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Thermal phase transitions

I At critical point, divergent length
scale leads to singularity, which is
the result of thermal fluctuations;
temperature

I Quantum mechanics is largely
irrelevant

3D Ising FM-Paramagnetic
transition (MC simulation)
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I The coarse grained continuum field description:
Landau-Ginzburg-Wilson Hamiltonian

H(m) =

∫
dV(t(∇m)2 + cm2 + um4); Z =

∫
Dm e−H(m)

where m is the order parameter
I well understood within Wilson’s RG framework

• longrange order m 6= 0: spontaneous symmetry breaking
• universality class: symmetry and dimension



Quantum phase transitions
I happens at zero temperature, when adapt g in

H = H0 + gHI; [H0,HI] 6= 0, continueous transition
I at gc, the correlation length diverges, due to quantum

fluctuations
I path integral maps D-dim quantum systems onto classical

field theories in D + 1-dim
I many of these transitions can be understood in the

conventional Landau-Ginzburg-Wilson framework
I for example: AF Néel-Paramagnetic transition

H0 is AF Heisenberg Hamiltonian, g = J2/J1

• 3D classical Heisenberg universality class: confirmed by
QMC

• Experimental realized



Non-trivial non-magnetic ground state

• resonating valence-bond (RVB) spin
liquid
exotic state without any long-range
order

• valence-bond solid (VBS)
breaking the translation and rotation
symmetry of the lattice

I Valence bond
I valence-bond state: the overcomplete basis

〈ms〉 = 〈 1
N

∑
i Si(−1)xi+yi〉 = 0



Deconfined quantum criticality:
Néel-VBS transition in 2D

Read and Sachdev, 1989; Senthil, Vishwanath, Balents, Sachdev, Fisher (2004)

• Berry phase related interference effect
in path integral, complex statistical
weight in the field theories, NOT like
classical statistical systems

• Order parameters of the Néel state and the VBS state are NOT
the fundamental objects, they are composites of fractional
quasiparticles carrying S = 1/2

• Bind together in the VBS state (confinement) and condensate
the Néel state, deconfine at the critical point leading to a
continuous phase transition

• Violate the LGW paradigm: phase transition separates states
with different broken symmetries should be first order



• The most natural physical realization of the Néel-VBS
transition for SU(2) spins is in frustrated quantum magnets
• however, notoriously difficult to study numerically: sign

problem in QMC



Designer Hamiltonian: J-Q model
Sandvik designs the J-Q model

H = −J
∑
〈ij〉

Pij − Q
∑
〈ijklmn〉

PijPklPmn, Pij = (
1
4
− Si · Sj)

Lattice symmetries are kept

Q3

• large Q, columnar VBS

VBS order parameter
Dx = 1

N

∑N
i=1(−1)xi Si · Si+x̂,

Dy = 1
N

∑N
i=1(−1)yi Si · Si+ŷ

• small Q, Néel

Néel order parameter
ms = 1

N

∑
i Si(−1)xi+yi

Sandvik, PRL 98, 227202(2007)

• No sign problem for QMC simulations,

• ideal for QMC study of the DQC physics



Finite-size scaling: a critical squared order parameter(A) scales

A(q,L) = L−(1+η)f [(q− qc)L1/ν ], q = Q/(J + Q)

Data ”collapse” for different systems:

• J-Q2 model; qc = 0.961(1)
ηs = 0.35(2); ηd = 0.20(2);
ν = 0.67(1)

• J-Q3 model; qc = 0.600(3)
ηs = 0.33(2); ηd = 0.20(2);
ν = 0.69(2) Lou,Sandvik and Kawashima, PRB

2009

• Comparable results for
honeycomb J-Q model
Alet and Damle, PRB 2013 Kaul et al., PRL 2014

• Exponents drift for large L
Kawashima et al. PRB 2013

I weak first-order transition?
I or large scaling corrections?



other ways to study the QDC?

