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Pair hopping in systems of strongly interacting hard-core bosons

Alvin J. R. Heng,1 Wenan Guo,2,3 Anders W. Sandvik,4,5 and Pinaki Sengupta1

1Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore 637371, Singapore

2Department of Physics, Beijing Normal University, Beijing 100875, China
3Beijing Computational Science Research Center, Beijing 100193, China

4Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
5Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 17 March 2019; revised manuscript received 14 August 2019; published 26 September 2019)

We have used the stochastic series expansion quantum Monte Carlo method to study interacting hard-core
bosons on the square lattice with pair-hopping processes supplementing the standard single-particle hopping.
Such pair hopping arises in effective models for frustrated quantum magnets. Our goal is to investigate the effects
of the pair-hopping process on the commonly observed superfluid, insulating (Mott), and supersolid ground-
state phases in the standard hard-core boson model with various interaction terms. The model is specifically
motivated by the observation of finite dispersion of two-magnon bound states in neutron-diffraction experiments
SrCu2(BO3)2. Our results show that the pair hopping has different effects on Mott phases at different filling
fractions, “melting” them at different critical pair-hopping amplitudes. Thus, it appears that pair hopping may
play an important role in determining which out of a potentially large number of Mott phases (stabilized by
details of the charge-diagonal interaction terms) actually survive the totality of quantum fluctuations present.
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I. INTRODUCTION

The interplay between competing interactions, enhanced
quantum fluctuations due to reduced dimensionality and ex-
ternal fields in interacting lattice bosons result in a rich array
of novel quantum states of matter that have been intensely
studied over the past several decades [1–11]. In recent years,
experimental advances have allowed the realization of these
bosonic phases, such as the superfluid (SF), Bose-Einstein
condensation (BEC), Mott insulator, and density modulated
crystalline phases with different ordering wave vectors in
a variety of physical systems, such as optical lattices with
ultracold atoms [12–15], quantum magnets, excitons, and
polaritons [16,17] in semiconductor quantum wells. These
systems are now opening up new frontiers in the study of
strongly correlated quantum many-body systems.

Quantum magnets, in particular, have long served as a
versatile test bed for interacting lattice bosons in a controllable
manner. The low-lying magnetic excitations, magnons, obey
Bose-Einstein statistics and are an almost ideal realization
of lattice bosons [18]. The discovery of Bose-Einstein con-
densation in insulating magnets, such as TlCuCl3 [19,20],
BaCuSi2O6 [21–23], and NiCl2-4SC(NH2)2 [24,25] heralded
the search for novel quantum phases of interacting bosons in
quantum magnets. Often, in quantum magnets, geometrical
frustration induces quantum phases and phenomena that are
not observed in their nonfrustrated counterparts, e.g., dimen-
sional reduction at a quantum critical point in BaCuSi2O6

[23] and magnetization plateaus in SrCu2(BO3)2 on the
geometrically frustrated Shastry-Sutherland lattice [26–28].
Understanding the nature and mechanism of formation of
the plateaus in SrCu2(BO3)2 has been the subject of in-
tense experimental and theoretical studies during the past

two decades [29–31]. The ground state of the compound is
composed of orthogonal dimer singlets within the weakly
coupled two-dimensional (2D) planes. In an external magnetic
field, field-induced triplons constitute the lowest magnetic
excitations. Theoretical modeling and neutron-scattering ex-
periments show that strong geometric frustration significantly
suppresses the delocalization of triplons [32] and prevents
the onset of field-induced BEC of triplons that is commonly
observed in other dimer quantum magnets, such as TlCuCl3.
The magnetization plateaus are understood as periodic ar-
rangements of the triplons in regular patterns at commensurate
fillings. However, the mechanism of triplon rearrangement
into crystal orderings remain an open question.

