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Nobel Lecture, presented December 8, 2016, Aula Magna, Stockholm University. I will describe the
history and background of three discoveries cited in this Nobel Prize: The “TKNN” topological
formula for the integer quantum Hall effect found by David Thouless and collaborators, the
Chern insulator or quantum anomalous Hall effect, and its role in the later discovery of time-reversal-
invariant topological insulators, and the unexpected topological spin-liquid state of the spin-1
quantum antiferromagnetic chain, which provided an initial example of topological quantum matter. I
will summarize how these early beginnings have led to the exciting, and currently extremely active,
field of “topological matter.”
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What we now know of as “topological quantum states” of
condensed matter were first encountered around 1980, with
the experimental discovery of the integer (Klitzing, Dorda,
and Pepper, 1980), and later fractional (Tsui, Stormer, and
Gossard, 1982) quantum Hall effects (QHE) in the two-
dimensional electron systems in semiconductor devices,
and the theoretical discovery of the entangled gapped quantum
spin-liquid state of integer-spin “quantum spin chains”
(Haldane, 1981a, 1983a, 1983b), which was later experimen-
tally confirmed (Buyers et al., 1986) in crystals of the organic
chain molecule NENP. The common feature of these discov-
eries was their unexpectedness and the surprise that they
engendered: they did not fit into the then-established para-
digms of “condensed-matter physics” (previously known as
“solid state physics”). It was not at the time apparent that there
could be any connection between these two surprises, but now,
especially following the classification work of Xiao-Gang
Wen (Chen et al., 2013), we understand that their common
feature is that they involve “topologically nontrivial”
entangled states of matter that are fundamentally different
from the previously-known “topologically trivial” states, and
this lies at the heart of their unexpected properties.
Topology is the branch of mathematics originally used to

classify the shapes of three-dimensional objects such as soccer
balls, rugby (or American football) balls and coffee mugs
(without a handle), which are “topologically trivial” surfaces
without holes, and bagels, doughnuts, pretzels, and coffee
cups with a handle, which are “nontrivial surfaces” with one
or more holes. An ant crawling on such a “nontrivial” surface
could walk around a closed path (one that ends at the same
point that it started) that cannot be smoothly shrunk to a tiny
circle around a point on the surface. These original ideas of
topology were greatly generalized and made abstract by

mathematicians, but the central idea, that things are only
“topologically equivalent” if they can smoothly be trans-
formed into each other, remains as its key idea. The essential
feature is that different topologies are classified by whole
numbers, like the number of holes in a surface, which cannot
change gradually.
Entanglement is a central property of quantum mechanics

whereby, if the state of a system is described in terms of the
quantum state of its parts (typically if it is spatially separated
into two halves), a measurement of a property localized in one
of the two halves affects the state of the other half of the
system. The “topology” of the “topological states of matter”
celebrated in this Nobel Prize is more abstract than that of
the shapes of everyday objects such as soccer balls and
coffee cups, but distinguishes different types of “quantum
entanglement” that cannot smoothly be transformed into one
another, perhaps while some protective symmetries are being
respected. In this case, a quantum state has “topologically
trivial” entanglement if it can be smoothly transformed to a
state where each part of the system is in an independent state
where a measurement on that part has no effect on other parts
of the system (this is called a “product state”). In the case of
quantum spin systems (descriptions of nonmetallic magnets),
it turned out that almost all previously theoretically-described
states were “topologically trivial,” so there was no precedent
for the surprising properties of a nontrivial “topological state.”
It took some time for the general understanding that there

was a large class of new “topological states of matter” to
emerge. An early milestone was the discovery (Thouless et al.,
1982) by David Thouless, and collaborators Mahito Kohmoto,
Marcel den Nijs and Peter Nightingale (TKNN) of a remark-
able formula that was soon recognized by the mathematical
physicist Barry Simon (Simon, 1983) as just being the “first
Chern class invariant” from the abstract mathematical top-
ology of so-called “Uð1Þ fiber bundles,” with an essential
connection to a contemporaneous development, the “adiabatic
quantum phase” discovered in 1983 by Michael Berry (Berry,
1984). As I am also presenting part of David Thouless’s
Nobel-Prize-winning work, I will describe this first in my
lecture, and begin with the quantum Hall effect, for which two
Nobel Prizes (1985 and 1998) have already been awarded.

*The 2016 Nobel Prize for Physics was shared by David J.
Thouless, F. Duncan M. Haldane, and John Michael Kosterlitz. These
papers are the text of the address given in conjunction with the award.
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In the presence of a uniform magnetic field with flux
density B, charge-e electrons bound to a two-dimensional
surface through which the magnetic field passes move in
circular “Landau orbits.” According to quantum mechanics,
this periodic motion gives rise to a discrete set of positive
energy levels of the electrons called “Landau levels.” In the
simplest model for these Landau levels, the period T ¼ 2π=ωc
of the circular motion is independent of the radius of the
circular motion, and the allowed energies of the Landau levels
are those of a harmonic oscillator, ðnþ 1

2
Þℏωc, where ωc ¼

eB=me is the so-called “cyclotron frequency.” Assuming the
surface has translational symmetry, so all points on the surface
are equivalent, the energy of each state in a Landau level is
independent of the position of the center of the orbit, and the
Landau level is highly (macroscopically) degenerate. The
number of independent one-particle states in the Landau level
is proportional to the area A of the system, in fact there are
BA=Φ0 states in each Landau level, where Φ0 ¼ h=e is the
(London) quantum of magnetic flux.
The Pauli principle says that not more that one electron can