• Study the topological excitations in the VBS state
I Although topological order has mainly been discussed in

the context of exotic states without any long-range order
such as quantum spin liquids, topological excitations can
also arise in the VBS state, e.g. quantum dimer model

I and the consequence to the deconfine criticality

• Direct study the confinement/deconfinement:

spinons and holons in VBS phase and at criticality



emergent topological excitations

refs:
1 . PRB 91, 094426 (2015) (arXiv:1502.01085)
2 . arXiv1501.00237



Quantum dimer model and winding number

• RVB spin liquid

• valence-bond solid (VBS)

Non-trivial non-magnetic ground states can be expressed with
short valence-bond singlet(VBs) motivates the introduction of
Quantum dimer model

Square lattice Hamiltonian

Hdimer =
∑
�

−J(| ‖ 〉〈= |+ H.c.) + V(| =〉〈= |+ | ‖ 〉〈 ‖ |)

Rokhsar and Kivelson, PRL, 1988



Quantum dimer model and winding number

I Topological order has been discussed in the quantum
dimer model
the winding number

I The definition of the winding number

reference state (B → A) a valence-bond state (A → B) transition graph, W = (0, 1)

Tang et al PRB 2011



Winding number conservation
I W is a good quantum number in Quantum dimer model:

The Hilbert space can be separated to sectors with different
winding numbers.

〈W1|Hdimer|W2〉 = 0, if W1 6= W2

short bond only and the off-diagonal terms being local, W can
not be changed

I Find the lowest energy eigenstate in different sector by
applying the imaginary time evolution operator to an initial
state

|Ψτ 〉 = U(τ)|Ψ0(W)〉 = e−τH|Ψ0(W)〉

For τ →∞
|Ψτ 〉 → |0,W〉

|0,W〉 is the lowest eigenstate state in the W sector.



Quantum spin model
• The VBS ground states hosted by the J-Q model

Consider the J-Q3 model

H = −J
∑
〈ij〉

Pij − Q
∑
〈ijklmn〉

PijPklPmn

singlet projector Pij = (1
4 − Si · Sj)

large Q limit, strongly ordered columnar VBS

Q3

Néel order parameter

ms = 1
N

∑
i s(−1)xi+yi

VBS vector order parameter

Dx = 1
N

∑N
i=1(−1)xi Si · Si+x̂,

Dy = 1
N

∑N
i=1(−1)yi Si · Si+ŷ



Project to the ground state

• Crucial difference from QDM:

Long bonds exist in the J-Q model

〈W1|HJQ|W2〉 6= 0, if W1 6= W2

Apply the imaginary time evolution operator to an initial state

|Ψτ 〉 = U(τ)|Ψ0(W)〉 = e−τH|Ψ0(W)〉

For τ →∞, and a finite size, winding number is not conserved

|Ψτ 〉 → |0〉

|0〉 is the ground state.



Projector Quantum Monte Carlo method

General idea of QMC :
• rewrite a quantum-mechanical expectation value into a

classical form

〈A〉 =
Tr{Ae−βH}

Tr e−βH or
〈Ψ|A|Ψ〉
〈Ψ|Ψ〉

→
∑

c AcWc∑
c Wc

Ac is the estimator of A.

• There are many different ways of doing it:
Worldline (worm), SSE, Fermion determinant, · · ·

For ground state calculations

〈A〉 =
〈Ψ0|U(τ)AU(τ)|Ψ0〉
〈Ψ0|U(τ)U(τ)|Ψ0〉

→
∑

c AcWc∑
c Wc



Projector Quantum Monte Carlo method
• using VB basis (in the singlet sector)

|Ψ〉 =
∑

v

fv|v〉, |v〉 = |(a1, b1) · · · (aN/2, bN/2)〉

• SSE representation→ Z =
∑

c Wc

• loop update algorithm are used

• energy estimator n: number of operators, 〈H〉 = −〈n〉/(2τ).



Set initial states

Initial state with only short bonds and a winding number |Ψ0(wx)〉

W = (0, 0) W = (1, 0) locally rotated W = (1, 0)

• the ground state is dominated by the wx = 0 sector
• local rotations of dimers do not change the winding number
• Winding number can be changed due to long bonds in VBS

How does the presence of long bonds lead to non-conservation
of W?



How long bonds leads to non-conservation of W?

Pab|(a, b) · · · (c, d)〉 = |(a, b) · · · (c, d)〉

Pbc|(a, b) · · · (c, d)〉 =
1
2
|(a, d) · · · (c, b)〉

• A simple one-dimensional example

(c)

(d)

(b)

(a) I reference conf.
I transition graph with W = 1
I a single projector has acted and

produce a long bond!
I a second operation leads to a

bond which would have length
5, but has length L− 5 = 3,
and W → 0.

• The maximum bond length to conserve W is L/4



Finite-size scaling of the projection
• Check the winding number of the configurations at τ : P(wx, τ)

• Calculate energy density 〈H〉(wx) only in the initial wx sector
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I For finite L, the state evolves
to a ”quasi-eigenstate” before
wx decays to lower values,
with a ”quasi-eigenenergy”
〈H〉(w = 1) > 〈H〉(w = 0)

I L→∞, the projected state
U(τ)|Ψ0(wx)〉 evolves toward
the lowest eigenstate with
winding number wx.

