2 | \langle j_1, m_1 | j_1 j_2 j m_j \rangle$$
(6.96)

表6.1,6.2给出了两种情况.

	$m_2 = 1/2$	$m_2 = -1/2$
$j = j_1 + 1/2, m_j$	$\sqrt{\frac{j_1+m_j+1/2}{2j_1+1}}$	$\sqrt{\frac{j_1 - m_j + 1/2}{2j_1 + 1}}$
$j = j_1 - 1/2, m_j$	$-\sqrt{\frac{j_1-m_j+1/2}{2j_1+1}}$	$\sqrt{\frac{j_1+m_j+1/2}{2j_1+1}}$

Table 6.1: 例1: 自旋和轨道角动量耦合. $j_1 = l, j_2 = 1/2; m_j = m_1 + m_2$.

Table 6.2: 例2: 角动量耦合: $j_2 = 1.m_2 = 1, 0, -1.m_1 = m_j - m_2$

	$m_2 = 1$	$m_2 = 0$	$m_2 = -1$
$j = j_1 + 1, m_j$	$\sqrt{\frac{(j_1+m_j)(j_1+m_j+1)}{(2j_1+1)(2j_1+2)}}$	$\sqrt{\frac{(j_1 - m_j + 1)(j_1 + m_j + 1)}{(j_1 + 1)(2j_1 + 1)}}$	$\sqrt{\frac{(j_1-m_j)(j_1-m_j+1)}{(2j_1+1)(2j_1+2)}}$
$j = j_1, m_j$	$-\sqrt{\frac{(j_1+m_j)(j_1-m_j+1)}{2j_1(j_1+1)}}$	$\frac{m_j}{\sqrt{j_1(j_1+1)}}$	$\sqrt{\frac{(j_1 - m_j)(j_1 + m_j + 1)}{2j_1(j_1 + 1)}}$
$j = j_1 - 1, m_j$	$\sqrt{\frac{(j_1 - m_j)(j_1 - m_j + 1)}{2j_1(2j_1 + 1)}}$	$-\sqrt{\frac{(j_1-m_j)(j_1+m_j)}{j_1(2j_1+1)}}$	$\sqrt{\frac{(j_1+m_j+1)(j_1+m_j)}{2j_1(2j_1+1)}}$

6.6 EPR佯谬与Bell不等式

历史上Einstein等人提出了著名的EPR佯谬,用来质疑量子力学的理论基础. Bohm根据他们的理论提出了以下理想实验.

考虑一个中性π⁰介子的衰变

$$\pi^0 \to e^- + e^+.$$
 (6.97)

由于介子自旋为零,所以电子和正电子形成单态,飞向两边(假设电子飞向左边,记为粒子1;正电子向右, 记为粒子2):

$$\frac{1}{\sqrt{2}}(|+\rangle_1|-\rangle_2-|-\rangle_1|+\rangle_2). \tag{6.98}$$

我们利用两个SG装置测量两个电子的自旋z分量. 单独看两边的测量结果

$$\langle S_z(1) \rangle = \frac{1}{2}\frac{\hbar}{2} + \frac{1}{2}(-\frac{\hbar}{2}) = 0$$
 (6.99)

$$\langle S_z(2) \rangle = \frac{1}{2}\frac{\hbar}{2} + \frac{1}{2}(-\frac{\hbar}{2}) = 0$$
 (6.100)

更直接地考虑: $|+\rangle_1|-\rangle_2 = S_z(1)$ 的本征态,本征值为 $\hbar/2$; $|-\rangle_1|+\rangle_2 = U = S_z(1)$ 的本征态,本征值 $= -\hbar/2$;几 率各为1/2. 所以平均仍为0.

但是如果把两边的结果乘起来,就是说读取Sz(1)Sz(2),并计算其统计平均,也就是量子力学期望值

$$\langle S_z(1)S_z(2)\rangle = \frac{1}{\sqrt{2}} (_2\langle -|_1\langle +| -_2\langle +|_1\langle -|)S_z(1)S_z(2)\frac{1}{\sqrt{2}}(|+\rangle_1|-\rangle_2-|-\rangle_1|+\rangle_2) = -\frac{\hbar^2}{4}$$
(6.101)

更直接地考虑: $|+\rangle_1|-\rangle_2 \mathbb{E}S_z(1)S_z(2)$ 的本征态,本征值为 $-\hbar^2/4$; $|-\rangle_1|+\rangle_2$ 也是 $S_z(1)S_z(2)$ 的本征态,本征 值还是 $-\hbar^2/4$; 几率各为1/2. 所以平均仍为 $-\hbar^2/4$.

虽然 $S_z(1), S_z(2)$ 取 $\pm \frac{\hbar}{2}$ 的几率都是 $\frac{1}{2}$, 但是 $S_z(1)$ 取 $\frac{\hbar}{2}$, $S_z(2)$ 一定取 $-\frac{\hbar}{2}$, 反之亦反.

两个电子之间有关联,这称为量子关联!

根据量子力学,容易证明

$$\langle (\vec{\sigma}_1 \cdot \vec{n}_1) (\vec{\sigma}_2 \cdot \vec{n}_2) \rangle = -\vec{n}_1 \cdot \vec{n}_2$$
 (6.102)

记为 $P(\vec{n}_1, \vec{n}_2)$,其中 \vec{n}_1 与 \vec{n}_2 为两台 SG_1, SG_2 的测量测量方向.

进一步,让我们设想:在左边完成了对电子的 S_z 测量,为向上,那么此之后对右边正电子测量 S_z 结果就 永远为向下.这是由于波函数应该塌缩 $S_z(1)$ 的本征值为 $\hbar/2$ 的本征态;由于两个粒子处于(6.98),所以实际塌 缩到

$$|+\rangle_1|-\rangle_2. \tag{6.103}$$

我们可以设置*SG*₁,*SG*₂在非常远的地方,保证测量发生在同时(误差Δ*t*·*c* < Δ*s*,*c*为光速,Δ*s*为距离).按相对论语言,两点是"类空"的,应该没有因果关系!可是波函数的塌缩改变了类空距离之外的粒子的状态.因此,似乎与相对论矛盾.这就是Einstein, Podolsky, Rosen提出的EPR佯谬,建立在任何影响的传播速度不能大于光速的基础上.他们进而认为**量子力学是'不完备'的**.波函数并不是所有,**为了完全描述系统的状态,需要某个额外的参量**λ,称为隐变量.

隐变量理论是否正确一直没法验证. 直到1964年, J. Bell证明了隐变量理论要求测量结果必须遵从Bell不等式, 而量子力学理论没有这个要求. 这为试验验证提供了基础.

 $Bell建议测量P(\vec{n}_1, \vec{n}_2)$,即两个自旋乘积的平均值.隐变量理论要求结果必须满足

$$|P(\vec{n}_1, \vec{n}_2) - P(\vec{n}_1, \vec{n}_3)| \le 1 + P(\vec{n}_2, \vec{n}_3), \tag{6.104}$$

这就是著名的Bell不等式.

量子理论明显不满足这一不等式: 取 $\vec{n}_1, \vec{n}_2, \vec{n}_3$ 在一个平面内, \vec{n}_1, \vec{n}_2 成 $\pi/2, \vec{n}_3$ 与它们成 $\pi/4$. 于是根据量子 力学结果(6.102)

$$P(\vec{n}_1, \vec{n}_2) = 0, \tag{6.105}$$

$$P(\vec{n}_1, \vec{n}_3) = -\frac{1}{\sqrt{2}} = P(\vec{n}_2, \vec{n}_3) \tag{6.106}$$

Bell不等式为 $\frac{\sqrt{2}}{2} \leq 1 - \frac{\sqrt{2}}{2}$,不成立!

6.6.1 Bell不等式的证明

隐变量理论认为波函数没有完全描述系统,为了完全描述系统的状态,需要某个额外的参量 λ.

假设完全(complete)的态由 λ 给出, λ 在每个 π 介子衰变时都不一样, 我们既不理解也没法控制它. 换言之, 两个粒子的态不是确定的(6.98).

进一步,我们假设在测量*o_n*时,左边电子的测量与右边正电子的角度*n*'完全无关.(可以在刚要测量电子之前,由正电子一端实验者设置*n*',使得没有信息可以传达到电子一端).

实验结果一定可以写成某种函数

$$A(\vec{n},\lambda) = \pm 1,\tag{6.107}$$

同理,对于右边的试验结果,一定可以写成另一个函数

$$B(\vec{n}',\lambda) = \pm 1 \tag{6.108}$$

注意λ是描述整个状态的.我们同时知道实验结果要求:对相同方向*n*₁,测量结果*A*,*B*反平行,因此对所有的λ,满足

$$A(\vec{n}_1, \lambda) = -B(\vec{n}_1, \lambda) \tag{6.109}$$

但要点是: 这不是通过波函数塌缩来保证的, 而是由之前π介子衰变时的变量λ保证的.

我们来根据隐变量理论计算测量的平均值

$$P(\vec{n}_1, \vec{n}_2) = \int \rho(\lambda) A(\vec{n}_1, \lambda) B(\vec{n}_2, \lambda) d\lambda, \qquad (6.110)$$

其中ρ(λ) 是经典几率密度: 满足归一化, 非负性.

根据Eq. (6.109),

$$P(\vec{n}_1, \vec{n}_2) = -\int \rho(\lambda) A(\vec{n}_1, \lambda) A(\vec{n}_2, \lambda) d\lambda$$
(6.111)

注意如果n₁ = n₂, 那么上式为-1, 是我们试图利用的实验事实.

现在我们考虑第三个方向前3,它是任意的

$$P(\vec{n}_1, \vec{n}_2) - P(\vec{n}_1, \vec{n}_3) = -\int \rho(\lambda) [A(\vec{n}_1, \lambda)A(\vec{n}_2, \lambda) - A(\vec{n}_1, \lambda)A(\vec{n}_3, \lambda)] d\lambda$$
(6.112)

由于 $(A(\vec{n}, \lambda))^2 = 1.$ (因为测量值为±1)

$$P(\vec{n}_1, \vec{n}_2) - P(\vec{n}_1, \vec{n}_3) = -\int \rho(\lambda) [1 - A(\vec{n}_2, \lambda) A(\vec{n}_3, \lambda)] A(\vec{n}_1, \lambda) A(\vec{n}_2, \lambda) d\lambda$$

由于(6.107),

$$-1 \le A(\vec{n}_1, \lambda) A(\vec{n}_2, \lambda) \le 1,$$
 (6.113)

$$\rho(\lambda)[1 - A(\vec{n}_2, \lambda)A(\vec{n}_3, \lambda)] \ge 0 \tag{6.114}$$

绝对值小于

$$\begin{aligned} |P(\vec{n}_1, \vec{n}_2) - P(\vec{n}_1, \vec{n}_3)| &\leq \int \rho(\lambda) [1 - A(\vec{n}_2, \lambda) A(\vec{n}_3, \lambda)] d\lambda \\ &= 1 - \int \rho(\lambda) A(\vec{n}_2, \lambda) (-B(\vec{n}_3, \lambda)) d\lambda \\ &= 1 + P(\vec{n}_2, \vec{n}_3) \end{aligned}$$

这就是Bell不等式了.

我们的出发点是(6.110),即两个方向的关联是通过事先存在的隐变量决定的,而不是波函数的塌缩.

目前,已有大量实验符合量子力学预言,违背Bell不等式!波函数的瞬间塌缩是解释实验所必需的.