“occupy” any independent one-particle state, and the Landau
levels are somewhat analogous to the levels (1s, 2p, 3d…) of
the simple quantum mechanical model of the atom, familiar
from high-school chemistry. However, instead of these levels
accommodating finite and fixed numbers (2, 6, 10,…) of states
available to be “filled,” the number of states in a Landau level
is huge (perhaps of order 1012 in a real sample) and varies with
the magnetic field. Since the number of mobile electrons of
the 2D surface is essentially fixed, it could in principle be
possible to get things “just right” by “fine-tuning” the
magnetic field so that in the ground state of the system,
one or more Landau levels are completely filled, and the rest
are completely empty, so that an energy gap separates the
energy of the “highest occupied state” (the HOMO in quantum
chemistry) and the “lowest unoccupied state” (or LUMO),
making the system analogous to an intrinsic (undoped)
semiconductor. Under these artificial “toy model” conditions,
a simple calculation of the Hall conductivity σxy of the system
would indeed reproduce the quantum Hall effect with the
universal value σxy ¼ ne2=h (that depends only on material-
independent fundamental constants and a whole number n,
which is the number of occupied Landau levels), that would
correspond to the results measured by von Klitzing.
The flaw in this naive explanation of the integer QHE is that

it requires exquisite fine-tuning of the strength of the magnetic
field. In contrast, it was the insensitivity to the fine-tuning of the
magnetic field strength that alerted von Klitzing to the effect.
He “switched on” the field to apply it to a device throughwhich
a fixed current was flowing stabilized by a constant current
source, and observed that when things stabilized, a digital
voltmeter always showed the same Hall voltage across the
sample to many significant figures. (The story is told that he
first thought the voltmeter was broken!) Of course, each time
the magnetic field was “turned on” was different, so the final
field would never have been the same on each run of the
experiment, and certainly would never have “accidentally”
taken the precise “magic value” of the naive explanation. It is
fortunate that von Klitzing switched on the magnetic field with
a fixed current through the sample, rather than switched on the

current at fixed field, as the coincidence of the unchanged
digital voltmeter readings would then never have happened.
The real samples, though comparatively clean, do not have

the translational invariance that makes each state in a given
Landau level have exactly the same energy. A local electric
potential at the center of a given circular Landau orbit varies
randomly from point to point, sometimes raising and some-
times lowering the energy, “broadening” the Landau level.
The initial attempts to explain the effect focused on this effect
of disorder, and found that, while two-dimensional electron
systems with disorder generally have “localized” states, this is
modified in a magnetic field. In this case, the centers of the
Landau orbits slowly precess (in opposite senses) around either
localminima or localmaxima of the potential, corresponding to
localized states, but there is an energy at the center of the
broadened Landau level at which the centers of the orbits move
along open snakelike paths, and the states at that energy are
“extended” as opposed to “localized.” In this picture, there is no
gap between the HOMO and the LUMO which have equal
energies (now called the “Fermi energy”) and, as the magnetic
field strength is changed, the Fermi energy moves to keep the
number of occupied states constant, but the integer nmeasured
by von Klitzing only changes when the Fermi energy goes
through the special energy at which extended states exist. This
provided an explanation in terms of the somewhat arcane
theory of localization that at first sight is not obviously
topological, butwhat is nowobvious as a very characteristically
topological property emerged when Bert Halperin pointed out
the importance of edge states (Halperin, 1982).
These edge states are easily seen as semiclassically as

counterpropagating “skipping orbits” that precess around the
boundary of the system in the opposite sense to that of the
Landau orbits, when a particle in a Landau orbit intersects
the boundary, and bounces off it (see Fig. 1). Even without
disorder in the interior of the disk, so that the energy gap
between Landau levels remains, there is a continuous distri-
bution of energy levels at the edge of the system that pins the
Fermi level and accommodates the “spectral flow” of states
between Landau levels as the field magnetic strength is
changed, and removes the need for fine-tuning of the magnetic
field to have an energy gap in the interior of the sample. While
the number of states in a Landau level changes with magnetic

FIG. 1. Simple energy-level picture for the integer quantum Hall
effect, with an energy gap in the bulk stabilized by pinning of the
Fermi level by gapless edge states. (The energy levels are shown
as functions of the radius in a disk-shape sample.)
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field strength, the number of states cannot change, so the states
must flow between Landau levels: the gapless edge states
provide the necessary “plumbing” connections between the
Landau levels so states can be redistributed between themas the
magnetic field changes.
The unavoidable edge states that transport particles in one

direction only around the edge allow the robustness of the
QHE to be understood in terms of the boundary of the system,
but it is also valuable to understand it in terms of the bulk
properties of the interior of the system. This is where the
TKNN formula found by David Thouless and collaborators
(Thouless et al., 1982) enters the story. Thouless was inspired
by the famous “Hoftstadter butterfly”’ spectrum (Hofstadter,
1976) that results when there is a periodic potential on the 2D
surface as well as magnetic flux (Fig. 2). In this case, the
energy band structure can be solved when the magnetic flux
through the unit cell of the periodic potential is a rational
number p=q, where p and q are relative prime numbers with
no common factors. The solution depends very delicately on
the precise values of p and q, as it must be solved in an
enlarged “magnetic unit cell” through which the magnetic flux
must be an integer in units of Φ0. The effect of the magnetic
field is that each zero-field energy band that occurs in the
absence of a magnetic field splits up into q energy bands, so
that in going from a flux of 1=3 per unit cell to 100=301, what
is one band at flux 1=3 splits up into 100 much narrower bands
even though the flux change is very small.
A very clear argument formulated by Robert Laughlin

(Laughlin, 1981) had already shown that in the absence of
electron-electron interactions, that if the Fermi level is inside a
gap of the bulk electronic spectrum, the Hall conductivity σxy

in the low-temperature limit T → 0 had to be an integer
multiple of e=Φ0 ¼ e2=2πℏ. In the bottom left-hand corner of
the Hofstadter butterfly, where the magnetic flux through the
unit cell is very small, the spectrum resembles that of simple
Landau levels, with extremely narrow flat bands correspond-
ing to a slightly widened Landau level, separated by large

gaps. In this limit, the integer is just given by the number of
filled Landau levels. But as the flux increases, the Landau
levels split up into an intricate pattern of subbands which are
separated by many more gaps, which open and close as the
magnetic field changes. When the Fermi level is in one of
these new gaps, the question posed by TKNN was, what is the
integer that defines the low-temperature Hall conductivity?
Even thoughTKNNwereworking in the enlarged “magnetic

unit cell,” the Bloch theorem remained valid, and showing the
electronic wave functions had the form