Several different models have been proposed in the past to
describe the magnetization profile of SrCu2(BO3)2, treating
the field-induced triplons as hard-core bosons with varying
degrees of success. These include long-range interactions
and correlated nearest-neighbor (nn) hopping of triplons,
among others [29,33–35]. In Ref. [32], neutron-scattering
experiments performed by Kageyama et al. on SrCu2(BO3)2

showed that, although isolated triplons are localized, bound
pairs of triplons exhibit pronounced dispersion, although the
cost of pair formation is high. This may provide a potential
mechanism for the rearrangement of the triplons into periodic
patterns observed at the magnetization plateaus and has moti-
vated us to explore the role of dynamically generated triplon
pairs in modifying the field-driven properties of interacting
triplons. Our goal is not to derive an exact microscopic model
of SrCu2(BO3)2 and provide a quantitative explanation for the
magnetization plateau formation therein. Instead, we want to
isolate the effects of dispersive bound pairs of triplons in a
generic quantum magnet with multiple competing interactions
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through the introduction of a new effective Hamiltonian and
investigate the dynamics that arise from such a lattice model.

In this paper, we study a system of interacting hard-core
bosons with single and pair hopping with nn and next-nearest-
neighbor (nnn) repulsions on a square lattice. Field-induced
triplons on the dimers can be faithfully mapped on to hard-
core bosons through the Matsubara-Matsuda transformation
[36], and the dispersion of bound pairs of triplons translate
to pair-hopping processes in the bosonic model where a
pair of hard-core bosons on nn sites hop together to the
neighboring sites. Although such processes occur within the
standard framework of the canonical hard-core boson model
with single-particle hopping, the amplitude of the effective
process is small. Motivated by the experimental observation
in SrCu2(BO3)2 (suppressed single triplon dispersion and
pronounced triplon pair dispersion), the relative magnitude of
the pair-hopping process is chosen to be large and considered
as an independent term in the Hamiltonian. Our goal here is
to explore the effects of finite pair hopping on the various
ground-state phases of the hard-core boson model and to
investigate if new many-body phases are engineered by the
pair-hopping process.

The paper is organized as follows. In Sec. II, we intro-
duce our model and define the relevant parameters in the
Hamiltonian. Section III describes how the pair-hopping pro-
cess can be incorporated into the stochastic series expansion
(SSE) quantum Monte Carlo (QMC) scheme, which involves
a straightforward generalization from two-site bond opera-
tors to four-site plaquette operators. Section IV defines the
observables that are measured from the Monte Carlo simu-
lation. Section V presents the main results of our numerical
simulations where we include illustrative phase diagrams for
a wide range of Hamiltonian parameters as well as more
detailed observable plots and accompanying analyses. Finally,
in Sec. VI, we discuss the significance of our results, namely,
how pair hopping modifies the formation and stability of the
various Mott phases and its implications to our understanding
of SrCu2(BO3)2.

II. MODEL

The Hamiltonian for the model described above is given by

H = −t
∑

〈i, j〉
(a†

i a j + H.c.) − tp

∑

�
(a†

i a†
j akal + H.c.)

+V
∑

〈i, j〉
nin j + Vd

∑

〈i,k〉
nink − μ

∑

i

ni, (1)

where a†
i and a j are the creation and annihilation operators,

respectively, on sites i and j. The � denotes a four-site
plaquette on which our Hamiltonian parameters are defined
with sites we label i, j, k, l as shown in Fig. 1. ni = a†

i ai

is the number operator at site i. t and tp are the single and
pair-hopping amplitudes, respectively. V and Vd are the nn and
nnn repulsion, respectively, and μ is the chemical potential.
We work in the hard-core boson limit, i.e., the possible local
occupancies are restricted to ni ∈ {0, 1}. A square lattice with
periodic boundary conditions of N = L × L sites is assumed.
We set t = 1, henceforth.

FIG. 1. Illustration of the Hamiltonian parameters of Eq. (1) on
the unit plaquette. (a) Single-particle-hopping parameter t , (b) nn
repulsion V and nnn repulsion Vd , and (c) the pair-hopping parameter
tp. The filled circles represent the bosons, whereas empty circles
represent sites that a boson can hop onto.

The nnn repulsion term Vd in Eq. (1) is necessary for
promoting pair formation. In Fig. 1(b), bosons on diagonal
sites 〈i, k〉 incur an energy cost of +Vd , which increases
the likelihood of nearest-neighbor pairs occurring [〈i, j〉 in
Fig. 1(c)]. The nn bosons are, subsequently, able to hop as
pairs in proportion to the magnitude of tp.