但是波函数的塌缩会不会带来因果性的灾难?实际上一个操作左边电子测量的人,可以根据自己的实验 记录知道右边正电子的实验记录;但是却没有任何方法可以利用他的测量对右边正电子测量的人发出一个 能够产生后果的信号,因此并不违背相对论.(请大家参考Griffiths书12.2节.)

Chapter 7

全同粒子和波函数的交换对称性

7.1 多粒子波函数

前面我们讨论两个自旋的耦合的时候,已经涉及到了两个粒子"波函数".比如两个自旋的态矢量可以写成

$$|\alpha\rangle = \sum_{m_s = \pm 1/2, m'_s = \pm 1/2} c_{m_s, m'_s} |m_s\rangle_1 |m'_s\rangle_2$$
(7.1)

这里c_{ms,m's}可以理解为波函数.

我们描述单粒子的空间运动状态时,可以用坐标表象.

$$|\psi\rangle = \int dx\psi(\vec{r})|\vec{r}\rangle \tag{7.2}$$

 $\psi(\vec{r},t)$ 是单粒子波函数(考虑了它会随时间演化). $|\psi(\vec{r},t)|^2$ 是*r*处粒子出现的几率密度. 如果我们研究的 系统里面有两个粒子,那么体系的波函数应该写为 $\psi(\vec{r}_1,\vec{r}_2,t)$. $|\psi(\vec{r}_1,\vec{r}_2,t)|^2$ 是在 \vec{r}_1 附近 $d\vec{r}_1$ 发现粒子1,在 \vec{r}_2 附近 $d\vec{r}_2$ 内发现粒子2 的几率密度. 满足归一化

$$\int |\psi(\vec{r}_1, \vec{r}_2, t)|^2 d\vec{r}_2 d\vec{r}_2 = 1$$
(7.3)

和S - eq:

$$i\hbar \frac{\partial \psi(\vec{r}_1, \vec{r}_2, t)}{\partial t} = H\psi(\vec{r}_1, \vec{r}_2, t)$$
(7.4)

其中

$$H = \frac{p_1^2}{2m_1} + V(\vec{r}_1) + \frac{p_2^2}{2m_2} + V(\vec{r}_2) + V(\vec{r}_1, \vec{r}_2)$$
(7.5)

 $V(\vec{r_1}), V(\vec{r_2})$ 分别是两个粒子在外场中的势能, $V(\vec{r_1}, \vec{r_2})$ 是粒子之间的相互作用势能。 p_1 和 p_2 分别是粒子1和2的动量算符:

$$\hat{p}_1 = -i\hbar \frac{\partial}{\partial \vec{r}_1}, \qquad \hat{p}_2 = -i\hbar \frac{\partial}{\partial \vec{r}_2}$$
(7.6)

分离变量解为

$$\psi(\vec{r}_1, \vec{r}_2, t) = \psi_E(\vec{r}_1, \vec{r}_2) e^{\frac{-iEt}{\hbar}},\tag{7.7}$$

其中空间波函数 ψ_E 满足

$$\left(\frac{p_1^2}{2m_1} + V(\vec{r_1}) + \frac{p_2^2}{2m_2} + V(\vec{r_2}) + V(\vec{r_1}, \vec{r_2})\right)\psi_E(\vec{r_1}, \vec{r_2}) = E\psi_E(\vec{r_1}, \vec{r_2})$$
(7.8)

我们来研究一个例子:一维无限深势阱(宽a)中有两个粒子

$$H = \frac{p_1^2}{2m_1} + V(x_1) + \frac{p_2^2}{2m_2} + V(x_2) + V(x_1, x_2).$$
(7.9)

 $V(x_1), V(x_2)$ 是阱, $V(x_1, x_2)$ 是相互作用, 我们忽略相互作用. 则

$$\hat{H} = \hat{h}_1(x_1) + \hat{h}_2(x_2), \tag{7.10}$$

 \hat{h}_1, \hat{h}_2 分别是两个粒子单独在阱中的Hamiltonian,本征方程(7.8)中 $\psi_E(x_1, x_2)$ 可再分离变量

$$\psi_E(x_1, x_2) = \psi_{E_1}(x_1)\psi_{E_2}(x_2). \tag{7.11}$$

即

$$\hat{H}\psi_{E_1}(x_1)\psi_{E_2}(x_2) = \hat{h}_1(x_1)\psi_{E_1}(x_1)\psi_{E_2}(x_2) + \hat{h}_2(x_2)\psi_{E_1}(x_1)\psi_{E_2}(x_2)$$
$$= E\psi_{E_1}(x_1)\psi_{E_2}(x_2)$$

两边除以 $\psi_{E_1}(x_1)\psi_{E_2}(x_2)$,有

$$\hat{h}_1(x_1)\psi_{E_1}(x_1) = E_1\psi_{E_1}(x_1), \qquad (7.12)$$

$$\hat{h}_2(x_2)\psi_{E_2}(x_2) = E_2\psi_{E_2}(x_2), \tag{7.13}$$

$$E = E_1 + E_2. (7.14)$$

波函数和能级我们知道

$$\psi_{E_1}(x_1) = \sqrt{\frac{2}{a}} \sin \frac{n_1 \pi}{a} x_1, \quad E_1 = \frac{\hbar^2}{2m_1} \frac{n_1^2 \pi^2}{a^2}$$
$$\psi_{E_2}(x_2) = \sqrt{\frac{2}{a}} \sin \frac{n_2 \pi}{a} x_2, \quad E_2 = \frac{\hbar^2}{2m_2} \frac{n_2^2 \pi^2}{a^2}$$

 $\psi_{E_1}(x_1)\psi_{E_2}(x_2)$ 可简写为 $\psi_{n_1}(x_1)\psi_{n_2}(x_2)$,或者利用Dirac记号,写为 $|E\rangle = |n_1\rangle_1 |n_2\rangle_2$,

$$\psi_{n_1}(x_1)\psi_{n_2}(x_2) =_2 \langle x_2|_1 \langle x_1|E \rangle.$$
(7.15)

抽象地说,这种情况就是

$$\psi(\vec{r}_1, \vec{r}_2) = \psi_a(\vec{r}_1)\psi_b(\vec{r}_2) \tag{7.16}$$

粒子1处于a态, 粒子2处于b态.

7.2 交换对称与反对称,不可分辨的全同粒子

如果两个粒子是不同的粒子:质量,自旋,电荷中至少一个不同,以上讨论没有问题.

如果两个粒子是全同粒子,以上讨论**实际上区分了它们**:粒子1在*n*₁态,粒子2在*n*₂态,而这是不可能的,没有办法给两个粒子"上色",微观粒子的特征"非常少"!

量子力学基本原理:全同粒子不可分辨! 因此

$$|\psi(\vec{r}_1, \vec{r}_2)|^2 = |\psi(\vec{r}_2, \vec{r}_1)|^2 \tag{7.17}$$

第一个自变量为第一个粒子的位置,第二个自变量是第二个粒子的位置:左边为粒子1在r₁,粒子2在r₂,右 边为粒子1在r₂,粒子2在r₁.那么

$$c\psi(\vec{r}_1, \vec{r}_2) = \psi(\vec{r}_2, \vec{r}_1), \tag{7.18}$$

其中|c| = 1.

引入交换算符P₁₂:

$$\hat{P}_{12}\psi(\vec{r}_1,\vec{r}_2) = \psi(\vec{r}_2,\vec{r}_1) = c\psi(\vec{r}_1,\vec{r}_2) \tag{7.19}$$

再来一次:

$$\hat{P}_{12}\hat{P}_{12}\psi(\vec{r}_1,\vec{r}_2) = c^2\psi(\vec{r}_1,\vec{r}_2) \tag{7.20}$$

但是 $\hat{P}_{12}\hat{P}_{12} = 1$,因为两次交换等于没换,所以

$$c^{2} = 1, c$$
有两种可能{ 1 Bosons 交换对称
 -1 Fermions 反对称

就是说,全同粒子波函数必须满足

$$\psi(\vec{r}_1, \vec{r}_2) = \pm \psi(\vec{r}_2, \vec{r}_1)$$

这是量子力学的原理.

- 所有自旋为ħ整数倍的粒子为玻色子,包括复合粒子,原子,介子,光子
- 所有自旋为ħ半整数倍的粒子为费米子,质子,电子,夸克
- 自旋与交换对称性的关系是相对论的结论,我们这里接受

回到前面的例子, 若两个粒子全同: $m_1 = m_2$, $\alpha n_1 \neq n_2$ 的情况下, 能量本征态应为:

$$Bosons: \psi_E(x_1, x_2) = \frac{1}{\sqrt{2}} [\psi_{n_1}(x_1)\psi_{n_2}(x_2) + \psi_{n_2}(x_1)\psi_{n_1}(x_2)]$$

Fermions: $\psi_E(x_1, x_2) = \frac{1}{\sqrt{2}} [\psi_{n_1}(x_1)\psi_{n_2}(x_2) - \psi_{n_2}(x_1)\psi_{n_1}(x_2)]$

或者写成

$$|\psi_E\rangle = \frac{1}{\sqrt{2}}(|n_1\rangle_1|n_2\rangle_2 + |n_2\rangle_1|n_1\rangle_2), \text{Boson}$$
(7.21)

$$|\psi_E\rangle = \frac{1}{\sqrt{2}}(|n_1\rangle_1|n_2\rangle_2 - |n_2\rangle_1|n_1\rangle_2),$$
 Fermion (7.22)

意思是:一个粒子处于 n_1 态,另外一个处于 n_2 态. $\exists n_1 = n_2$ 时,

$$Boson: \psi_E(x_1, x_2) = \psi_{n_1}(x_1)\psi_{n_2}(x_2), \tag{7.23}$$

$$Fermion: \psi_E(x_1, x_2) = \psi_{n_1}(x_1)\psi_{n_2}(x_2) - \psi_{n_1}(x_2)\psi_{n_2}(x_1) = 0$$
(7.24)

两个玻色子可以处于一个状态,而两个费米子不行,这就是**泡利不相容原理.** 可以看到, P₁₂也可理解为两个粒子交换了状态.

可以有到,「12也可理解力网」拉丁文评丁状态

由于粒子全同,哈密顿算符是交换不变的:

$$P_{12}H(1,2) = H(2,1) = H(1,2)$$
(7.25)

因此

$$[P_{12}, H(1,2)]\psi(r_1, r_2) = P_{12}(H(1,2)\psi(r_1, r_2)) - H(1,2)P_{12}\psi(r_1, r_2)$$

= $H(2,1)\psi(r_2, r_1) - H(1,2)\psi(r_2, r_1) = 0$ (7.26)

这说明*P*₁₂与*H*(1,2)有共同本征态,其实就是前面找到的对称或反对称形式.而这种对称性或反对称性是守恒的,不随时间变化的.

然而前面的讨论没有考虑自旋状态。如果考虑自旋状态,粒子的状态应该是 $\psi_n(\vec{r})\chi_{m_s}$,再要求交换后波函数对称或反对称.