ΨknðrÞ ¼ unðk; rÞek·r; ð1Þ

where unðk; rÞ is a periodic function of r defined in the
magnetic unit cell (MUC). Here k is a “Bloch vector” defined
in the (magnetic) “Brillouin zone” (BZ) which in 2D is
topologically equivalent to a torus, or doughnut shape.
Using the fundamental Kubo formula for electrical conduc-
tivity, they found the formula

σxy ¼ e2

2πℏ
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Here n labeled the occupied electronic bands below the Fermi
level. The remarkable property was that the integral of each
periodic function Fxy

n ðkÞ over the magnetic Brillouin zone was
2π times an integer, in agreement with Laughlin’s result.
TKNN realized that this had to be so, because Fxy

n ðkÞ could
be written in the form
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leading to the key expression, as an integral around the
Brillouin zone boundary (BZB):

σxy ¼ e2

2πℏ

X

n

1

2π

I

BZB
dkiAi

nðkÞ: ð2Þ

I learned fromMarcel den Nijs and Peter Nightingale that their
recollection is that the inclusion (in a single paragraph) of this
remarkable explicit general formula in the paper (rather than
formulas very specific to the Hofstadter model, which were the
main aim of the paper) emerged as an “afterthought” while
writing the paper! Another quote from den Nijs is that it was
“the genius of David Thouless to choose the periodic potential
generalization [to broaden the Landau level] rather than the
random one, that was the essential step.” This shows the power
of choosing the right (and tractable) toy model for which a full
and explicit calculation can be done. While there has been
continuing interest to date in achieving a physical realization of
the Hofstadter model, it had no relation whatsoever to the
physical samples in which the integer quantum Hall effect was
seen, for which the essentially intractable randompotential was
the physically-appropriate model, and the apparently-natural
problem to study.

FIG. 2. The “Hofstadter butterfly” spectrum of electrons on a
periodic lattice plus a uniform magnetic field, showing energy
levels as a function of magnetic flux through a unit cell. The
structure in the lower left corner becomes that of a system of
simple Landau levels. Colors in gaps between subbands represent
the different integer quantizations of the Hall effect if the Fermi
level is in that gap. Colored spectrum provided by D. Osadchy
and J. Avron.
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Shortly after the TKNN paper was published, Michael
Berry discovered his famous geometric phase (Berry, 1984) of
adiabatic quantum mechanics (see Fig. 3). In Berry’s classic
example, a spin with quantum number S is aligned along an
axis represented by a unit vector Ω̂, with a direction that is
slowly changed with time, defining a closed path on the unit
sphere that finally returns to its original direction. Berry’s result
was that, in addition to the expected change of phase of the state
with a rate proportional to its energy, there is an additional
“geometric” change of phase that depends only on the
geometry of the path, in this case given by the solid angle ω
enclosed by the path (the area “enclosed” by the closed path on
the surface of the unit sphere) times S. Looking at this more
carefully, one sees that the notion of the area enclosed by the
path is ambiguous, and the solid angle ω that it subtends is
ambiguous up to multiples of 4π, but the physically-mean-
ingful Berry phase factor exp iSω is itself unambiguous
because 2S is an integer. The influence of Berry’s discovery
of the geometric phase on modern developments in quantum
theory cannot be overemphasized, and many consider that
it deserves to get a fuller exposition in a future lecture in
this series.
BothBerry’swork and theTKNN formulawere then brought

to the attention of themathematical physicist Berry Simon,who
recognized (Simon, 1983) the connection between these
formulas whereby the Berry phase could either be viewed as
the integral of a “Berry connection” (analogous to the vector
potential of electromagnetism) around a path or by Stokes
theorem, as the integral of a “Berry flux” or “Berry curvature”
through a surface bounded by the path. Furthermore, if the
surface is a closed surface with no boundaries, its total Berry
curvature or flux must be an integer multiple of 2π, and this
integer is a topological invariant, the “first Chern class,”
technically of a “Uð1Þ fiber bundle” (the mathematical char-
acterization of a quantum mechanical wave function) on a
closed 2D manifold. This theorem is the close analog of the
original Gauss-Bonnet theorem for integrals of the intrinsic
(Gaussian) curvature over a 2D surface. If the surface is closed,
like a sphere or a doughnut, the Gauss-Bonnet topological
invariant counts the number of holes (the “genus” of the

surface): it is this precise mathematical analogy that has given
rise to the ubiquitous use of the movie showing a bagel or
doughnut’s topological equivalence to a coffee cup.
The identification of the TKNN formula as a topological

invariantmarked the beginning of the recognition that topology
would play an important role in classifying quantum states
themselves, in addition to the early discovery of the importance
of topological excitations in the classical physics of the
Berezinsky-Kosterlitz-Thouless transition [see Kosterlitz
(2017) Nobel Lecture)]. This invariant (the “Chern number”
or “first Chern class,” given by 1=2π times the integral of a
Berry curvature over a 2D manifold) would remain the only
known invariant in quantum condensed-matter systems until
the 2004 discovery by Kane and Mele (Kane and Mele, 2005)
of a new “Z2” invariant in time-reversal-invariant topological
insulators, that led to the current explosion of new experimental
and theoretical discoveries about topological states of matter.
The TKNN result was obtained for the band structure of

electrons in a uniform magnetic field with Landau levels that
were split into Bloch bands by a periodic potential. In 1988,
while analyzing a proposed realization of the “parity anomaly”
by Fradkin, Dagotto, and Boyanovsky (1986) I realized that the
necessary condition for a quantum Hall effect was not a
magnetic field, but just broken time-reversal invariance. This
perhaps should have been seen as implicit in the TKNN result,
but had not apparently been previously noted. I came up with a
very simple model (Haldane, 1988) (see Fig. 4) based on “a
two-dimensional single sheet of graphite” (purely a “toy
model” at that time, as the possibility that one day graphene
sheets would be made then seemed like “science fiction”)
which I called a model for the “quantum Hall effect without

FIG. 3. Berry phase for the adiabatic evolution of the state of a
quantum spin aligned along a moving axis. The Berry phaseΦΓ is
the spin quantum number S times the solid angle subtended
by the closed path Γ of the alignment axis Ω̂. After the axis
returns to its initial orientation, the final quantum state is the
initial state times the factor exp iΦΓ that depends geometrically
on the path taken. Since the “solid angle subtended by the path” is
ambiguous modulo 4π, 2S is topologically required to be an
integer (which it is).