Emergence of the topological quantum number



Relate the energy gap to domain-wall energy

• How to understand the emergent ’quasi eigenenergy’ of
the topological state?

The winding number effectively counts the number of
domain walls



Relate the energy gap to domain-wall energy
snapshot of the pattern 〈Bα(r)〉 = 〈S(r) · S(r +α)〉, domain walls
• periodic system with W = 1

φ = ∆θ = 2π
• open boundaries to enforce domain wall

even

odd

φ = ∆θ = π

• describe the domain wall, local order parameter

Dx(x) = [〈Bx̂(x, y)〉 − 1
2 〈Bx̂(x− 1, y)〉 − 1

2 〈Bx̂(x + 1, y)〉](−1)x

Dy(x) = [〈Bŷ(x, y)〉 − 〈Bŷ(x, y + 1)〉](−1)y.

The VBS angle θ(x) = atan
[

Dy(x)+Dy(x+1)
2Dx(x)

]



Domain wall energy
• (Effective) Winding number and VBS angle change

wx = φ/(2π).
• Define the domain wall energy

κ(wx,L) = (〈H〉wx − 〈H〉0)/(wx4L)
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• Different calculations give consistent results for L→∞



Imaginary-time life time of the quasi-eigenstate
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I Take a long total time
β = M∆τ , U(β)|Ψ0(wx)〉

I τ = m∆τ is the ”time slice”
I Measure P(wx) at τ

I τ1/2 is the life time at which
P(wx) = 1/2
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life time grows asymptotically as Lα



Why the life time so short?

• bond-length distribution at τ1/2
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Lots of long bonds are generated
in the transient states

• Comparing PW of bond-length
> L/4 in the ground state and
in the wx = 1 states at τ1/2
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x
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=1)=1/2

in the ground state

I wx = 1 sector, PW ∝ L−2

I Ground state, PW ∝ exp(−aL0.7)



Real-time evolution

So far, the lifetime is actually the ’time’ that the state staying in
W after projecting time.

Not the real time that the state staying in the initial state in the
real evolving of state.

They can be connected using a simplified model.



Real-time evolution: a two-state model
We consider a very simplified two-state model:
I | ↓〉 and | ↑〉 correspond to wx = 0, 1 sectors, respectively
I with energies −ε, ε
I perturbed by an off-diagonal matrix element x� ε

H2 =

(
−ε, x
x, ε

)
• Imaginary time evolving: |〈↑ |ψ(τ)〉|2 = 1/2 leads to

exp(−2τ1/2ε) =
x
2ε

I together with the scaling ε ∼ L and τ1/2 ∼ Lα

x ∼ L exp(−L1+α)

• Real time decay rate

P(↓) ∝ x2

x2 + ε2 sin2(t
√
ε2 + x2), ν =

2x2

πε
∝ Le−2L1+α



At deconfined critical point

At q = Q/(J + Q) = 0.6, critical
point between VBS and Néel.

FSS of VB domain-wall energy,
κ ∝ L−b, b ≈ 1.80(1)
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q=0.6 (critical),  β=L/8

q=0.6 (critical),  β=L/4

q=0.6 (critical),  β=3L/8

β = L/4 is long enough to
converge the energy.



At deconfined critical point
• there are two diverging length scales

ξ ∝ (q− qc)
−ν , ξDW ∝ (q− qc)

−ν′ , ν ′ > ν

• domain-wall energy can be expressed as κ = K/Λ
K is a stiffness: energy cost of a twist of the VB order
Λ is the width of the region over which the twist distributes.
• According to DQC theory, K ∝ 1/ξ, Λ ∝ ξDW

κ ∝ 1
ξξDW

∝ (q− qc)
ν+ν′

• translate to finite size at qc: ξDW = L, ξ = ξ
ν/ν′

DW

κ(qc) ∝ L−(1+ν/ν
′)

we have b = 1 + ν/ν ′, and ν/ν ′ = 0.80(1)

• The only other estimate from analysis of the emergent U(1)
symmetry: ν/ν ′ = 0.83((4), J. Lou et al PRB 80, 180414(R)(2009)



Spinons and holons in the VBS and at deconfined critical
point

work in progress



Spinons and holons in the VBS and at DQC

• Intuitive picture of spinon confinement in the VBS phase
I The VBS ground state is a product of singlets if fluctuations

are neglected
I A spinon is an S = 1/2 excitations
I An S = 1 (triplon) excitation can be regarded as a bound

state of two spinons

• confined spinons
• confinement due to ‘string’ in VBS background



Holons and spinons in the VBS and at critical point

• what really happens in the VBS?