比如电子, (7.22)可以写为

$$|\psi_E\rangle = \frac{1}{\sqrt{2}}(|n_1m_s\rangle_1 | n_2m'_s\rangle_2 - |n_2m'_s\rangle_1 | n_1m_s\rangle_2)$$
(7.27)

写成波函数

$$\psi_{E}(x_{1}, x_{2}) = 2\langle x_{2}|_{1}\langle x_{1}|\psi_{E}\rangle$$

$$= \frac{1}{\sqrt{2}}(\psi_{n_{1}}(x_{1})\chi_{m_{s}}(1)\psi_{n_{2}}(x_{2})\chi_{m'_{s}}(2))$$

$$-\psi_{n_{2}}(x_{1})\chi_{m'_{s}}(1)\psi_{n_{1}}(x_{2})\chi_{m_{s}}(2))$$
(7.28)

如果我们把量子数(n,ms)统一记为k,那么上式可以写为

$$|\psi_E\rangle = \frac{1}{\sqrt{2}} (|k\rangle_1 |k'\rangle_2 - |k'\rangle_1 |k\rangle_2)$$
(7.29)

或者简写为波函数

$$\psi_E(1,2) = \frac{1}{\sqrt{2}} (\psi_k(1)\psi_{k'}(2) - \psi_{k'}(1)\psi_k(2))$$
(7.30)

当 $n_1 = n_2$ 时, 如果 $m_{s1} = 1/2 \neq m_{s2} = -1/2$, 系统状态是

$$|\psi_E\rangle = \frac{1}{\sqrt{2}}(|n_1, 1/2\rangle_1 | n_1, -1/2\rangle_2 - |n_1, -1/2\rangle_1 | n_1, 1/2\rangle_2)$$
(7.31)

写成波函数

$$\psi_E(x_1, x_2) =_2 \langle x_2 |_1 \langle x_1 | \psi_E \rangle = \psi_{n_1}(x_1) \psi_{n_1}(x_2) [\chi_{\frac{1}{2}}(1)\chi_{-\frac{1}{2}}(2) - \chi_{-\frac{1}{2}}(1)\chi_{\frac{1}{2}}(2)]$$
(7.32)

我们看到此时空间波函数交换对称,自旋波函数反对称,整个波函数满足交换反对称。其实在 $n_1 \neq n_2$ 时也可以构造这样的波函数,比如:

$$\frac{1}{\sqrt{2}} [\psi_{n_1}(x_1)\psi_{n_2}(x_2) + \psi_{n_2}(x_1)\psi_{n_1}(x_2)]\chi_{00}$$
(7.33)

1

它是(n₁, 1/2; n₂, -1/2)与(n₂, 1/2; n₁, -1/2)的叠加态。

同理, 在 $n_1 \neq n_2$ 时, 交换反对称还可以是空间波函数反对称, 自旋对称.

$$\frac{1}{\sqrt{2}} [\psi_{n_1}(x_1)\psi_{n_2}(x_2) - \psi_{n_2}(x_1)\psi_{n_1}(x_2)] \begin{cases} \chi_{11} \\ \chi_{10} \\ \chi_{1-1} \end{cases}$$
(7.34)

7.2.1 一般性讨论

我们现在考虑任意两个无相互作用全同粒子构成的系统: H = h(1) + h(2), h(1) = h(2)形式相同, 其本征方程为

$$h\varphi_k = \epsilon_k \varphi_k, \tag{7.35}$$

*k*为一组好量子数,显然

$$H\varphi_{k_1}(1)\varphi_{k_2}(2) = (\epsilon_{k_1} + \epsilon_{k_2})\varphi_{k_1}(1)\varphi_{k_2}(2)$$
(7.36)

根据前面的讨论,系统的能量本征态应该是对称或反对称的.

• Bosons:

$$\psi_{k_1k_2}^{(S)} = \{ \begin{array}{cc} \frac{1}{\sqrt{2}} [\varphi_{k_1}(\vec{r_1})\varphi_{k_2}(\vec{r_2}) + \varphi_{k_2}(\vec{r_1})\varphi_{k_1}(\vec{r_2})], & k_1 \neq k_2 \\ \varphi_{k_1}(\vec{r_1})\varphi_{k_1}(\vec{r_2}) & k_1 = k_2 \end{array}$$

• Fermions

$$\begin{split} \psi_{k_1k_2}^{(A)} &= \frac{1}{\sqrt{2}} [\varphi_{k_1}(\vec{r_1})\varphi_{k_2}(\vec{r_2}) - \varphi_{k_2}(\vec{r_1})\varphi_{k_1}(\vec{r_2})] \\ &= \frac{1}{\sqrt{2}} \begin{vmatrix} \varphi_{k_1}(\vec{r_1}) & \varphi_{k_1}(\vec{r_2}) \\ \varphi_{k_2}(\vec{r_1}) & \varphi_{k_2}(\vec{r_2}) \end{vmatrix}$$

必须 $k_1 \neq k_2$. pauli不相容原理!

可推广到N个粒子的情况

$$P_{ij}\psi(x_1,\cdots,x_i,\cdots,x_j,\cdots,x_N)$$

= $\psi(x_1,\cdots,x_j,\cdots,x_i,\cdots,x_N)$
= $\pm\psi(x_1,\cdots,x_i,\cdots,x_j,\cdots,x_N)$

例如, 3个Bosons处于不同的 k_1, k_2, k_3 态:

$$\psi_{k_1k_2k_3}^{(s)} = \frac{1}{\sqrt{3!}} (\psi_{k_1}(1)\psi_{k_2}(2)\psi_{k_3}(3) + \psi_{k_2}(1)\psi_{k_1}(2)\psi_{k_3}(3) + \cdots)$$

3!是k1,k2,k3的所有不同排列的数目.

两个处于 k_1 , 一个处于 $k_2 \neq k_1$:

$$\psi_{k_1k_1k_3}^{(s)} = \frac{\sqrt{2!}}{\sqrt{3!}} [\psi_{k_1}(1)\psi_{k_1}(2)\psi_{k_2}(3) + \psi_{k_2}(1)\psi_{k_1}(2)\psi_{k_1}(3) + \psi_{k_1}(1)\psi_{k_2}(2)\psi_{k_1}(3)]$$

2!是相同的两个态k₁, k₂的排列数.

三个都处于同一个k1:

$$\psi_{k_1k_1k_1}^{(s)} = \psi_{k_1}(1)\psi_{k_1}(2)\psi_{k_1}(3)$$

总的项数是全排列数除以相同态之间的排列数。因此归一化因子选为项数分之一再开方.

3个Fermion必须在不同的态

$$\psi_{k_1k_2k_3}^{(A)} = \frac{1}{\sqrt{3!}} \begin{vmatrix} \psi_{k_1}(1) & \psi_{k_1}(2) & \psi_{k_1}(3) \\ \psi_{k_2}(1) & \psi_{k_2}(2) & \psi_{k_2}(3) \\ \psi_{k_3}(1) & \psi_{k_3}(2) & \psi_{k_3}(3) \end{vmatrix}$$

7.3 量子统计

考虑一个能级 ϵ 是三重简并的: $k_1, k_2, k_3,$ 如图7.1所示, 两个粒子占据 ($E = 2\epsilon$), 可以有几种不同的状态?

Figure 7.1: 一个三重简并的能级.

图7.2给出了粒子是玻色子、费米子或者可分辨三种情况下的微观状态数.

Figure 7.2: 两个粒子占据三重简并的能级对应的量子态.

如果是N个粒子占据f重简并的能级,会有多少种情况?

如果一个能级的简并度小于系统的粒子数,此时费米子将不得不寻找其他能级去占据。

我们看到波函数的交换对称性可以限制一个系统所允许的微观状态数目!当然,我们这里讨论的是没有 相互作用的多粒子系统,在给定总能量的情况.这种限制可以严重改变一个宏观物理系统的性质!量子力学 不是只有微观效应!
7.4 交换力

全同性原理还能带来什么物理效应? 我们来考虑一个一维例子: 一个粒子处于 $\psi_a(x)$, 另一个 $\psi_b(x)$, 各自归一. 并且彼此正交 $\int \psi_a^*(x)\psi_b(x)dx = (\psi_a,\psi_b) = \langle a|b \rangle = 0.$

Figure 7.3: 两个粒子分别处于两个量子态 ψ_a, ψ_b .

如果两个粒子可分辨:

$$\psi(x_1, x_2) = \psi_a(x_1)\psi_b(x_2)$$

如果全同

$$Bosons: \psi_{+}(x_{1}, x_{2}) = \frac{1}{\sqrt{2}} [\psi_{a}(x_{1})\psi_{b}(x_{2}) + \psi_{b}(x_{1})\psi_{a}(x_{2})]$$

Fermions: $\psi_{-}(x_{1}, x_{2}) = \frac{1}{\sqrt{2}} [\psi_{a}(x_{1})\psi_{b}(x_{2}) - \psi_{b}(x_{1})\psi_{a}(x_{2})]$

计算平均距离的平方:

$$\langle (x_1 - x_2)^2 \rangle = \langle x_1^2 \rangle + \langle x_2^2 \rangle - 2 \langle x_1 x_2 \rangle$$

其中 $\langle A \rangle = \int dx_1 dx_2 \psi^*(x_1, x_2) A \psi(x_1, x_2).$ 首先我们考虑可分辨情形:

$$\begin{aligned} \langle x_1^2 \rangle &= \int x_1^2 |\psi_a(x_1)|^2 |\psi_b(x_2)|^2 dx_1 dx_2 \\ &= \int x_1^2 |\psi_a(x_1)|^2 dx_1 \\ &= \langle x^2 \rangle_a \equiv \langle a | x^2 | a \rangle \\ \langle x_2^2 \rangle &= \langle x^2 \rangle_b \end{aligned}$$

$$\langle x_1 x_2 \rangle = \int x_1 |\psi_a(x_1)|^2 dx_1 \int x_2 |\psi_b(x_2)|^2 dx_2 = \langle x \rangle_a \langle x \rangle_b$$

$$\therefore \langle (x_1 - x_2)^2 \rangle = \langle x^2 \rangle_a + \langle x^2 \rangle_b - 2 \langle x \rangle_a \langle x \rangle_b$$

对于全同粒子:

$$\begin{aligned} \langle x_1^2 \rangle &= \frac{1}{2} [\int x_1^2 |\psi_a(x_1)|^2 dx_1 \int |\psi_b(x_2)|^2 dx_2 + \int x_1^2 |\psi_b(x_1)|^2 dx_1 \int |\psi_a(x_2)|^2 dx_2 \\ &\pm \int x_1^2 \psi_a^*(x_1) \psi_b(x_1) dx_1 \int \psi_b^*(x_2) \psi_a(x_2) dx_2 \pm \int x_1^2 \psi_b^*(x_1) \psi_a(x_1) dx_1 \int \psi_a^*(x_2) \psi_b(x_2) dx_2] \\ &= \frac{1}{2} [\langle x^2 \rangle_a + \langle x^2 \rangle_b] \quad \text{int} \text{if} \text{if} \text{int} \text{i$$

类似

$$\langle x_2^2
angle = rac{1}{2} [\langle x^2
angle_a + \langle x^2
angle_b]$$
与上式结果不能区分

$$\begin{aligned} \langle x_1 x_2 \rangle &= \frac{1}{2} [\int x_1 |\psi_a(x_1)|^2 dx_1 \int x_2 |\psi_b(x_2)|^2 dx_2 + \int x_1 |\psi_b(x_1)|^2 dx_1 \int x_2 |\psi_a(x_2)|^2 dx_2 \\ &\pm \int x_1 \psi_a^*(x_1) \psi_b(x_1) dx_1 \int x_2 \psi_b^*(x_2) \psi_a(x_2) dx_2 \\ &\pm \int x_1 \psi_b^*(x_1) \psi_a(x_1) dx_1 \int x_2 \psi_a^*(x_2) \psi_b(x_2) dx_2] \\ &= \frac{1}{2} [2 \langle x \rangle_a \langle x \rangle_b \pm 2 \langle x \rangle_{ab} \langle x \rangle_{ba}] \\ &= \langle x \rangle_a \langle x \rangle_b \pm |\langle x \rangle_{ab}|^2 \end{aligned}$$

其中 $\langle x \rangle_{ab} = \langle a | x | b \rangle = \int \psi_a^*(x) x \psi_b(x) dx.$

$$\langle (x_1 - x_2)^2 \rangle_{\pm} = \langle x^2 \rangle_a + \langle x^2 \rangle_b - 2 \langle x \rangle_a \langle x \rangle_b \mp 2 |\langle x \rangle_{ab}|^2$$

与可分辨粒子的差别: ∓2|⟨x⟩_{ab}|²

Boson趋于相互靠近, Fermion"排斥"! 前提是波函数重叠, 即 $\langle a|x|b \rangle \neq 0$.