FIG. 4. The simple graphenelike tight-binding “toy model”
(Haldane, 1988) for the “broken-time-reversal topological insu-
lator” or “Chern insulator” that exhibits a zero-field “quantum
anomalous Hall effect.” Electrons “hop” along nearest-neighbor
bonds (solid lines) with a real matrix element, and along second-
neighbor bonds (dashed lines) with a complex matrix element,
which has a positive phase for hopping in the direction of the
arrow. Two conjugate copies (one for up-spin, one for down-spin
electrons) were later combined by Kane and Mele to model a
time-reversal-invariant topological insulator. The complex phases
for hopping between second neighbors introduces broken-time-
reversal symmetry, which could come from a ferromagnetically-
ordered magnetic dipole at the center (�) of each hexagonal cell,
pointing normal to the 2D plane. The dipoles give rise to different
magnetic flux through regions a, b, and c of the unit cell, but no
net magnetic flux, leaving the standard Bloch structure intact.
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Landau levels,” based on standard Bloch states unlike the
esoteric field-dependent ones of the Hofstadter model. This is
now called the “quantum anomalous Hall effect” or “Chern
insulator.”
This state may also be called the first topological insulator,

albeit one with broken time-reversal symmetry. It turns out
that in 2D graphene, the “Dirac points” at the corners of the
Brillouin zone where the conduction and valence bands touch
are stable only if both time-reversal and spatial inversion
symmetry are unbroken, in which case the Berry curvature
vanishes identically, and Berry phase factors for closed
paths in the Brillouin zone are topological, with values
exp iϕ ¼ �1, depending on whether their winding numbers
around the Dirac points are even or odd. A gapped non-
topological insulator state, investigated previously by
Semenoff (1984), results if spatial inversion symmetry is
broken. In contrast the toy model I devised opens up a gap at
the Dirac points to give a quantum Hall state by breaking time-
reversal symmetry, through giving a chiral phase to second-
neighbor hopping between states on the same sublattice. Once
the gap opens and breaks the connection between conduction
and valence bands in the interior of the system, they individu-
ally have opposite-sign Chern numbers �1, and undirectional
edge states are present. This is conveniently seen on the
“zigzag” edge, where in the absence of second-neighbor
hopping, a zero-energy edge state spans one-third of the
surface Brillouin zone, connecting the projected Dirac points
in a way reminiscent of the recently discovered “Fermi arc”
surface states that connect the projected Dirac points of 3D
Weyl semimetals found recently byAshvinVishwanath and co-
workers (Wan et al., 2011). When a gap opens, whether by
breaking inversion symmetry, time-reversal symmetry, or both,
the edge states must connect to either the valence or conduction
band at each of the now gapped or “massive” Dirac points,
leading to four possible outcomes (see Fig. 5).
This simple toy model has proved very fruitful: rather

surprisingly, while the original model was for charged
fermions, it was translated from the language of electrons
to that of neutral bosons and a photonic crystal (Haldane and
Raghu, 2008), showing how topological “one-way” edge
states could occur there too, initiating the growing field of

topological photonics, and has been implemented experimen-
tally with microwave-scale photonics.
In 2004, the possibility of a time-reversal-invariant analog

of the Hall effect (the “spin-Hall effect”) was under discus-
sion, and a time-reversal invariant (TRI) model was consid-
ered by Charles Kane and Eugene Mele (Kane and Mele,
2005), who combined two conjugate copies of my model, one
for spin-up electrons for which the valence band had Chern
number�1 and one for spin-down electrons where the valence
band had the opposite value ∓ 1; on the edges, spin-up and
spin-down edge modes propagated in opposite directions.
Since the total Chern number of the valence band vanished,
there was no quantum Hall effect. Naively, it might have been
expected that the gapless edge modes were not protected from
backscattering and mixing, thus becoming gapped, if spin-
non-conserving Rashba-type spin-orbit coupling was added
to the system. However Kane and Mele discovered by a
numerical calculation that, so long as time-reversal invariance
was unbroken, the edge modes were in fact protected by a
previously-unexpected “Z2” topological invariant related to
Kramers degeneracy. This new invariant had a 3D generali-
zation discovered independently and simultaneously in 2007
by Joel Moore and Leon Balents (Moore and Balents, 2007),
Rahul Roy (Roy, 2009), and Liang Fu, Kane and Mele (Fu,
Kane, and Mele, 2007), which led to the experimental
discovery of the 3D time-reversal-invariant topological insula-
tors (TI). This finally led to the reported experimental
realization (Chang et al., 2013) by QiKun Xue’s group at
Tsinghua University, Beijing, of the quantum anomalous Hall
effect in thin films of TRI TI’s which had been doped with
magnetic material.
I now turn to the other (1981) discovery recognized by this