III. STOCHASTIC SERIES EXPANSION METHOD

We have used the SSE QMC [37,38] method to simulate
the Hamiltonian Eq. (1)] on finite-size systems. The SSE is
a finite-temperature algorithm based on the stochastic evalu-
ation of the diagonal matrix elements of the density-matrix
exp(−βH) in a Taylor series expansion.

The SSE method employs the operator loop update method
in sampling the configuration state space for the ground-
state configuration. The loop update involves the construction
of a linked vertex list where lattice sites are propagated
in imaginary time with diagonal and off-diagonal operators
acting between the propagation levels according to a stored
operator string. Sites connected by an operator between prop-
agation levels are known as vertices. Configuration updates
are achieved by the introduction of a “defect”—a boson
occupation inversion in the hard-core limit—into a random
leg of a vertex. The defect is then propagated throughout
the linked list, until the defect meets its initial introduction
site and the loop is closed. The propagation of the defect is
stochastically sampled in a manner proportional to the weights
of the resulting vertices. After closing the loop, the lattice
configuration and operator string are updated to reflect the
changes made.

On 2D square lattices, the SSE loop update algorithm
considers operators acting on two-site bonds such that vertices
are four-legged: two sites before and two sites after the action
of an operator. To incorporate the pair-hopping procedure, one
needs to consider operators beyond two-site bond operators.
In particular, we consider operators that act on the four-site
plaquette mentioned in Fig. 1. This means that vertices in the
linked list are now eight-legged: four sites before and four
sites after the action of the operator. Conventional diagonal
and single-particle hopping operators carry over easily to the
plaquette case. Our focus of the discussion will be on the
incorporation of pair-hopping operators in the loop update
procedure.

We note that only slight modifications are required to
achieve pair hopping in the SSE framework in the context
of plaquette operators. Similar to the case of the hard-core
boson model with “pair rotation” of two bosons occupying
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FIG. 2. An illustration of the creation of a pair-hopping operator
through a loop update. The operator string propagation level propa-
gates downwards in this figure. (a) The left shows a single-hop oper-
ator in real space as the lattice is propagated in imaginary time. The
right shows the three-dimensional representation of a eight-legged
vertex with a single-hop operator represented by a blue rectangle.
The filled circles represent a boson, and the empty circles represent
empty sites. The red arrows indicate the introduction of a defect
into and out of the vertex as part of the loop update. Propagation
of defects cause a boson occupancy inversion. (b) The left shows
the resulting pair-hop operator acting in real space. The right shows
the pair-hop operator as a result of the loop update, represented by a
green rectangle. Note that, to obtain the pair-hop operator, we simply
flip the boson occupancy of the two sites indicated by the red arrows
in (a), which was initially a single-hop operator. This occupancy flip
resulted in the conversion from a single-hop operator to a pair-hop
operator.

diagonally opposite corners of a plaquette [39], the pair-hop
operators are introduced to the operator string with the same
linked list loop update procedure that is conventional in a
two-site bond operator SSE scheme. An illustration of the
procedure is shown in Fig. 2. The crucial insight comes from
the fact that pair-hop operators are created only from single-
hop operators in the loop update. Figure 2 shows one way
in which an existing single-hopping operator in the operator
string can be converted to a pair-hopping operator through
propagation of a single defect. Consequently, this implies that,
in our SSE framework, a nonzero t in the Hamiltonian of
Eq. (1) is necessary for the simulation to incorporate pair
boson propagation.

IV. OBSERVABLES

In this section, we define the observables measured in our
simulations that will be the basis of our analysis in Sec. V.
The average boson density is defined as

〈n〉 = 1

N

∑

i

ni. (2)

The total superfluid density (stiffness) is given by

ρs = ∂2 f (φ)

∂φ2
, (3)

where f (φ) is the free-energy (or ground-state energy at T =
0) density in the presence of a phase twist φ. It is evaluated in
SSE simulations as

ρs = (
ω2

x + ω2
y

)
/β, (4)

where ω is the winding number in the x or y directions, defined
as

ωα = (N+
α − N−

α )/L (α = x, y). (5)

N+
α is the total number of particle hops in the arbitrarily

chosen positive direction of the lattice. This implies a pair
particle hop in the positive direction increments N+

α by 2. On
a conventional Bose-Hubbard model without pair hopping, it
is identical to the total number of operators aia