现实计算中,没有重叠波函数的全同粒子可视为"可分辨".

例子: H₂分子,其基态由两个电子的基态组成,一个以第一个原子核为中心,另一个以第二个原子核为 中心。这两个电子的空间波函数可以是对称的,而自旋反对称.对称的空间波函数重叠,导致"吸引",使得 电子在两个原子核中间聚拢,这样形成负电荷在原子核中间的积累,从而导致原子核收到向内的吸引力。 这就是共价键的起源.

另一个例子:氦原子基态和激发态的计算。

$$H = \frac{P_1^2}{2\mu} - \frac{Ze^2}{r_1} + \frac{P_2^2}{2\mu} - \frac{Ze^2}{r_2} + \frac{e^2}{r_{12}}$$
(7.37)

最后一项是两个电子之间的相互作用(库仑排斥)。前面四项是两个电子在氦核的库仑场中的动能和势能, 写为 $H_0 = h(1) + h(2)$. 基态为

$$\Psi_{100}(1)\Psi_{100}(2)\chi_{00} \tag{7.38}$$

这种空间波函数对称,自旋反对称的状态称为仲氦;相反,如果空间波函数反对称,自旋对称(χ_{1M_s}),称为正氦。显然,基态能量为

$$E_1^{(0)} = -2\frac{Z^2 e^2}{2a} = -\frac{4e^2}{a} \approx -109eV.$$
(7.39)

现在考虑电子之间的库仑排斥。我们对基态作微扰计算:

$$\langle H' \rangle = \int d^3 r_1 d^3 r_2 \Psi_{100}^*(r_1) \Psi_{100}^*(r_2) \frac{e^2}{r_{12}} \Psi_{100}(r_1) \Psi_{100}(r_2)$$
(7.40)

其中

$$\Psi_{100} = \frac{Z^{3/2}}{\sqrt{\pi}a^{3/2}} \mathrm{e}^{-Zr/\alpha}$$

利用公式

$$\int \frac{1}{r_{12}} e^{-\alpha(r_1+r_2)} d^3 r_1 d^3 r_2 = \frac{20\pi^2}{\alpha^5}$$
(7.41)

其中 $\alpha > 0$. 我们得到

$$\langle H' \rangle = \frac{5Ze^2}{8a} \tag{7.42}$$

这个排斥能使得基态能量从-109eV变为-79eV.

现在我们问激发态是什么样的?应该由 $\Psi_{nlm}\Psi_{100}$ 构成对称或反对称的空间波函数。(两个电子都处于激发态不稳定).由于对称的空间波函数使电子更靠近,所以 $\langle r_{12} \rangle$ 小,所以仲氦的能量高;相反相同nlm的情况下,正氦的能量低。

对于大质量原子能级的解释,请参考Griffiths书第5.2.2节。

140

Figure 7.4: 氦原子能谱。纵轴数值是相对于氦离子基态能-54.4eV,即应该减去54.4eV.

Chapter 8

量子跃迁

一个处于定态的微观粒子在什么情况下会"跃迁"到其它状态?

核磁共振 8.1

考虑一个强磁场中的自旋12粒子,比如由图中固体中的一个质子

其哈密顿量可以写为

$$H_0 = -\mu_z B_z = -\frac{\hbar}{2}\omega_0 \sigma_z,\tag{8.1}$$

这里我们忽略其空间运动,并利用了 $\mu_z = \frac{g_P e_s_z}{2m_p c} = \frac{g_P e^{\hbar}}{4m_p c} \sigma_z$,并且定义 $\omega_0 \equiv \frac{g_P B_z e}{2m_p c}$. 系统的两个能量本征态为 α 与 β ,其中 α 态为基态,且设为初态.如果没有其它的扰动,粒子将永远处 $\mp \alpha \overline{\Delta}.$

$$\chi(t) = \alpha e^{-iE_{\alpha}t/\hbar}, \qquad E_{\alpha} = -\frac{\hbar\omega_0}{2}$$
(8.2)

现在考虑加上x方向弱变磁场 $B_x \cos \omega t$. 系统的哈密顿量为

$$H = -\frac{\hbar}{2}\omega_0\sigma_z - \mu_x B_x \cos\omega t = -\frac{\hbar}{2}\omega_0\sigma_z - \hbar\delta\sigma_x \cos\omega t, \qquad (8.3)$$

其中 $\delta \equiv \frac{g_p B_x e}{4m_p c}$. 问 $\chi(t)$ 会怎么演化?

很自然,我们求解Schrödinger 方程

$$i\hbar\dot{\chi}(t) = H\chi = \left(-\frac{\hbar}{2}\omega_0\sigma_z - \hbar\delta\cos\omega t\sigma_x\right)\chi(t).$$
(8.4)

在 S_z 表象看: $\chi(t) = c_1(t)\alpha + c_2(t)\beta$. 考虑到定态的时间演化, 进一步假设

$$c_1(t) = c_1 e^{\frac{i\omega_0 t}{2}}, \qquad c_2(t) = c_2 e^{-\frac{i\omega_0 t}{2}}$$
(8.5)

Figure 8.1: 没有加交变磁场时系统的能级与量子态. 设核自旋初态是 α 态.

代入(8.4)

$$i\hbar(\dot{c_1}e^{\frac{i\omega_0t}{2}}\alpha + \dot{c_2}e^{-\frac{i\omega_0t}{2}}\beta) + i\hbar(\frac{i\omega_0}{2}c_1e^{\frac{i\omega_0t}{2}}\alpha - \frac{i\omega_0}{2}c_2e^{-\frac{i\omega_0t}{2}}\beta)$$
(8.6)

$$= -\frac{\hbar\omega_0}{2} (c_1 e^{\frac{i\omega_0 t}{2}} \alpha - c_2 e^{-\frac{i\omega_0 t}{2}} \beta) - \hbar\delta \cos \omega t (c_1 e^{\frac{i\omega t}{2}} \beta + c_2 e^{-\frac{i\omega_0 t}{2}} \alpha)$$
(8.7)

化简得到

$$i\hbar(\dot{c_1}e^{\frac{i\omega_0t}{2}}\alpha + \dot{c_2}e^{-\frac{i\omega_0t}{2}}\beta) = -\hbar\delta\cos\omega t(c_1e^{\frac{i\omega_0t}{2}}\beta + c_2e^{-\frac{i\omega_0t}{2}}\alpha)$$
(8.8)

与 α +作内积,

$$i\hbar\dot{c_1}e^{\frac{i\omega_0t}{2}} = -\hbar\delta\cos(\omega t)c_2e^{-\frac{i\omega_0t}{2}}$$
(8.9)

与 β +作内积,

$$i\hbar\dot{c}_2 e^{-\frac{i\omega_0 t}{2}} = -\hbar\delta\cos(\omega t)c_1 e^{\frac{i\omega_0 t}{2}}$$
(8.10)

化简:

$$\dot{c_1} = i\delta\cos(\omega t)e^{-i\omega_0 t}c_2 = i\delta\frac{e^{i\omega t} + e^{-i\omega t}}{2}e^{-i\omega_0 t}c_2$$
(8.11)

我们考虑共振情况: $\omega = \omega_0$,略去高频成分(所谓旋波近似, ω 本身很大,两边积分时 $\omega + \omega_0$ 会跑到分母上去):

$$\dot{c}_1 = \frac{i\delta}{2}c_2,\tag{8.12}$$

同样:

$$\dot{c}_2 = \frac{i\delta}{2}c_1. \tag{8.13}$$

我们有

$$\ddot{c}_1 = -\frac{\delta^2}{4}c_1$$

解为

$$c_1 = A \cos \frac{\delta}{2}t + B \sin \frac{\delta}{2}t$$

$$c_2 = \frac{2\dot{c_1}}{i\delta} = -i(-A \sin \frac{\delta}{2}t + B \cos \frac{\delta}{2}t)$$

利用初始条件:

$$c_1 = 1, c_2 = 0$$

我们知道
$$A = 1, B = 0.$$
因此

$$c_1 = \cos\frac{\delta}{2}t, c_2 = i\sin\frac{\delta}{2}t \tag{8.14}$$

最终得到

$$\chi(t) = \cos(\frac{\delta}{2}t)e^{\frac{i\omega_0 t}{2}} |+\rangle_z + i\sin(\frac{\delta}{2}t)e^{-\frac{i\omega_0 t}{2}} |-\rangle_z$$
(8.15)

$$|c_1|^2$$
: 处于 α 态几率 = $\cos^2 \frac{\delta}{2}t$
 $|c_2|^2$: 处于 β 态几率 = $\sin^2 \frac{\delta}{2}t$

当 $\frac{\delta t}{2} = \frac{\pi}{2} + n\pi$ 时,自旋翻转。这就是核磁共振! 我们看到在扰动(含时)下,"定态"不定,粒子状态跃迁! 计算

$$\begin{aligned} \langle \sigma_z \rangle &= \cos^2 \frac{\delta}{2} t \times 1 + \sin^2 \frac{\delta}{2} t(-1) = \cos \delta t \\ \langle \sigma_x \rangle &= (\cos \frac{\delta t}{2} e^{\frac{-i\omega_0 t}{2}} \alpha^+ - i \sin \frac{\sigma t}{2} e^{\frac{i\omega_0 t}{2}} \beta^+) \sigma_x \chi(t) \\ &= -i \sin \frac{\delta t}{2} \cos \frac{\delta t}{2} e^{i\omega_0 t} + i \cos \frac{\delta t}{2} \sin \frac{\delta t}{2} e^{-i\omega_0 t} \\ &= 2 \sin \frac{\delta t}{2} \cos \frac{\delta t}{2} (-i) \frac{e^{i\omega_0 t} - e^{-i\omega_0 t}}{2} \\ &= \sin \delta t \sin \omega_0 t \\ \langle \sigma_y \rangle &= \sin \delta t \cos \omega_0 t \end{aligned}$$

这给出了自旋矢量时间演化的经典图像,如图8.2所示.

Figure 8.2: 自旋矢量的期望值的时间演化.

超越经典物理:每次测量只能得到+1或者-1,不是sin(δt) cos($\omega_0 t$).我们可计算出 $\sigma_x = \pm 1$ 的几率. δ 反映了扰动的强度。如果 $\delta \rightarrow 0, \sigma_z$ 的期望值可以保持很长时间不变,同时 σ_x, σ_y 也保持为0.