Nobel prize: the novel quantum spin-liquid states of the one-
dimensional integer-spin antiferromagnets, which (for odd
integral spin) have recently been classified by Xiao-GangWen
and collaborators (Chen et al., 2013) as “symmetry protected
topological states” (SPT states), where the protective sym-
metries are time-reversal invariance and spatial inversion
symmetry. The conventional magnetic ground states generally
studied prior to 1981 were typically unentangled states,
usually with long-range magnetic order, that could be modeled
as a direct product of independent states on each sites, such as a
ferromagnet ð…↑↑↑↑↑↑…Þ or a Néel antiferromagnet
ð…↑↓↑↓↑↓↑…Þ. The spin configurations shown have spins
aligned parallel or antiparallel to the z axis, but in the case of
Heisenberg (isotropic) magnets these states spontaneously
break rotational symmetry, and the alignment axis can point
in any direction. In the case of the Heisenberg ferromagnet,
the alignment direction is the direction of a macroscopic
conserved angular momentum vector, and the conservation
law for angular momentum of a rotationally-invariant system
protects the ferromagnetic “order parameter” (the alignment
direction) against deviation by zero-point fluctuations.
However, in the antiferromagnetic case, there is no con-

servation law to give protection against zero-point fluctua-
tions, The celebrated Mermin-Wagner theorem that posed the
key paradox in the case of the finite temperature Kosterlitz-
Thouless transition provides a similar result for quantum
systems in one spatial dimension: without protection by a
conservation law, the ground state of a quantum system with a

FIG. 5. “Zigzag” edge of graphene after perturbation by terms
that break inversion or time-reversal symmetry. The unperturbed
edge has an edge state joining the projections of the two Dirac
points where the filled valence band (red) touches the empty
conduction bands (green). When a gap is induced by the
perturbation, there are four ways the edge state can be connected,
two of which are topological, and connect conduction and
valence bands.
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continuous symmetry cannot exhibit long-range order of
an order parameter that breaks that symmetry. In higher
dimensions, Heisenberg systems can exhibit antiferromag-
netic broken-symmetry ground states with gapless collective
Goldstone-mode excitations known as (antiferromagnetic)
spin waves that are small harmonic fluctuations of the Néel
order parameter around its uniform ground state configura-
tion. But, if the assumption of long-range Néel antiferromag-
netic order is made in the case of the one-dimensional spin-S
antiferromagnet, it is easily found that the effect of the
harmonic zero-point fluctuations would be to destroy the
assumed long-range order.
At this point the power of exact (but not fully understood)

mathematical results to sow confusion enters the story! In
1931, before he went on to discover how nuclear fusion
powered the Sun (and later to become David Thouless’s thesis
advisor at Cornell), Hans Bethe also worked on the one-
dimensional Heisenberg chain as a “toy model” for magnet-
ism, and discovered a remarkable “ansatz” (Bethe, 1931) that
provided exact solutions for eigenstates of the 1D model with
S ¼ 1

2
and nearest-neighbor exchange, allowing the eigenvalue

spectrum to be explicitly obtained. Unfortunately, it took more
than 60 years for the underlying special mathematical struc-
ture of the model to be understood, and in the 1970s, only
energy levels and thermodynamic properties could be
extracted from the exact solutions, but not the correlation
functions. However, the spectrum of low-energy eigenvalues
superficially resembled the predictions of spin-wave theory
with the only apparent change being that the speed of long-
wavelength spin waves differed from the predictions of spin-
wave theory by a factor of 1

2
π.

While the details of Bethe’s ansatz were somewhat arcane
and mysterious, this was generally taken as confirmation that
the spin-wave description was more-or-less correct despite the
known destruction of true long-range order by quantum
effects. In fact, we now know that the elementary excitations
of the model that Bethe solves have no relation whatsoever to
spin waves: they are spin-1

2
topological excitations (Faddeev

and Takhtajan, 1981) that are created in pairs, and now known
as “spinons,” but even in the 1970s it ought to have been
noticed that, when expressed in terms of the velocity of long-
wavelength excitations, the specific heat predicted by spin-
wave theory was exactly twice the exact result extracted from
the Bethe ansatz, implying no relation of any kind between the
spin-wave theory and low-energy excitations of Bethe’s
solvable model.
To get around the long-standing intractability of the

problem of extracting correlation functions from Bethe’s
solution, new techniques for treating the problem emerged
in the early 1970s from the work of Alan Luther and Ingo
Peschel. Again old work (even older than Bethe’s!) was
important: they used the Jordan-Wigner (Jordan and
Wigner, 1928) transformation that maps the one-dimensional
magnet with nearest-neighbor exchange into a model of
spinless fermions that move in one dimension by hopping
between nearest-neighbor sites on the lattice, with interactions
between particles on neighbor sites (see Fig. 6). When the
Heisenberg exchange coupling JS⃗n · S⃗nþ1 is decomposed into
JxSxnSxnþ1 þ JySynS

y
nþ1 þ JzSynS

y
nþ1, with Jx ¼ Jy ¼ Jxy, the

S ¼ 1
2
“quantum XY” model with Jz ¼ 0 is mapped into a

noninteracting free-fermion model that can be completely and
explicitly solved to extract all physical properties.
In the mid-1960s, Joaquin Luttinger (Luttinger, 1963) had

noticed that a “toy model” of interacting spinless fermions
with a linear Dirac-like dispersion and an interaction
restricted to low momentum-transfer forward scattering
should be solvable using the “Tomonaga bosons” found by
Sin-itiro Tomonaga (Tomonaga, 1950). There were problems
with Luttinger’s solution, which was subsequently elucidated
by Daniel Mattis and Elliott Lieb (Mattis and Lieb, 1965), and
from this came the remarkable “bosonization” technique
(representation of one-dimensional fermions in terms of
Tomonaga’s harmonic oscillator modes) explicitly formu-
lated by Schotte and Schotte (Schotte and Schotte, 1969) in
their 1969 simplified treatment of the “x-ray edge singularity”
problem.
In 1975, Luther and Peschel (Luther and Peschel, 1975)

adapted the new bosonization techniques to treat the easy-
plane antiferromagnet with nonzero Jz ¼ λjJxyj, with jλj < 1,
which they mapped into a “(1þ 1)-dimensional” effective
quantum field theory that could be treated by the bosonization
mapping to a harmonic oscillator problem. This treatment was
precisely equivalent [after a “Wick rotation” from (1þ 1)-
dimensional Lorentz-invariant space-time to two-dimensional
Euclidean space] to the low-temperature “topologically-
ordered” phase of the classical 2D XY model which
Kosterlitz and Thouless were also studying at that time, with
Néel correlations that decayed algebraically with nonuniversal
power laws, where, for large jn − n0j,

hSxnSxn0 i ¼ hSynSyn0 i ∝ ð−1Þn−n0 jn − n0j−η;
hSznSzn0 i ¼∝ ð−1Þn−n0 jn − n0j−η−1 ;