†
j in the QMC

operator string if site j is in the positive direction of site i.
To quantify the magnitudes of single and pair particle

hopping separately, we define the single and pair particle
stiffnesses ρt and ρt p, respectively, as

ρt = (
ω2

t,x + ω2
t,y

)
/β, (6)

and

ρt p = (
ω2

t p,x + ω2
t p,y

)
/β. (7)

ωt,α and ωt p,α are the net sum of the single and pair particle
hops, respectively, for α = x, y. Concretely, we define them as

ωt,α = (N+
t,α − N−

t,α )/L, (8)

ωt p,α = (N+
t p,α − N−

t p,α )/L, (9)

where N+
t,α is the total number of single-particle hops in the

positive direction, and N+
t p,α is the total number of pair hops

in the positive direction. A pair hop in the positive direction
increments N+

t p,α by 2 and vice versa. From our definitions in
Eq. (8),

ωα = ωt,α + ωt p,α (α = x, y), (10)

i.e., the total winding number is the sum of the single and
pair winding numbers. Note that due to the way the various
stiffness are defined

ρs �= ρt + ρt p. (11)

It should be noted that ρt and ρt p serve as useful quantities in
measuring the relative contributions of single and pair currents
in the system but do not constitute experimentally measurable
observables, such as the total stiffness ρs defined in Eq. (3).

In order to identify the presence of density modulation, or
equivalently, crystal ordering, we compute the static structure
factor,

S(�k) = 1

N2

∑

�r
ei�k·�rC(i, j), (12)

where �r is the vector representing the separation of sites
〈i, j〉 and �k = (k1, k2) is the wave vector, where k1, k2 ∈
[0, 2π ]. C(i, j) is the density-density correlation function
[40], defined as

C(i, j) = 〈nin j〉. (13)

Simulations in this paper are performed at β = L to extract
ground-state properties with simulated annealing [41] carried
out at the equilibration step of the operator string to ensure
convergence of the QMC simulation.
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FIG. 3. Ground-state phase diagram of Eq. (1) at t/V =
1/4, μ/V = 5. The lines are guides to the eyes. The dotted line
indicates the boundary where ρt = ρt p. The orange intensity repre-
sents the magnitude of the ratio ρt p/ρt , which increases with tp. A
S(π, 0) solid is stabilized at larger μ/V and is not shown in this phase
diagram.

V. RESULTS

A representative ground-state phase diagram of the model,
Eq. (1), in the parameter space of the pair-hopping ampli-
tude tp and the strength of next-nearest-neighbor interaction
Vd at fixed t (single-particle-hopping amplitude) and μ (the
chemical potential) is shown in Fig. 3. The nearest-neighbor
interaction strength V is chosen as the unit of energy, and
the Hamiltonian parameters are expressed in units of V . In
the limit of tp = 0 = Vd , Eq. (1) reduces to the canonical
Bose-Hubbard model where the ground state for the chosen
values of t and μ is a checkerboard solid with an ordering
wave-vector k = (π, π ). The density of particles is constant
at 〈n〉 = 1

2 , and there is a gap to adding or removing a boson.
As the strength of the next-nearest-neighbor interaction is
increased (at tp = 0), there is a transition to the superfluid
phase at an intermediate value of Vd/V where competing nn
and nnn interactions suppress any crystallization of the bosons
into a density wave. Eventually, for sufficiently strong nnn
repulsion, the ground state enters a supersolid (SS) phase. The
wave vector of the underlying solid order (density modulation
of the bosons) changes to (π, 0), reflecting a striped solid. The
density of particles deviates from 〈n〉 = 1

2 , and the additional
particles form a superfluid that coexists with the solid order-
ing, resulting in a SS ground state. The pair-hopping process
enhances the extent of the superfluid phase at the cost of the
solid orders, suppressing both the checkerboard solid and the
SS phases completely for sufficiently strong tp. The SF phase
has contributions from both single-particle and pair currents—
this is confirmed by finite values of the stiffness for both
currents, viz., ρt and ρt p. The pair current contribution is finite
for any nonzero tp with the relative contribution increasing
monotonically with tp (as shown by the color density profile
in the phase diagram) [42].