8.2 量子跃迁问题的微扰处理

考虑一个系统,其哈密顿为H₀,那么能量本征态和本征值由下面方程给出

$$H_0|\psi_n\rangle = E_n|\psi_n\rangle. \tag{8.16}$$

根据Schrödinger方程

$$i\hbar \frac{\partial |\psi\rangle}{\partial t} = H_0 |\psi\rangle \tag{8.17}$$

如果初始时刻系统处于 $|\psi_k\rangle$,那么系统会处于定态

$$|\psi(t)\rangle = e^{-i\frac{E_k}{\hbar}t}|\psi_k\rangle \tag{8.18}$$

现在考虑系统受到含时扰动: H'(t), 那么Schrödinger方程变为

$$\frac{i\hbar\partial|\psi(t)\rangle}{\partial t} = (H_0 + H')|\psi(t)\rangle.$$

由于 $|\psi_k\rangle$ 不是 $H_0 + H'(t)$ 的本征态,满足此方程的解应为

$$|\psi(t)\rangle = \sum_{n} c_n(t) |\psi_n\rangle e^{-i\frac{E_n}{\hbar}t}$$
(8.19)

即在 H_0 的表象下写解,系数 $c_n(t)$ 含时!

t = 0时, $c_{n=k} = 1, c_{n \neq k} = 0$, 这是初态。在H' = 0的条件下, (8.19)退化成(8.18):

$$c_n(t) = \{ \begin{array}{ll} 1, & n=k \\ 0, & n \neq k \end{array}$$

$$i\hbar \sum_{n} \dot{c}_{n}(t) e^{-i\frac{E_{n}}{\hbar}t} |\psi_{n}\rangle + i\hbar \sum_{n} c_{n}(t) (-\frac{iE_{n}}{\hbar}) e^{-i\frac{E_{n}}{\hbar}t} |\psi_{n}\rangle$$
$$= \sum_{n} c_{n}(t) e^{-i\frac{E_{n}}{\hbar}t} E_{n} |\psi_{n}\rangle + \sum_{n} c_{n}(t) e^{-i\frac{E_{n}}{\hbar}t} H' |\psi_{n}\rangle$$

化简, 然后内积 $\langle \psi_{k'} |$

$$i\hbar\dot{c}_{k'}e^{-i\frac{E_{k'}}{\hbar}t} = \sum_{n}c_n(t)e^{-i\frac{E_nt}{\hbar}}\langle\psi_{k'}|H'|\psi_n\rangle$$
(8.20)

可以写为

$$i\hbar\dot{c}_{k'} = \sum_{n} e^{i\omega_{k'n}t} H'_{k'n} c_n,$$
(8.21)

其中 $\omega_{k'n} = \frac{E_{k'} - E_n}{\hbar}.$

考虑 $H' \ll H_0$,或者H'作用时间不长,以至 $c_k(t) \approx 1$, $c_{k' \neq k} \approx 0$.保留到一阶小量,上式进一步简化为(对于 $k' \neq k$)

$$i\hbar\dot{c}_{k'} = e^{i\omega_{k'k}t}H'_{k'k},$$
(8.22)

k是初态,k'是末态.

两边积分

$$c_{k'}(t) = \frac{1}{i\hbar} \int_0^t e^{i\omega_{k'k}\tau} H'_{k'k}(\tau) d\tau$$
(8.23)

其中 $H'_{k'k}$ 称为跃迁矩阵元.此公式忽略了二级小量:比如 $H'_{k'n}c_{n\neq k}$.

 $c_{k'}(t)$ 也写为 $c_{k'k}(t)$,称为跃迁几率幅,目的是强调初态是k,到t时刻系统以 $c_{k'k}$ 的几率幅出现在|k')态(称为 末态). $|c_{k'k}|^2$ 称为跃迁几率

$$|c_{k'k}|^2 = \frac{1}{\hbar^2} |\int_0^t e^{i\omega_{k'k}\tau} H'_{k'k}(\tau) d\tau|^2.$$
(8.24)

讨论:

- 1 若*H*^{*k*}_{*k*'*k*} = 0,称为跃迁禁阻,这是选择定则的来源。更深层次的原因是守恒律的要求:如果从*k*到*k*'的 跃迁违背了某种守恒律,那么*H*^{*k*}_{*k*'*k*}肯定为0.
- 2 若初态为k', 末态为k, 我们发现

$$c_{kk'}|^2 = \frac{1}{\hbar^2} |\int_0^t H'_{kk'} e^{-i\omega_{k'k}\tau} d\tau|^2$$

= $|c_{k'k}|^2$

粒子从*k*到*k*′的跃迁几率等于逆过程的几率,这其实就是激光的原理:电子从低能级可以吸收光子跃迁到高能级,也可以以同样的几率从高能级放出光子回到低能级。

3 回看核磁共振

利用跃迁的微扰公式,从α到β的跃迁几率幅

$$c_{\beta\alpha} = \frac{1}{i\hbar} \int_0^t e^{i\omega_0\tau} H'_{\beta\alpha}(\tau) d\tau$$
$$H'_{\beta\alpha}(\tau) = \beta^+ (-\hbar\delta\sigma_x \cos\omega\tau)\alpha = -\hbar\delta\cos\omega\tau$$

 $\omega = \omega_0$ 时

$$c_{\beta\alpha} = -\frac{\hbar\delta}{i\hbar} \int_0^t \cos\omega_0 \tau e^{i\omega_0 \tau} d\tau \doteq \frac{-\delta t}{2i}$$

与 $\chi(t) \approx i \frac{\delta t}{2}$ 一致,注意微扰公式适用于t很小! 例:无限深势阱中一个粒子处于基态 ψ_1 ,受到一个脉冲势扰动

$$H' = \begin{cases} \lambda \delta(x - \frac{a}{2}) & 0 < t < T \\ 0 & t > T \end{cases}$$
(8.25)

求t时刻之后, 粒子处于 ψ_2, ψ_3 的几率

解:我们直接写出时间演化解

$$\psi(x,t) = \sum_{n} c_{n1}(t) e^{-i\frac{E_n}{h}t} \psi_n$$
(8.26)

时刻t粒子跃迁到ψ2的几率幅为

$$c_{21}(t) = \frac{1}{i\hbar} \int_0^t e^{i\omega_{21}\tau} H'_{21} d\tau$$
(8.27)

利用

$$E_n = \frac{\hbar^2 n^2 \pi^2}{2ma^2},$$
(8.28)

我们算出

$$\omega_{21} = \frac{E_2 - E_1}{\hbar} = \frac{3\hbar\pi^2}{2ma^2}.$$
(8.29)

再计算出跃迁矩阵元

$$H'_{21}(t) = \int_0^a \sqrt{\frac{2}{a}} \sin \frac{2\pi x}{a} \lambda \delta(x - \frac{a}{2}) \sqrt{\frac{2}{a}} \sin \frac{\pi x}{a} dx = 0$$

这就是跃迁禁阻! 导致 $|c_{21}|^2 = 0$.

物理上的理解是:即使加上含时微扰,哈密顿量是偶宇称的(把坐标原点选在势阱中间).因此宇称是守恒的(可以定义空间反射算符,亦即宇称算符,其本征值为±1,分别对应奇偶宇称.该算符与H对易,参考钱伯初书),因此不可能发生偶宇称到奇宇称的跃迁.

我们再来计算粒子跃迁到 43 的几率幅

$$H'_{31}(t) = \int \sqrt{\frac{2}{a}} \sin \frac{3\pi x}{a} \lambda \delta(x - \frac{a}{2}) \sqrt{\frac{2}{a}} \sin \frac{\pi x}{a} dx = -\frac{2}{a} \lambda$$

因此当t > T,

$$c_{31}(t) = \frac{1}{i\hbar} \int_0^T e^{i\omega_{31}\tau} (-\frac{2\lambda}{a}) d\tau$$

$$= \frac{-2\lambda}{i\hbar a} \frac{e^{i\omega_{31}\tau}}{i\omega_{31}} \Big|_0^T = \frac{2\lambda}{\hbar\omega_{31}a} (e^{i\omega_{31}T} - 1)$$
(8.30)

其中 $\omega_{31} = \frac{8\pi^2\hbar}{2ma^2}$. 跃迁几率就是

$$|c_{31}|^2 = \frac{4\lambda^2}{\hbar^2 \omega_{31}^2 a^2} (2 - 2\cos\omega_{31}T)$$
(8.31)

注意此计算成立成立的条件是 $\omega_{31}T \ll \frac{\pi}{2}$,因为微扰成立的前提是 $|c_{31}| \ll 1$.

8.3 绝热定理与Berry phase

量子跃迁发生在系统Hamitonian随时间变化的情况下。我们来研究两种极端情况.

1 突发过程: 瞬间外部参数改变, $T_e \rightarrow 0$.

例:一维无限深势阱,t = 0时宽度突然由 $a \rightarrow 2a$.若粒子初态为基态(宽度为a),求t > 0时系统处于什么态?

零时刻的基态为

$$\psi(x,0) = \{ \begin{array}{cc} \sqrt{\frac{2}{a}} \sin \frac{\pi x}{a}, & 0 < x < a \\ 0, & x < 0, x > a \end{array}$$

能量为 $E_1 = \frac{\hbar^2 \pi^2}{2ma^2}$. t > 0, $H \oplus V \to V'$, 但是态来不及改变! 态仍然是

$$\psi(x,0^{+}) = \{ \begin{array}{cc} \sqrt{\frac{2}{a}} \sin \frac{\pi x}{a} & 0 < x < a \\ 0 & x < 0, x > a \end{array}$$
(8.32)

那么这个态显然不是"新"阱的基态,处于"新"基态的几率怎么计算?

"新"本征态应该是:

$$\phi_n(x) = \{ \begin{array}{cc} \sqrt{\frac{1}{a}} \sin \frac{n\pi x}{2a}, & 0 < x < 2a \\ 0, & x < 0, x > 2a \end{array}$$

用 ϕ_n 去展开(8.32),

$$c_1 = \langle \phi_1 | \psi(0) \rangle = \int_0^a \sqrt{\frac{1}{a}} \sin \frac{\pi x}{2a} \sqrt{\frac{2}{a}} \sin \frac{\pi x}{a} dx$$
$$|c_1|^2 = \frac{32}{9\pi^2}$$

之后怎么演化?

$$\psi(x,t) = \sum_{n} c_n \phi_n e^{-i\frac{E'_n}{\hbar}t},$$
(8.33)

其中

$$E'_n = \frac{\hbar^2 n^2 \pi^2}{2m(2a)^2}, \qquad \qquad c_n = \langle \phi_n | \psi(0) \rangle$$

现在我们来讨论另外一个极端情况:

2 绝热过程:外部条件缓慢变化,
$$T_e \gg T_i, T_i$$
为'内部时间'。

例:一维谐振子,荷电q,初始 $t = -\infty$ 时处于基态 ψ_0 .缓慢加上x方向电场,

$$H' = -q\epsilon x \mathrm{e}^{-\frac{t^2}{\tau^2}}$$

au就是外部时间, 计算 $t = \infty$ 时, 振子处于 ψ_1 的几率. 利用微扰方法

$$c_{10}(t=\infty) = \frac{1}{i\hbar} \int_{-\infty}^{\infty} H'_{10} e^{i\omega_{10}t} \mathrm{d}t$$
(8.34)

其中跃迁矩阵元

$$H'_{10} = -q\epsilon e^{-\frac{t^2}{\tau^2}} \langle 1|x|0\rangle$$
$$= -q\epsilon e^{-\frac{t^2}{\tau^2}} \sqrt{\frac{\hbar}{2m\omega}}$$

初末态能量差

$$\omega_{10} = \frac{E_1 - E_0}{\hbar} = \omega \rightarrow$$
谐振子频率

 $T_i = \frac{1}{\omega}$

给出内部时间

(8.34)的计算结果为

$$c_{10} = \frac{-q\epsilon}{i\hbar} \sqrt{\frac{\hbar}{2m\omega}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{\tau^2} + i\omega t} dt$$
$$= \frac{iq\epsilon}{\sqrt{2m\hbar\omega}} \sqrt{\pi} \tau e^{-\frac{\omega^2 \tau^2}{4}}$$

积分利用了配方: $-\frac{t^2}{\tau^2} + i\omega t = -(\frac{t}{\tau} - \frac{i\omega\tau}{2})^2 - \frac{\omega^2\tau^2}{4}$. 这样跃迁几率为

$$P_{10}(\infty) = \frac{q^2 \epsilon^2 \pi^2 \tau^2}{2m\hbar\omega} e^{-\frac{\omega^2 \tau^2}{2}}$$
(8.35)

讨论:

1. $\tau \omega \to \infty$, $P_{10} \to 0$, 这就是绝热过程, 跃迁不发生。

2. 中间任意时间t,比如t = 0, 情况怎样? 我们需要绝热定理

绝热定理: 假设H(0) 到H(t)的过程无限缓慢. 如果粒子开始处于H(0)的第n个本征态 ψ_n ,要演化 到H(t)的第n个本征态(假设能级分立且不简并,在可以'跟踪'本征态时,也适用于简并情形).