ð3Þ

where η varied with the coupling-constant ratio λ.
Furthermore, introducing full “XYZ” anisotropy (Jx ≠ Jy)
maps the model to a massive field theory (the “sine-Gordon”

FIG. 6. The Jordan-Wigner transformation maps the S ¼ 1
2

Heisenberg chain with zero magnetization into a half-filled
interacting band of spinless fermions, where 4kF is a Bragg
vector.
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model) with a excitation gap that depends algebraically on
Jx − Jy with an exponent fixed by η.
By that time Bethe’s exact solution of the S ¼ 1

2
isotropic

Heisenberg “XXX” model ðJx ¼ Jy ¼ JzÞ had been extended
to the full XYZ model by Rodney Baxter, following the
identification of the Yang-Baxter algebra as the key ingredient
that allowed Bethe’s ansatz to solve the model. Luther and
Peschel were able to use this to indirectly obtain the value of
the correlation exponent η as a function of λ for the easy plane
“XXZ” model (jλj ≤ 1). They found that for positive (anti-
ferromagnetic) Jz, η increases from 1

2
at the fully-solvable

“free-fermion” XY point with Jz ¼ 0, reaching the consistent
value η ¼ η−1 ¼ 1 at the antiferromagnetic Heisenberg XXX
point λ ¼ 1, while for negative (ferromagnetic) Jz, it decreases
to zero when λ ¼ −1, where the ground state develops long-
range order with a conserved order parameter. Notably, the
Luther-Peschel field-theory treatment failed to explain the gap
that opens for λ > 1, when the model changes from an easy-
plane to an easy-axis antiferromagnet.
In 1979 I was working on the precise formulation of the

bosonization method and found (Haldane, 1981b) that the
zero-momentum modes of the fermion density needed to be
represented by action-angle variables as opposed to
Tomonaga’s harmonic oscillator modes which represented
the modes carrying finite momentum. These action-angle
degrees of freedom are topological in nature, and resolved
the “mystery” of how one-dimensional fermions could appa-
rently be represented in terms of “bosons” (harmonic oscillator
modes): the representation in fact is constructed using har-
monic oscillators plus topological winding-number degrees of
freedom. This meant that the detailed structure of the excitation
spectrum of a spinless fermion model with periodic boundary
conditions contained two types of topological excitations
(separate winding numbers of left- and right-moving fermion
fields) as well as Tomonaga’s sound-wave modes.
Knowledge of the energies of the two topological excita-

tions fixed not only the speed of sound, which could be
independently checked, but also the correlation exponent η,
and applying this to the Bethe-ansatz solution of the XXZ
model in zero field (or the equivalent Jordan-Wigner fermion
model with a half-filled band) for which Luther and Peschel
had indirectly found the exact value of the exponent η as a
function of the couplings, I was able to confirm that the new
expressions in terms of winding-number energies were also
consistent, correct, and quite general.
This opened up the possibility of extracting exact correla-

tion exponents from Bethe-ansatz solutions of some models
exhibiting one-dimension criticality by using the energies of
their various topological excitations to fit them to what I called
an effective “Luttinger liquid” (Haldane, 1981b) (or perhaps
more properly a “Tomonaga-Luttinger liquid”) modeled by a
Luttinger model. These developments occurred before the
later appearance of more powerful (1þ 1)-dimensional con-
formal field-theory methods, and Luttinger liquids turn out to
be systems decomposable into Abelian representations of the
Virasoro algebra, with the constraints of Lorentz invariance
removed.
When I applied this new picture to the full parameter space

of the Bethe-ansatz solutions of the XXZ spin chain (which

required numerical solution of the Bethe-ansatz integral
equations away from haf-filling of the fermion bands) it
became immediately obvious from inspection of the results
that the missing ingredient in Luther and Peschel’s work was
the omission of the “umklapp” process by which, at half-
filling of the band (where 4kF is a Bragg vector), so scattering
processes where the momentum changes by 4kF allow two
low-energy “left-moving” electrons (each with momentum
near −kF) to scatter into two low-energy right-moving
electron states, each with momentum near kF.
At first sight this should be represented by a term

Ψ†
RðxÞΨ†

RðxÞΨLðxÞΨLðxÞ, but this is ruled out by the Pauli
principle, which is presumably why umklapp was not
considered in the original work by Luther and Peschel, but
the next-order term ðΨ†

RðxÞ∂xΨ
†
RðxÞÞðΨLðxÞ∂xΨLðxÞÞ is

allowed, and when “bosonized” becomes cos 2θ≡
cos 2ðφRðxÞ − φLðxÞÞ. In the quantum analog of the
Berezinsky-Kosterlitz-Thouless (BKT) transition, this is a
double-vortex unbinding transition, which is allowed, but
the standard single-vortex unbinding transition is forbidden
by momentum conservation. The translation of the usual
single-vortex BKT process from classical 2D to quantum
ð1þ 1ÞD would be represented by a term cos θ which
becomes “relevant” (causing a gap to open) when η > 1

4
.