0 50 100 150
0

50

100

150

Data 1 (b)

(c)

(d)

(a)

FIG. 4. (a) Ground-state phase diagram of Eq. (1) with t/V =
1/6 and Vd/V = 5/3. Three distinct Mott insulating lobes are present
with their densities indicated as well as supersolid and superfluid
phases. Illustrations of the ground-state configuration of the (b) 1

4 ,
(c) 1

2 , and (d) 3
4 solids on a L = 4 lattice.

In our model, the transitions between various density wave
phases are modified by the appearance of intervening super-
solid phases. This is aptly demonstrated in the ground-state
phase diagram in the parameter space of the pair-hopping
amplitude tp and the chemical potential μ at fixed t, V =
6t (the nn repulsion) and Vd = 5/3V (the nnn repulsion),
shown in Fig. 4(a). The pair hopping and chemical potential
are expressed in units of V . Three distinct Mott insulating
lobes are present, corresponding to different filling factors
as the chemical potential μ is varied. The solid phases are
destabilized with an increasing tp as the large pair-hopping
amplitude suppresses any crystallization of the bosons into
a density wave. This is manifested by the predominantly SF
character of the ground state at large tp. At sufficiently low tp

and μ, the system is in a gapless SF phase with zero energy
cost to the addition of a boson. With increasing μ, there is
a transition into a 1

4 solid phase, which is characterized by
a vanishing stiffness and a finite gap. The bosons form a
density wave with a pattern schematically shown in Fig. 4(b).
Increasing μ, the system undergoes a transition to a SS phase,
which is characterized by a finite solid order and coexisting
superfluid density. Due to Vd > V , the wave vector of the
underlying solid order is (π, 0), reflecting a striped solid. With
a further increase in μ, a discontinuous transition drives the
ground state to a 1

2 solid where the nnn repulsion crystallizes
the bosons into alternating stripes as shown in Fig. 4(c).
Finally, another SS phase with (π, 0) ordering separates the 1

2
solid and the 3

4 solid at large values of μ. The boson ordering
of the 3

4 solid is shown in Fig. 4(d).
Significantly, no new phases—such as additional density

wave phases—are stabilized by the introduction of the pair-
hopping process. The boson ordering of the solid phases
remain unchanged by pair hopping as well. This is in contrast
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to the case of the hard-core boson model with pair rotation,
which flips two bosons residing on opposite diagonal corners
of a plaquette to the other diagonal on the same plaquette. In
the mentioned model, even without any diagonal interaction
terms, the two-body kinetic term can induce new solid phases
[39,43].

A key observation from Fig. 4 is that the different Mott
lobes are modified differently by the pair-hopping process
from their counterparts when only t is present. This is nicely
illustrated by the observation that the 〈n〉 = 1

2 lobe is sig-
nificantly larger than the 1

4 and 3
4 lobes and persists in a

larger range of tp and μ. This has important implications in
realistic models with long-range interactions. Although the
t-only model may exhibit several plateaus, their extent will
be heavily modified by any pair-hopping process, including
the possible suppression of some of them. Another interesting
feature is that all the transitions into and out of the Mott
phases are discontinuous in nature. This is analogous to meta-
magnetism in spin models [44,45], and we plan to investigate
this further in future studies.

Magnetization plateaus in spin models manifest as boson
density plateaus in the boson model. To demonstrate the
dynamics of pair hopping on the density plateaus, we plot the
full range of observables in Fig. 5 with parameters equivalent
to taking a slice of constant tp = 4 in the phase diagram of
Fig. 4(a). For the parameters chosen, we observe the existence
of the aforementioned 〈n〉 = 1

4 , 1
2 , and 3

4 density plateaus in
Fig. 5(a). We note that the 〈n〉 = 1

4 , 1
2 plateaus correspond to

the m/ms = 1
4 and 1

2 plateaus proposed by other studies [31].
Discontinuities in the first derivative of the density and total
stiffness ρs indicate discontinuous phase transitions into and
out of the three solid phases.

To study the solid ordering in the various plateaus, we
plot the structure factor S(π, π ) and S(π, 0) as a function of
〈n〉 in Fig. 5(c). A finite S(π, π ) corresponds to a checker-
board boson ordering, whereas a finite S(π, 0) corresponds
to striped boson ordering. As we have set Vd > V in this
simulation, the striped ordering out competes the checker-
board ordering, and we observe a striped solid at 1

2 filling,
characterized by a peaked S(π, 0). The total stiffness vanishes
in this phase, demonstrating the gapped nature of the striped
solid where it is energetically prohibitive to add another
boson.