证明: 设H(t)的本征态与本征值已知

$$H(t)\psi_n^{(t)} = E_n^{(t)}\psi_n^{(t)} \tag{8.36}$$

这里我用上指标表示H(t)的'瞬时'本征态和相应本征值。态本身并不含时间。它们仍然构成正交归一基矢

$$\langle \psi_n^{(t)} | \psi_m^{(t)} \rangle = \delta_{nm}.$$

因此, 薛定谔方程

$$i\hbar\frac{\partial}{\partial t}\psi(t) = H(t)\psi(t) \tag{8.37}$$

的解 $\psi(t)$ 可假设成

$$\psi(t) = \sum_{n} c_n(t) \psi_n^{(t)} e^{i\theta_n(t)}$$
(8.38)

的形式,其中

$$\theta_n(t) = -\frac{1}{\hbar} \int_0^t E_n^{(t')} dt'$$
(8.39)

如果H(t)实际不变,上式其实就是 $\psi(t) = \sum_{n} c_n \psi_n e^{i \frac{E_n}{\hbar} t}$ 。

代回(8.37)

$$i\hbar \sum_{n} [\dot{c_n}\psi_n^{(t)} + c_n \dot{\psi}_n^{(t)} + ic_n \psi_n^{(t)} \dot{\theta}_n] e^{i\theta_n} = \sum_{n} c_n H \psi_n^{(t)} e^{i\theta_n}$$
(8.40)

其中利用(8.36)和(8.39),

$$\sum_{n} \dot{c_n} \psi_n^{(t)} \mathrm{e}^{i\theta_n} = -\sum_{n} c_n \dot{\psi}_n^{(t)} \mathrm{e}^{i\theta_n} \tag{8.41}$$

与 $\langle \psi_m^{(t)} |$ 内积:

$$\dot{c_m} = -\sum_n c_n \langle \psi_m^{(t)} | \dot{\psi}_n^{(t)} \rangle e^{i(\theta_n - \theta_m)}$$
(8.42)

利用(8.36)式的时间导数

$$\dot{H}\psi_n^{(t)} + H\dot{\psi}_n^{(t)} = \dot{E}_n^{(t)}\psi_n^{(t)} + E_n^{(t)}\dot{\psi}_n^{(t)}$$
(8.43)

我们有

$$\langle \psi_m^{(t)} | \dot{H} | \psi_n^{(t)} \rangle + \langle \psi_m^{(t)} | H | \dot{\psi}_n^{(t)} \rangle = \dot{E}_n^{(t)} \delta_{mn} + E_n^{(t)} \langle \psi_m^{(t)} | \dot{\psi}_n^{(t)} \rangle$$
(8.44)

对于 $m \neq n$,

$$\langle \psi_m^{(t)} | \dot{H} | \psi_n^{(t)} \rangle = (E_n^{(t)} - E_m^{(t)}) \langle \psi_m^{(t)} | \psi_n^{(t)} \rangle$$
(8.45)

能级非简并(假设),代入(8.42)

$$\dot{c_m}(t) = -c_m(t) \langle \psi_m^{(t)} | \dot{\psi}_m^{(t)} \rangle - \sum_{n \neq m} c_n(t) \frac{H_{mn}}{E_n^{(t)} - E_m^{(t)}} e^{i(\theta_n - \theta_m)}$$
(8.46)

绝热近似 $\dot{H} \ll 1$:

$$\dot{c}_m(t) = -c_m(t) \langle \psi_m^{(t)} | \dot{\psi}_m^{(t)} \rangle \tag{8.47}$$

两边除以 $c_m(t)$,积分

$$c_m(t) = c_m(0)e^{i\gamma_m(t)}$$
(8.48)

其中

$$\gamma_m(t) = i \int_0^t \langle \psi_m^{(t')} | \dot{\psi}_m^{(t')} \rangle dt'$$
(8.49)

利用波函数归一性和 $\langle \alpha | \beta \rangle = \langle \beta | \alpha \rangle^*$,可以证明 γ 为实数。 考虑到初态为 $\psi_n = \psi_n^{(0)}$,所以 $c_n(0) = 1, c_{m \neq n}(0) = 0$,我们有

$$\psi(t) = \psi_n^{(t)} e^{i\theta_n(t)} e^{i\gamma_n(t)} \tag{8.50}$$

仍然在第*n*个瞬时本征态, θ_n 称动力学相因子, 对 $E_n^{(t)}$ 不随时间变化的情况, $\theta_n(t) = -i\frac{E_n}{\hbar}t$. 请注意多了一 个相因子 $\gamma_n(t)$. $\gamma_n(t)$ 所有人都认为没意义, 直到1984. 几个例题。

例:考虑一个自旋 $\frac{1}{2}$ 粒子,磁矩为 μ ,处于z向磁场 B_0 中,初始时刻(t = 0) $\sigma_z = -1$ (自旋向下).后加上x方向磁场 $B_1 \ll B_0$,求t > 0时刻自旋向上的几率.(设 $\mu = \frac{-e}{mc}\vec{s}$)

$$\begin{aligned} t < 0, \quad H_0 &= -\vec{\mu} \cdot \vec{B}_0 = \frac{eB_0\hbar}{2mc}\hat{\sigma}_z = \frac{\hbar\omega_0}{2}\hat{\sigma}_z\\ t \ge 0, \quad \exists \mu \perp H' = -\vec{\mu} \cdot \vec{B}_1 = \frac{eB_1\hbar}{2mc}\hat{\sigma}_x = \hbar\delta\hat{\sigma}_x \end{aligned}$$

 s_z 表象下

$$H_0 = \frac{\hbar}{2} \begin{pmatrix} \omega_0 & 0\\ 0 & -\omega_0 \end{pmatrix}, H' = \frac{\hbar}{2} \begin{pmatrix} 0 & 2\delta\\ 2\delta & 0 \end{pmatrix}$$

首先,我们利用含时微扰计算。其实是在 H_0 的表象看问题.初始时刻 $\chi(0) = \beta$,由于 B_1 很小,粒子待在 β 态的几率约等于1,但是有小概率跃迁到 α 态.

若不加上 $H', \chi(t) = \beta e^{-i\frac{E_{\beta}}{\hbar}t} = \beta e^{i\frac{\omega_0}{2}t}$,定态. 现在加上H',

$$\chi(t) = c_{\alpha}(t)\alpha e^{-i\frac{\omega_0}{2}t} + c_{\beta}(t)\beta e^{i\frac{\omega_0}{2}t}.$$
(8.51)

套公式

$$c_{\alpha}(t) = \frac{1}{i\hbar} \int_{0}^{t} H'_{\alpha\beta} e^{i\omega_{\alpha\beta}\tau} d\tau$$
(8.52)

其中 $\omega_{\alpha\beta} = \omega_0, H'_{\alpha\beta} = \alpha^+ H'\beta = \hbar\delta.$ 得到

$$c_{\alpha}(t) = -i\delta \int_0^t e^{i\omega_0\tau} d\tau = -\frac{\delta}{\omega_0} (e^{i\omega_0}t - 1)$$
(8.53)

几率

$$|c_{\alpha}(t)|^{2} = \frac{4\delta^{2}}{\omega_{0}^{2}} \sin^{2}\frac{\omega_{0}}{2}t$$
(8.54)

结果只适用于短时间t.

我们还可以考虑以上过程实际上是瞬时完成的: 突然 $H_0 \to H = H_0 + H'$. 然后在H表象中看问题。为此 先求 $H = H_0 + H'$ 的本征态. 由久期方程:

$$\begin{vmatrix} \frac{\omega_0}{2} - \lambda & \delta \\ \delta & \frac{-\omega_0}{2} - \lambda \end{vmatrix} = 0,$$

得到两个本征值

$$\lambda_{1,2} = \pm \sqrt{\frac{\omega_0^2}{4} + \delta^2} \approx \pm \frac{\omega_0}{2} (1 + \frac{2\delta^2}{\omega_0^2})$$
(8.55)

和对应的两个本征态: h_{1}

$$\frac{c_1}{c_2} = \frac{\delta}{\lambda_1 - \frac{\omega_0}{2}} \approx \frac{\omega_0}{\delta} \tag{8.56}$$

得

$$\phi_{+} = \frac{1}{\sqrt{\omega_{0}^{2} + \delta^{2}}} \begin{pmatrix} \omega_{0} \\ \delta \end{pmatrix} \approx \alpha + \frac{\delta}{\omega_{0}} \beta.(\delta \ddagger \neg \beta \uparrow)$$

注意:如果考虑 $B_1/B_0 \approx \theta$,总磁场与z轴的夹角,那么上式其实就是 σ_n 的本征矢. 类似地:

$$\phi_{-} = \frac{1}{\sqrt{\omega_{0}^{2} + \delta^{2}}} \begin{pmatrix} -\delta \\ \omega_{0} \end{pmatrix} \approx -\frac{\delta}{\omega_{0}}\alpha + \beta$$

物理是这样的: $t = 0, \chi(0) = \beta$, 突然加上H', 将初态在新哈密顿量本征态下展开:

$$\chi(0) = \beta \stackrel{\text{\tiny RT}}{=} c_1 \phi_+ + c_2 \phi_- \tag{8.57}$$

然后开始演化,注意 $E_{1,2} = \lambda_{1,2}\hbar$,

$$\chi(t) = c_1 \phi_+ e^{-i\lambda_1 t} + c_2 \phi_- e^{-i\lambda_2 t}$$
$$c_1 = \phi_+^{\dagger} \beta = \frac{\delta}{\sqrt{\omega_0^2 + \delta^2}} \approx \frac{\delta}{\omega_0}$$
$$c_2 = \phi_-^{\dagger} \beta = \frac{\omega_0}{\sqrt{\omega_0^2 + \delta^2}} \approx 1$$

处于 α 的几率幅

$$c_{\alpha} = \alpha^{\dagger} \chi(t) = c_1 e^{-i\lambda_1 t} + c_2 \left(\frac{-\delta}{\omega_0}\right) e^{i\lambda_1 t}$$

$$\approx \frac{2\delta}{\omega_0} i \sin \frac{\omega_0}{2} t$$
(8.58)

这里利用了 $\lambda_1 = -\lambda_2$.

$$|c_{\alpha}|^{2} = \frac{4\delta^{2}}{\omega_{0}^{2}}\sin^{2}\frac{\omega_{0}}{2}t \quad (\hbar \tilde{m} \tilde{m} \delta^{2})$$

与含时微扰结果是一致的!