The generalization of this is that a cosmθ term becomes
relevant when η > 1

4
m2, which is perfectly consistent with the

double-vortex term cos 2θ becoming relevant (in the absence
of the single-vortex term) exactly at the isotropic XXX point
when η ¼ 1.
This missing ingredient completed the field-theoretic

picture of the S ¼ 1
2
begun by Luther and Peschel. It also

removed the apparent “special” nature of the S ¼ 1
2
model

which seemed to come from its mapping to a fermion
model. The bosonization now provided a representation in
terms of two “chiral” (left-moving and right-moving)
topological winding-number fields φLðxÞ and φRðxÞ, with-
out any obvious relation to the value of the spin S of the
underlying spin chain.
A planar “XY” spin can be visualized as a “compass needle”

that points in a 2D direction ( cosφðxÞ; sinφðxÞ), and if it
obeys a periodic boundary condition on a circle of circum-
ference L, then φðxþ LÞ ¼ φðxÞ þ 2πW where the “winding
number”W is a topological invariant that cannot change if the
field φðxÞ varies smoothly with x. In the classical 2D XY
model, φðx; yÞ is a smooth function except at singular points
ðx0; y0Þ which are the centers of vortices. In the quantum
ð1þ 1ÞD model these become space-time points ðx0; t0Þ
representing tunneling events (which have been called
“instantons”) at which the winding number changes, through
a singular process that occurs briefly at a 1D space point x0
and during an instant of time near t0 (see Fig. 7).
It turned out that for a spin-S easy-plane spin chain

with zero magnetization along the z axis, the usual “single-
vortex” BKT “instanton” process is generically present,
but is forbidden by an exact quantum interference process
if 2S is odd. This highlights a difference between the classical
statistical mechanics of the 2D BKT transition and the
ð1þ 1ÞD quantum version. In the classical 2D model, the
strength of the vortex term in the Boltzmann factor is a
real positive fugacity factor, but in the quantum ð1þ 1ÞD
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model, it is a complex amplitude for tunneling between
topologically-different configurations with different winding
number, and is real positive or negative in time-reversal-
invariant models. This means that quantum interference
between competing instanton processes can occur.
In this case the tunneling process is centered at the midpoint

of a “bond” between two neighboring spins. Assuming the
spin chain is invariant under spatial translation by one site, the
magnitude of the amplitude for the tunneling process must be
the same independent of which bond it is centered on. But
when two such processes on consecutive bonds are compared,
the main difference is that one spin that rotated 180° clockwise
now rotates 180° anticlockwise, so the two processes differ by
a net rotation of one spin by 360°, with the histories of all other
spins essentially identical. The fundamental difference
between a spin where 2S is even and one where 2S is odd
is that in the latter case, the quantum state has a sign change as
a result of the rotation. This means that, providing the
exchange energy is the same on all bonds, there is destructive
interference between instanton tunneling events on neighbor-
ing bonds if 2S is odd, but constructive interference if 2S
is even.
This provides the “topological” explanation of why the

instanton process that becomes relevant as the anisotropy of
the spin-1

2
XXZ chain changes from easy plane to easy axis

corresponds to a double vortex of the BKT transition. It only
drives the instability of the topologically-ordered easy-plane
phase because the dominant single-vortex process is canceled
by destructive interference when 2S is odd. However, for
integer S it is present, and the BKT transition will occur once
the correlation exponent rises to the limiting value η ¼ 1

4
when

tunneling between states with different winding number
becomes relevant, topological order breaks down, and a
gap in the excitation spectrum opens up. At this critical point
the Néel correlations of hSxnSxn0 i and hSynSyn0 i fall off much
slower than those of hSznSzn0 i implying that the transition
happens before the isotropic Heisenberg point is reached. It is
also a transition to a unique (singlet) ground state, while the
double-vortex process conserves winding number modulo 2,
and leads to a twofold degenerate (doublet) ground state when
it becomes relevant.

From these results, it became clear that the progression
from easy-plane to easy-axis models was quite different in the
two cases of integer-S and half-odd-integer-S antiferromag-
nets. As λ increases, the chain with 2S odd has a direct
“double-BKT” transition at λ ¼ 1 from the topologically-
ordered gapless easy-plane antiferromagnet with λ < 1 to the
gapped easy-axis antiferromagnet with a doublet broken-
symmetry Ising-Néel ground state. In contrast, the chain with
even 2S has a standard BKT transition at λ ¼ λc1 < 1 to a
singlet gapped spin-liquid state with no broken symmetry,
followed by a second Ising-type transition at λ ¼ λc2 > 1 to the
easy-axis Ising-Néel state.
These arguments exposed a fundamental topological differ-

ence between antiferromagetic Heisenberg (isotropic) quan-
tum spin-S chains with 2S even and those with 2S odd, which
contradicted the then-prevailing belief that the value of S
entered as a continuous parameter as an expansion in powers
of S−1 analogous to a semiclassical expansion in powers
of ℏ. In this view, the asymptotic long-distance behavior of
hS⃗n · S⃗n0 i would behave as ð−1Þn−n0 jn − n0j−η, where ηðS−1Þ
was a smooth function of S−1 that vanishes as S−1 → 0.
My apparently-heretical 1981 claim, that there was a

fundamental difference between one-dimensional quantum
antiferromagnets with integer and half-odd-integer spin, was
presumably not well-enough explained, and the original paper
(Haldane, 1981a) was rejected by a number of journals, and
referred to by skeptics as a “conjecture,” a description that
seems to have stuck! By the time the paper was finally
published (Haldane, 1983a), it had been significantly rewritten
to emphasize the isotropic Heisenberg case, and the original
preprint was eventually apparently lost, as this was years
before preprints were stored on the Internet. Happily, I
recently recovered a copy that had been preserved by Jenő
Sólyom, and placed it in the arXiv repository (Haldane,
1981a) for historical interest. Subsequently numerical exact
diagonalization studies by Botet and Jullien (1983) found
evidence for it, and finally, neutron scattering studies by Bill
Buyers (Buyers et al., 1986) on the quasi-one-dimensional
organic nickel compound NENP provided experimental con-
firmation that the ground state of the spin-1 antiferromagnet
chain was a singlet with an excitation gap.
The underlying reason that my 1981 result was so unex-