Compared to the 〈n〉 = 1
2 solid, the situation is markedly

different for 〈n〉 = 1
4 and 3

4 . The 1
4 solid is stabilized by bosons

avoiding both nn (V ) and nnn (Vd ) repulsive interactions [46],
which is obvious in Fig. 4(b). The 1

4 solid is then gapped as
the addition of one boson incurs energy costs of either 2V − μ

or 4Vd − μ, depending on the neighborhood configuration of
the site chosen. On the other hand, the 3

4 solid manifests as
a sequence of alternating fully filled and half-filled stripes as
shown in Fig. 4(d). It is clear from the figures that the two
phases are related by a particle-hole symmetry. Again, the
gapped nature of the 3

4 solid is obvious as the addition of a
boson incurs an energy cost of 4V + 4Vd − μ. The gapped
nature of both phases is also evident by the vanishing stiffness
shown in Fig. 5.

To characterize the relative magnitudes of single and pair
particle flows, we plot ρt and ρt p separately in Fig. 5(b). We

FIG. 5. (a) Plot of boson density 〈n〉, (b) plot of total stiffness ρs,
single stiffness ρt , and pair stiffness ρt p, and (c) plot of S(π, π ) and
S(π, 0). Parameters for this simulation are tp = 4, V = 6, Vd = 10
for a L = 12 system.

note that single and pair particle flows coexist at all values of
μ for nonzero t and tp. The two currents reinforce each other
in the SF phase, resulting in a total stiffness which is greater
than the individual contributions from the single-particle and
pair currents. One could also have counterpropagation that
would cause partial cancellation of the currents and a smaller
ρs than ρt and ρt p. Here, we observe this effect in the 1

2 striped
solid, where ρt = ρt p are nonzero, yet ρs vanishes. The origin
of this counterpropagation is due to trivial local fluctuations
in the single and pair currents such that, in the solid phase,
two single boson-hop fluctuations that break the staggered
density pattern are exactly canceled by a pair boson hop in the
opposite direction and vice versa. This effectively conserves a
vanishing ρs in the solid, even while ρt and ρt p are nonzero.

The stiffness plots exhibit a reflection symmetry about the
1
2 solid. At small and large filling factors, ρt is larger than
ρt p, despite the fact that tp = 4t . This is explained as at low
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FIG. 6. Finite-size scaling of ρt and ρt p as a function of the
inverse system size 1/L. The chemical potential is fixed as μ = 28
for all data points such that the system is in the SF phase. Other
Hamiltonian parameters are identical to Fig. 5.

fillings, boson occupancy is sparse, making it unlikely for
bosons to meet as nn pairs. At large filling factors, the lattice
becomes crowded, and the presence of pairs of holes such that
boson pairs can hop to fill the holes become unlikely. This
results in a larger ρt than ρt p, despite the significantly larger
pair-hopping amplitude tp. It is at intermediate filling factors
where ρt p > ρt in a phase we call “pair superfluidity.” Inter-
mediate filling factors satisfy the conditions that the lattice
is neither too sparse nor too crowded, thus, being conducive
for pair boson hopping. A finite-size scaling analysis of ρt p in
Fig. 6 shows that pair superfluidity is not merely a finite-size
effect, and the phase extends to the thermodynamic limit.
Additionally, we find that, by varying the Hamiltonian param-
eters for a large range of values (not shown), pair superfluidity
is achieved only when we tune tp � 4t .

A parameter set that stabilizes a checkerboard solid at 1
2

filling is shown in Fig. 7. The absence of the 1
4 and 3

4 plateaus
in the density plot are a result of the lack of simultaneous
nn and nnn repulsions, which, as mentioned, are necessary in
the formation of these solid phases. However, a checkerboard
solid at 1

2 filling is still stabilized, characterized by a strongly
peaked S(π, π ).