从(8.58)严格地求解 c_{α} :

$$c_{\alpha} = \frac{-2\delta i}{\sqrt{\omega_0^2 + \delta^2}} \sin \sqrt{\frac{\omega_0^2}{4} + \delta^2} t \quad (\text{本征态有近似})$$

现在我们考虑如果是缓慢加上H',情况会怎样?

$$H'(t) = H'e^{\frac{t}{\tau}}(-\infty < t < 0) \mathbb{M} - \infty \mathbb{R}$$

$$c_{\alpha}(t') = -\frac{i}{\hbar} \int_{-\infty}^{t'} H'_{\alpha\beta} e^{\frac{t}{\tau} + i\omega_0 t} dt$$

$$= -\frac{i}{\hbar} \hbar \delta \frac{e^{(\frac{1}{\tau} + i\omega_0)t}}{\frac{1}{\tau} + i\omega_0} \Big|_{-\infty}^{t'}$$

$$= -\frac{\delta}{\omega_0} e^{i\omega_0 t'} (\tau \to \infty)$$

$$\chi(t') = \beta e^{\frac{i\omega_0 t'}{2}} + (-\frac{\delta}{\omega_0}) e^{i\omega_0 t'} \alpha e^{-\frac{i\omega_0 t'}{2}}$$

$$= [\beta + (-\frac{\delta}{\omega_0})\alpha] e^{\frac{i\omega_0 t'}{2}}$$

括号内的态刚好是t'时刻的瞬时本征态.

与绝热定理公式对比: $\theta_n(t)$ (在忽略 δ^2 时) = $\frac{\omega_0 t'}{2}$,只差一个 $i\gamma_n(t')$ 相因子,它是多大呢?

8.3.1 Berry phase

前面我们证明了初态为H(0)的第n个本征态 $\psi_n^{(0)}$,绝热过程到H(t)时,粒子仍处于第n个本征态 $\psi_n^{(t)}$.但是增加了两个相因子。物理上H(t)的演化是由于某些参数 $\vec{R}(t)$ 随时间变化导致的.因此,(8.49)可以改写为

$$\begin{aligned} \dot{\gamma}_n(t) &= i \langle \psi_n^{(t)} | \frac{\partial}{\partial t} \psi_n^{(t)} \rangle \\ &= i \langle \psi_n^{(t)} | \frac{\partial}{\partial \vec{R}} \psi_n^{(t)} \rangle \cdot \frac{\partial \vec{R}}{\partial t} \end{aligned}$$

积分

$$\gamma_n(t) = i \int_0^t \langle \psi_n^{(t')} | \frac{\partial}{\partial t'} \psi_n^{(t')} \rangle dt' = i \int_{\vec{R}(0)}^{\vec{R}(t)} \langle \psi_n(\vec{R}) | \frac{\partial \psi_n(\vec{R})}{\partial \vec{R}} \rangle \cdot d\vec{R}$$
(8.59)

注意

$$i\langle\psi_n(\vec{R})|\frac{\partial}{\partial\vec{R}}\psi_n(\vec{R})\rangle = i\frac{\langle\psi_n(\vec{R})|\psi_n(\vec{R}+\Delta\vec{R})\rangle - \langle\psi_n(\vec{R})|\psi_n(\vec{R})\rangle}{\Delta\vec{R}}$$
(8.60)

为矢量,称为Berry connection(贝里联络).

前人只注意到*R*是一维的情况,此时,如果系统外参量回到初始情况, *R*(*t*) = *R*(0), (8.59)中积分恒为0. Berry在1984年首先注意到*R*在二维以上闭合路径的积分

$$\gamma_n(T) = i \oint \langle \psi_n(\vec{R}) | \nabla_R \psi_n(\vec{R}) \rangle \cdot d\vec{R}$$
(8.61)

可以不为零!因此称为Berry Phase.

将路径积分写成面积分,对R包围的面积S

$$\gamma_n(T) = i \iint_S \nabla_R \times \langle \psi_n(\vec{R}) | \nabla_R \psi_n(\vec{R}) \rangle \cdot d\vec{S}$$
(8.62)

其中

$$i\nabla_R \times \langle \psi_n(\vec{R}) | \nabla_R \psi_n(\vec{R}) \rangle$$
 (8.63)

称为贝里曲率.

贝里联络与贝里曲率的关系类似于磁感应强度*B*与矢势*A*的关系:

$$i\langle\psi_n(\vec{R})|\nabla_{\vec{R}}\psi_n(\vec{R})\rangle \to \bar{A}$$
$$i\nabla_R \times \langle\psi_n(\vec{R})|\nabla_{\vec{R}}\psi_n(\vec{R})\rangle \to \bar{B}$$

而Berry phase可以看作磁通!

$$\gamma_n(T) = \Phi = \iint_S \vec{B} \cdot d\vec{S} \to \vec{\text{am}}$$

Berry phase经典例子:

考虑以恒定角速度 ω 绕z轴旋转的磁场 $\vec{B}(t)$ 中的一个电子.磁场转速无限缓慢。

$$H(t) = -\vec{\mu} \cdot \vec{B} = \frac{e\hbar}{2mc} \vec{\sigma} \cdot \vec{B},$$

$$= \frac{\hbar\omega_0}{2} \begin{pmatrix} \cos\theta, & \sin\theta e^{-i\omega t} \\ \sin\theta e^{i\omega t}, & -\cos\theta \end{pmatrix}$$

磁场旋转的角速度为 ω ,因此磁场方向的 φ 角等于 $\varphi = \omega t. \hbar \omega_0$ 是能级能量差,由B大小决定。 我们知道(8.64)的两个本征态为

$$\chi_{+}^{(t)} = \begin{pmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2}e^{i\omega t} \end{pmatrix}, \chi_{-}^{(t)} = \begin{pmatrix} \sin\frac{\theta}{2}e^{-i\omega t} \\ -\cos\frac{\theta}{2} \end{pmatrix}$$
(8.64)

我们在t = 0时, 令电子处于

$$\chi(0) = \chi_{+}^{(0)} = \left(\begin{array}{c} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2} \end{array}\right)$$

根据绝热定理,旋转一周后($t\omega = 2\pi$)

$$\chi(t) = \chi_{+}^{(t)} e^{i\theta_{+}(t) + i\gamma_{+}(t)}$$
(8.65)

其中

$$\theta_{+}(t) = -\frac{1}{\hbar} \int_{0}^{t} E_{+}(t') dt' = -\frac{1}{\hbar} \frac{\hbar\omega_{0}}{2} t = -\frac{\omega_{0}t}{2} \quad \text{if } \mathbb{E}_{+} \mathbb{E}_{+}^{-1} \mathbb{E}_{+$$

磁感应强度矢量就是我们的随时间变化参量,哈密顿量的瞬时本征矢实际是它决定. 对 χ 的梯度实际是对本征 态(8.64)中的磁场相关参数进行!

(8.68)

根据球坐标下梯度公式:

$$\nabla_B \chi_+ = \frac{\partial}{\partial B} \chi_+ \hat{B} + \frac{1}{B} \frac{\partial \chi_+}{\partial \theta} \hat{\theta} + \frac{1}{B \sin \theta} \frac{\partial \chi_+}{\partial \varphi} \hat{\varphi}$$
$$= \frac{1}{B} \begin{pmatrix} -\frac{1}{2} \sin \frac{\theta}{2} \\ \frac{1}{2} \cos \frac{\theta}{2} e^{i\varphi} \end{pmatrix} \hat{\theta} + \frac{1}{B \sin \theta} \begin{pmatrix} 0 \\ i \sin \frac{\theta}{2} e^{i\varphi} \end{pmatrix} \hat{\varphi}$$

再计算内积:

$$\chi^{\dagger}_{+} \nabla_{B} \chi_{+} = \frac{1}{2B} (-\sin\frac{\theta}{2}\cos\frac{\theta}{2} + \sin\frac{\theta}{2}\cos\frac{\theta}{2})\hat{\theta} + \frac{i}{B\sin\theta}\sin^{2}\frac{\theta}{2}\hat{\varphi}$$
$$= \frac{i\sin^{2}\frac{\theta}{2}}{B\sin\theta}\hat{\varphi}$$

Berry connection

$$\mathbf{A} = i\chi_{+}^{\dagger}\nabla_{B}\chi_{+} = -\frac{\sin^{2}\frac{\theta}{2}}{B\sin\theta}\hat{\varphi}$$
(8.66)

直接作环路积分,可以得到

$$\gamma_{+} = -\frac{1}{2}\Omega = \pi(\cos\theta - 1)$$
 (8.67)

也可以求Berry曲率,作环路包围的曲面积分。求旋度

$$\nabla \times \langle \chi_+ | \nabla \chi_+ \rangle = \frac{1}{B \sin \theta} \frac{\partial}{\partial \theta} [\sin \theta \frac{i \sin^2 \frac{\theta}{2}}{B \sin \theta}] \hat{B} = \frac{i}{2B^2} \hat{B}$$

 $\vec{B} = -\frac{1}{2B^2}\hat{B}$

Berry曲率

因此

$$\gamma_+(T) = -\oint \frac{\hat{B}}{2B^2} \cdot d\vec{S}$$

取球面积分:

$$\gamma_{+} = -\frac{1}{2}\Omega = (\cos\theta - 1)\frac{2\pi}{2} = \pi(\cos\theta - 1)$$

Ω是磁场在球面上扫过一周所包围的面积对应的立体角。可以证明不管怎样设计闭合回路(磁场),最终的Berry phase等于磁场矢量扫过立体角的(负)一半!这也是为什么Berry Phase又称几何相因子!

以上公式也可以根据 $\chi(t)$ 的严格解来验证.

(请参考Griffiths书上内容).

设t = 0,自旋 $\chi(0) = \chi_+(0)$

精确求解S - eq:

$$\chi(t) = \begin{pmatrix} (\cos\frac{\lambda t}{2} - i\frac{\omega_0 - \omega}{\lambda}\sin\frac{\lambda t}{2})\cos\frac{\theta}{2}e^{-\frac{i\omega t}{2}} \\ (\cos\frac{\lambda t}{2} - i\frac{\omega_0 - \omega}{\lambda}\sin\frac{\lambda t}{2})\sin\frac{\theta}{2}e^{\frac{i\omega t}{2}} \end{pmatrix}$$
$$\lambda = \sqrt{\omega^2 + \omega_0^2 - 2\omega\omega_0\cos\theta}$$

跃迁几率:

$$|\langle \chi(t)|\chi_{-}(t)\rangle|^{2} = \left(\frac{\omega}{\lambda}\sin\theta\sin\frac{\lambda t}{2}\right)^{2}$$
(8.69)

注意: $T_e = \frac{1}{\omega}, T_i = \frac{1}{\omega_0} \square \omega \ll \omega_0$. 此时 $\lambda \to \omega_0$ (8.69)变为

$$|c_{-+}|^2 = \left(\frac{\omega}{\omega_0} \sin\theta \sin\frac{\omega_0 t}{2}\right)^2 \to 0 \tag{8.70}$$

这正是绝热定理结论.