pected was that the spin-liquid state of the integer spin-1 chain
was an early example of “topological quantum matter.” The
discovery predated Berry’s 1983 discovery of the Berry phase,
which in spin systems confirmed that the spin quantum
number S had a topological role which relied on the value
of 2S being an integer. Initially, from the standard Hamiltonian
formulation used by condensed-matter physicists, it seemed
mysterious that there seemed to be two distinct ways to apply
quantum mechanics to a continuum field-theory description of
quantum antiferromagnetic spin chains, the “Oð3Þ nonlinear
sigma model,” one for half-odd-integer spins, and the other for
integer spins. In 1983, a very useful lead came from a
discussion I had with Edward Witten, who mentioned that
in the Lagragian formulation favored by particle physicists,
the sigma model could have an additional “topological term,”
which disappeared in the Hamiltonian formulation and had no
effect in the classical limit. This term is parametrized by an
angle θ, and it was easy to use a formulation in terms of the

FIG. 7. In ð1þ 1ÞD space-time, the analog of the 2D vortex is
an instanton tunneling process where the topological winding
number of the easy-plane spin chain changes. This process is
centered on a bond between consecutive sites on which the local
Néel order breaks down for a short time interval.
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Berry phases of the paths traced out by individual spins to
show that this angle was 2πS, taking the value 0 modulo 2π for
integer spins, and π modulo 2π for half-odd-integer spins
(these are the only two values compatible with time-reversal
symmetry). This angle parameter is related to the “axion
angle” introduced in high-energy physics in connection with
the “strong-CP-violation” problem, and more recently in the
electrodynamic description of “strong topological insulators”
by Xiao-Liang Qi, Taylor Hughes and Shoucheng Zhang (Qi,
Hughes, and Zhang, 2008), where the analogous “topological
angle” takes the value θ ¼ 0 for nontopological TRI insulators,
and θ ¼ π for the strong 3D TRI topological insulators. The
discovery of the “theta term” in the Lagrangian form of the field
theory of the one-dimensional antiferromagnets seems to mark
the time after which the Lagrangian formulation started to
become ubiquitous in theoretical quantum condensed-matter
physics, and it is now a standard tool that complements
Hamiltonian descriptions.
A simple model state that captures the essence of the

gapped integer-S 1D antiferromagnet was subsequently dis-
covered by Ian Affleck, Tom Kennedy, Elliot Lieb, and Hal
Tasaki (Affleck et al., 1987), which is also the exact ground
state of a modified toy model (the AKLT model), which is
particularly revealing, as it shows up the novel nature of
quantum entanglement in the topological state. In this picture,
a spin-1 object is viewed as a symmetric state of two spin-1

2

“half spins,” each of which can form an entangled singlet
“valence bond” state

jΨi ¼ 1p
2
ðj↑↓i − j↓↑iÞ ð4Þ

by pairing with one of the half spins of each neighbor. If the
magnetic chain has free ends (i.e., is “open”), this leaves an
unpaired spin 1

2
at each end of the chain. This model also

reveals the essentially “entangled” nature of the state: if the
chain is cut in two, unpaired spin-1

2
degrees of freedom appear

on either side of the cut, and the model state has a very simple
characteristic “entanglement spectrum” (Li and Haldane,
2008) of a single spin-1

2
doublet. The feature that all states

in the entanglement spectrum are doublets, and that free ends
of a long open spin-1 chain carry local spin-1

2
degrees of

freedom is true for all states in the same topological class as
the AKLT model, including the standard spin-1 Heisenberg
antiferromagnet that I originally studied (see Fig. 8).
The edges of the (integer) spin-S chain have local spin-1

2
S

degrees of freedom, but since the elementary gapped bulk
excitations are spin-1 magnons which can bind to the edge, the
edge spins are topologically protected only when S is an odd
integer. The final classification (Chen et al., 2013) is that only
the odd-integer-S state is a “symmetry protected topological
state” (SPT state) protected by either time-reversal symmetry
or spatial inversion, with a generic twofold degeneracy of
states in the entanglement spectrum.
Over the years, studies of topological states of the S ¼ 1

Heisenberg antiferromagnet have been remarkably fruitful.
The detailed study of its topological stability was the starting
point that led a unified classification of SPT states in both one
dimension and higher dimensions by Xiao-Gang Wen and

collaborators (Chen et al., 2013). In addition, its entanglement
spectrum lies at the heart of the “density-matrix renormaliza-
tion group” (White, 1992) and “matrix-product state” tech-
niques that were in part developed for testing and verifying the
so-called “Haldane conjecture.” The features of unexpected
topologically-protected edge states recur again and again in
connection with “topological state of matter,” for example, in
the “Majorana modes” that appear at the edge of topological
superconducting wires, where the simple toy model introduced
by Kitaev (2001) plays a similar role to the AKLT model, and
are now considered to be a possible platform for future
topological quantum information processing. It is surprising
how rich the developments stemming from the surprise dis-
covery of topological phases of matter around 1980 have been.
Looking back at how this new field of topological quantum

matter has developed since the initial discoveries in about
1980, I am struck by how important the use of stripped down
toy models has been in discovering new physics. It also used
to be thought that one-dimensional models were just “home-
work exercises” to be carried out before tackling the “real”
three-dimensional systems. In fact, partly because the effects
of quantum fluctuations are more dramatic in low dimensions,
we have found many interesting phenomena, in doing so, a
whole new way to look at condensed matter, and the exotic
“topological states” that quantum mechanics make possible.
It has been my privilege to have been able to participate in

opening up this field, to which many others have added
amazing discoveries, and which has led to dreams of new
quantum information technologies. I thank the Royal Swedish
Academy of Sciences for honoring my co-Laureates and
myself, and indeed our exciting subfield of physics.
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