In this simulation, we notice that, despite having tp/t = 4
as with the simulation in Fig. 5, ρt p is significantly smaller
than ρt in the SF phases. Importantly, in the SF phase, ρt p <

ρt for all μ points, even at intermediate SF filling factors
where it was mentioned to be the most favorable for boson
pair hopping. This observation is due to the difference in
boson ordering for parameters that stabilize a checkerboard
and striped solid at half-filling. In the SF phase of the former
case, bosons will still satisfy a checkerboard ordering as far
as possible to minimize nn repulsions. In a checkerboardlike
configuration, bosons are largely not occupying nn sites, and
pair hopping of bosons then becomes impossible, despite a
large tp. This results in ρt p being significantly suppressed. In
the latter case, a stripedlike ordering in the SF phase implies
that bosons are largely paired up, allowing pair hopping of
bosons to occur more frequently. This results in more disper-
sive pair hopping of bosons and, subsequently, a larger ρt p.

FIG. 7. (a) The boson density and (b) the various stiffness con-
stants as functions of μ. The inset of (a) illustrates the geometry of
bosons at the 〈n〉 = 1

2 checkerboard plateau. The inset of (b) plots
S(π, π ) as a function of boson density. Parameters for this simulation
are tp = 4, V = 6, Vd = 0 for a L = 8 system.

Therefore, a dispersive pair hopping of bosons is stabilized
by large tp and Vd in the Hamiltonian of Eq. (1). Incidentally,
we observe the same effects of currents counterpropagation
in the 1

2 checkerboard solid as we did in the striped solid
in Fig. 5 as evident by ρt = ρt p. The mechanism by which
counterpropagation manifests in the checkerboard solid is
identical to that of the striped solid.

VI. DISCUSSION AND CONCLUSION

Our results provide useful insight into the role of the pair-
hopping process on the ground-state phases of a system of
interacting hard-core bosons. As discussed earlier, the micro-
scopic origin of magnetization plateaus in the frustrated quan-
tum magnet SrCu2(BO3)2 remains incompletely understood.
Neutron-scattering experiments show that single magnon ex-
citations are almost completely dispersionless. Naively, one
might expect this to result in a glassy dynamics in the presence
of a magnetic field. Interestingly, the same neutron-scattering
experiments reveal that bound states of two magnons have
pronounced dispersion, although the cost of formation of such
pairs is high. This provides a potential mechanism for the de-
localization of field-induced triplons, necessary for the long-
ranged ordering of the triplons at the magnetization plateaus.
However, important questions remain: Does the dispersion
of bound pairs retain the stability of the plateaus? Do they
result in new processes that are inconsistent with experimental
observations in SrCu2(BO3)2? As this is observed experimen-
tally, we incorporate such a pair-hopping term into our model
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Hamiltonian describing SrCu2(BO3)2 here. As such, a rigor-
ous microscopic simulation, such as ours studying the effects
of such a process, is valuable. Our Hamiltonian Eq. (1) mimics
the dispersion of bound pairs as a pair-hopping process. In
keeping with the experimental observations, the amplitude
of the pair-hopping process is chosen to be much greater
than the single-particle hopping process. The high energy of
formation is reflected in the finite near-neighbor repulsion
V . Our results demonstrate conclusively that highly disper-
sive magnon bound pairs are compatible with the formation
of magnetization plateaus. However, the exact sequence of
plateaus observed in SrCu2(BO3)2 is different from the results
obtained here. It is highly plausible that one needs to introduce
longer-range interactions, beyond what a four-site plaquette
QMC scheme can accommodate to fully obtain the plateaus
observed in SrCu2(BO3)2. Hence, although our results do not
provide a comprehensive understanding of all plateaus in the
experimental system, it provides a plausible explanation for
their formation mechanism in the absence of any significant
single magnon dispersion. We have also demonstrated that
tp is important in governing which plateaus actually survive.
In principle, one might have a huge number of plateaus for
realistic interactions with only t , but tp has different effects on

different Mott phases, and some of them will be destroyed by
tp, even though they survive in the presence of t only.

To summarize, we have investigated the role of a pair-
hopping process on the ground-state phases of interacting
hard-core bosons on a 2D square lattice. Our results may
provide useful insight into the mechanism of delocalization of
field-induced triplons in the frustrated magnet SrCu2(BO3)2,
necessary for the formation of periodic patterns observed in
the magnetization plateaus.
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