相反, 当 $T_e \ll T_i$,即 $\omega_0 \ll \omega$, 我们有 $\lambda \to \omega$, 跃迁几率为

$$|c_{-+}|^2 = |\sin\theta \sin\frac{\omega}{2}t|^2$$
(8.71)

8.4 光的吸收与辐射

考虑一个单价原子,比如钠原子.其价电子的哈密顿为(忽略精细结构)

$$H_0 = \frac{P_r^2}{2\mu} + \frac{L^2}{2\mu r^2} + V(r)$$

能级为 E_{nl} ,本征态 $\psi_{nlm} = R_{nl}Y_{lm}$.假设光波沿y方向入射,单色 ω ,z方向线偏振.与价电子的相互作用为

Figure 8.3: a. 平面电磁波的电场. b. 与原子大小相比,每个时刻电场是'匀强'的。

$$H_I = -(-e\vec{r}) \cdot \vec{E}(y,t), \tag{8.72}$$

 $-e\vec{r}$ 为电偶极矩. $\vec{E}(y,t)$ 是光的电场。 $\vec{E}(y,t) = \vec{E}_0 \cos(\omega t - ky)$. 其中波矢量 $k = \frac{2\pi}{\lambda}, \lambda \approx 5000 \mathring{A}$. 因此原子尺度下电场可以看作是空间均匀的。所以

$$H_I = ez E_0 \cos(\omega t) \tag{8.73}$$

 H_I 中忽略了 $-\vec{\mu} \cdot \vec{B}$,因为 $\mu \sim \mu_B = \frac{e\hbar}{2m_e c}$ 与 $D \sim ea_0 = \frac{\hbar^2}{em_e}$ 的比是1:100,同时高斯制下 $|B| \sim |E|$.

Figure 8.4: 电子的跃迁

假设原子初态为 ψ_1 ,我们来计算跃迁到 ψ_2 的几率.设 ψ_2,ψ_1 能量差为 $\hbar\omega_0$.即

$$\begin{split} \psi(0) &= \psi_1, \\ \psi(t) &= \sum_n c_n(t) e^{-i\frac{E_n}{h}t} \psi_n, \end{split}$$

其中c1~1. 根据跃迁微扰公式

$$c_{21}(t) = \frac{1}{i\hbar} \int_0^t H_{21}(\tau) e^{i\omega_{21}\tau} d\tau$$
(8.74)

Figure 8.5: 吸收与受激辐射

其中

$$\begin{aligned}
\omega_{21} &= \omega_0, \\
H_{21}(\tau) &= (\psi_2, ezE_0 \cos \omega t\psi_1) \\
&= (\psi_2, z\psi_1)eE_0 \cos \omega t \\
&\equiv z_{21}eE_0 \cos \omega t
\end{aligned}$$

定义 $\Omega_r \equiv \frac{ez_{21}E_0}{\hbar}$ (拉比频率),一般 $\hbar\Omega_R \ll \hbar\omega_{21}$,所以可以用微扰方法处理。因此

$$c_{21}(t) = \frac{1}{2i\hbar} \hbar \Omega_R \int_0^t (e^{i\omega\tau} + e^{-i\omega\tau}) e^{i\omega_0\tau} d\tau$$
(8.75)

利用所谓的'旋光'近似:即忽略对e^{-i(ω+ω})^τ的积分,因为积分后有很大的分母。我们有

$$c_{21}(5) \doteq \frac{\Omega_R}{2i} \frac{1}{i(\omega_0 - \omega)} [e^{1(\omega_0 - \omega)t} - 1]$$
$$= \frac{-\Omega_R}{2\Delta\omega} [e^{i\Delta\omega t} - 1]$$

我们得到跃起几率

$$|c_{21}|^2 = \frac{|\Omega_R|^2 \sin^2 \frac{\Delta\omega}{2} t}{\Delta\omega^2}$$
(8.76)

如果入射光与原子共振, 即 $\omega = \omega_0$,

$$|c_{21}|^2 \to \frac{|\Omega_R|^2}{4} t^2$$
 (8.77)

一旦成功,原子吸收或放出一个光子,其能量为ħω0!

实际情况下, 电磁波不是完全"单色"的. 设 $E_0(\omega)$ 是频率为 ω 的场强, $\frac{1}{8\pi}E_0^2(\omega) = \rho(\omega)$, 为能量密度(单位 频宽).

考虑每个频率的贡献,就是对8.75作频率积分(各频率的效果独立)

$$|c_{21}|^{2} = \int \frac{e^{2}|z_{21}|^{2}E_{0}^{2}(\omega)}{\hbar^{2}} \frac{\sin^{2}\frac{\Delta\omega}{2}t}{\Delta\omega^{2}} d\omega$$
(8.78)

我们来计算 $P(\omega) = \frac{\sin^2 \frac{\Delta \omega}{2} t}{\Delta \omega^2}$ 。在给定时间t,其大小如图Fig. 8.6. 当 $t \to \infty$,我们可以将其写为

$$P(\omega) \to t\delta(\omega - \omega_0)\frac{\pi}{2}$$

于是

$$|c_{21}|^2 = \frac{4\pi^2}{\hbar^2} \rho(\omega_0) e^2 |z_{21}|^2 t$$
(8.79)

或者

$$|c_{21}|^2 = \frac{\pi}{2} |\Omega_R(\omega_0)|^2 t$$

容易算出跃迁速率

$$\frac{d|c_{21}|^2}{dt} \equiv R_{21} = \frac{4\pi^2}{\hbar^2} e^2 |z_{21}|^2 \rho(\omega_0)$$
(8.80)

Figure 8.6: 各个频率对跃迁几率的贡献

Figure 8.7: 任意方向电场强度相对于r₂₁.

现在考虑光线来自任意方向,且极化方向任意(非偏振). 计算 $H_I = e\vec{r} \cdot \vec{E} \cos \omega t$ 的矩阵元.

$$H_{21}^{I} = (\psi_{2}, \vec{r}\psi_{1}) \cdot e\vec{E}_{0} \cos \omega t = \vec{r}_{21} \cdot \vec{E}_{0} e \cos \omega t$$
(8.81)

Rabi频率改写为

$$\Omega_R = \frac{\vec{r}_{21} \cdot \vec{E}_0 e}{\hbar} \tag{8.82}$$

(8.75)式仍成立,但是需要对 *E*_0作任意角度的平均.

选 \vec{r}_{21} 方向为"新的"z方向, θ 为 \vec{E} 与 \vec{r}_{21} 的夹角.

$$\overline{|c_{21}|^2} = \left(\frac{e|\vec{r}_{21}|E_0}{\hbar}\right)^2 \int \cos^2\theta \frac{\sin\theta d\theta d\phi}{4\pi} = \frac{e^2|r_{21}|^2 E_0^2}{3\hbar^2} \frac{\sin^2\frac{\Delta\omega}{2}t}{\Delta\omega^2}$$
(8.83)

最终跃迁速率:

$$\overline{R_{21}} = \frac{4\pi^2 e^2 |r_{21}|^2}{3\hbar^2} \rho(\omega_0) \tag{8.84}$$

其中 $\frac{4\pi^2 e^2 |r_{21}|^2}{3\hbar^2}$ 为 B_{21} 称为Einstein系数.

现在我们讨论疗21的计算.

设 ψ_1 为 ψ_{nlm} , ψ_2 为 $\psi_{n'l'm'}$. 我们知道波函数的宇称(奇偶性)由(-1)^l决定. 要使

$$\vec{r}_{21} = (\psi_{n'l'm'}, (x, y, z)\psi_{nlm})$$

不为零,

- 由于 \vec{r} 为奇函数,所以必须 $\Delta l = \pm 1$.
- $z = r \cos \theta$. $\boxplus \cos \theta Y_{lm} = a Y_{l+1,m} + b Y_{l-1,m} \Rightarrow \Delta l = \pm 1, m' = m$
- $x = \frac{r}{2} sin\theta(e^{i\phi} + e^{-i\phi}), \ \text{th} \ \vec{T} sin\theta e^{\pm i\phi} Y_{lm} = c Y_{l+1,m+1} + dY_{l-1,m\pm 1}$ $\Rightarrow \Delta l = 1, m' = m \pm 1$
- y同样

以上为选择定则.

如果考虑精细结构 ψ_1 为 ψ_{nlhm_j} , ψ_2 为 $\psi_{n'l'j'm'_j}$. 同样计算 \vec{r}_{21} ,可得选择定则: $\Delta j = 0, \pm 1; \Delta l = \pm 1, \Delta m_j = 0, \pm 1$.

8.4.1 自发辐射

以上讨论中光场仍是经典描述,所以无法得到自发辐射.在没有入射光的情况下,原子无法自己从高能级跃 迁到低能级。但Einstein通过讨论热平衡系统巧妙地导出了自发辐射.

考虑一个容器中N个原子.其中 N_2 个原子在 ψ_2 态, N_1 个在 ψ_1 .

由于热平衡

$$\frac{N_1}{N_2} = \frac{e^{-\frac{E_1}{kT}}}{e^{-\frac{E_2}{kT}}} = e^{\frac{\hbar\omega}{kT}}$$
(8.85)

此平衡怎样实现?

Einstein认为原子跃迁由吸收与受激辐射,加上自发辐射导致.电磁场能量,密度设为 $\rho(\omega)$. $B_{12}\rho(\omega)$: 单位时间从 $\psi_2 \rightarrow \psi_1$ 的几率; $B_{21}\rho(\omega)$: 单位时间从 $\psi_1 \rightarrow \psi_2$ 的几率.

因此有如下速率方程:

$$\frac{dN_1}{dt} = N_2 B_{12} \rho(\omega) - N_1 B_{21} \rho(\omega) + N_2 A_{12} = -\frac{dN_2}{dt}$$
(8.86)

Figure 8.8: 容器中的大量两能级原子的热平衡

其中N₂A₁₂就是必须有的自发辐射项,否则无法实现(8.85)分布! 平衡时

$$\frac{dN_1}{dt} = -\frac{dN_2}{dt} = 0$$
 (8.87)

所以

$$\rho(\omega) = \frac{A_{12}}{\frac{N_1}{N_2}B_{21} - B_{12}} = \frac{A_{12}}{e^{\frac{\hbar\omega}{kT}}B_{21} - B_{12}}$$
(8.88)

Einstein当时已知道Planck的黑体辐射公式

$$\rho(\omega) = \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{e^{\frac{\hbar\omega}{kT}} - 1}$$
(8.89)

比较(8.88)与(8.89),可知:

$$1 B_{12} = B_{21}$$
,我们已知

2 $A_{12} = B_{12} \frac{\hbar \omega^3}{\pi^2 c^3}$

第2个关系是"自然"的,从高 $E \to (KE)$,这个我们暂时不能推导,需要光场量子化。(1)式在当时是令人震惊的!是Einstein的伟大发现!但是我们现在可以推导了。

我们来研究激发态的寿命. 假定注入容器大量激发态原子(失去热平衡)

$$\frac{dN_2}{dt} = -A_{12}N_2 \tag{8.90}$$

可以解出

$$N_2(t) = N_2(0)e^{-A_{12}t} (8.91)$$

可以定义

$$\tau = \frac{1}{A_{12}}$$
(8.92)

作为激发态的寿命.