Create two defects (spinons or holons), e.g. ‘dig two holes’, try
to separate them

• The intuitive picture:
linear confining potential due
to ‘string’ of VBS mismatches

This picture assumes only short
bonds



Holons and spinons in the VBS and at critical point

• Quantum dimer Banerjee et al, PRB 90, 245143 (2014) linear potential

Potential between two static charge



Holons and spinons in the VBS and at critical point

Generate two holons, expect confinement: linear potential

q = Q/(J + Q), E0/V: ground state energy density

V(r) = ∆E/(E0/V)

• We find the potential is short-ranged
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Snapshot of the bond pattern 〈Bx〉, 〈By〉

No global change, no confining string observed, why?



Visualize the generation of long bond

• A very long bond forms
with ends close to the
holons, corresponds to
two spinons forming a
singlet

• holon+spinon forming
two composite particles
(full electron).

• the cost of separating
the two particles is very
small



The spinon-holon composite particle

• deep VBS phase • at Qc

• bound state of holon-spinon pair
• average distance diverges as the
deconfined quantum critical point is
approaching



Direct measure the holon-spinon distance
The size of the composite particle can be characterized by the
spinon-holon mean distance

8 16 24 32 40 48
L

0

2

4

6

8

10

12

14

r h
o
lo

n
-s

p
in

o
n

q=0.6  (q
c
)

fit of q=0.6 (r=0.1164+0.263L)
q=0.7, 0.8, 0.9
q=1.0 (deep VBS)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  50  100  150  200  250  300

r/
L

(q-qc)L
1/υ

L=16
L=24
L=32
L=40
L=40
L=48
L=56
L=64

• As q = Q3/(J + Q3) approaches the deconfined critical
point, the average distance of the holon-spinon pair
diverges with system size linearly.
• dimensionless ratio 〈r〉/L
• data collapsing: qc = 0.6, ν = 0.63

I no log correction is needed, unlike in studies of the
magnetization distribution Banerjee, Damle and Alet, PRB, 2010 .



The two-spinon distance in the J-Q2 model
• a S = 1 state

〈ψL(0, S = 1)|U(τ)U(τ)|ψR(0, S = 1)〉

A QMC transition graph representing 〈ψL|ψR〉 of S = 1 states
• two strings (spinons) in a background of loops formed by

valence bonds.
• Archs above and below the plane represent |ψR〉 and 〈ψL|,

respectively.

Tang and Sandvik, PRL 2011; Banerjee and Damle, J. Stat. Mech 2010



The two-spinon distance in the J-Q2 model

• The two-spinon distance 〈Λ〉/L is
also universal, like the Binder
ratio of Néel order parameter.

• Solving the crossing points of
〈Λ(L)〉/L and 〈Λ(2L)〉/2L versus q

g∗−qc ∝ L−(1/ν′+ω), Λ∗(L)/L−R ∝ L−ω

and 1/ν′ can be extracted from slopes
at the crossing point

• we find qc = 0.04463(4), ν′ = 0.58(2) (here we take q = Q2/J)

• ν′ is the domain wall width exponent!

• From Binder ratio, we have ν = 0.446 which controls the
correlation.

• ν/ν′ = 0.77(3) agrees with the result obtained from the VBS
domain-Wall energy



Conclusion
• We have studied that the topological excitations in the VB state

I demonstrated a mechanism of the decay of winding
numbers in a VBS; different from the quantum dimer model

I imaginary life time of winding state diverges as a power of
the system size L.

I The winding number effectively counts the number of
domain walls, the energy gap is the domain wall energy

I A simplified two-states model shows the real-time life time
of the topological excitation is exponentially long in L: a
well-defined conserved quantum number for large systems

I At DQC, the domain-wall energy turns to zero; we found
ν/ν′ = 0.80(1), support the DQC theory

• Preliminary results of the confinement of spinons/holons

I In the VBS, the confining potential is not linear, due to
quantum fluctuations of VBS background (long bonds)

I Critical region, NO logarithmic corrections in the FSS of
spinon/holon pair distance.

I We obtained ν′ and ν/ν′ = 0.8 in supporting of the DQC
theory
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