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Thermal phase transitions

3D Ising FM-Paramagnetic

transition (MC simulation)
» At critical point, divergent length L —
scale leads to singularity, which is o o
the result of thermal fluctuations; o
temperature

0.4

» Quantum mechanics is largely 02
irrelevant

0
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TIT,
» The coarse grained continuum field description:
Landau-Ginzburg-Wilson Hamiltonian

H(m) = / dv(((Vm)? + cm? + um®); Z = / Dm e~ H(m)
where m is the order parameter
» well understood within Wilson’s RG framework

e longrange order m # 0: spontaneous symmetry breaking
e universality class: symmetry and dimension



Quantum phase transitions

» happens at zero temperature, when adapt g in
H = Hy + gHy; [Hy, Hf] # 0, continueous transition

» at g., the correlation length diverges, due to quantum
fluctuations

» path integral maps D-dim quantum systems onto classical
field theories in D + 1-dim

» many of these transitions can be understood in the
conventional Landau-Ginzburg-Wilson framework

» for example: AF Néel-Paramagnetic transition
H, is AF Heisenberg Hamiltonian, g = J,/J;

M A A=spingap

: S oy
o) 0-1-
i aiing 0-1-1
=Jald : . >
J2 9=y, 1 emenm Oo €T —0)~1/A g9

J1 J1 §~1/T

e 3D classical Heisenberg universality class: confirmed by
QMC
e Experimental realized



Non-trivial non-magnetic ground state

° r.escl)nating valence-bond (RVB) spin  rvs /-/ ' e
liquid al ~ 4 7
exotic state without any long-range sy’ & olos’
order

« valence-bond solid (VBS) uBs

breaking the translation and rotation
symmetry of the lattice

j = vy T oSl \/5
» Valence bond e - See = Bl

» valence-bond state: the overcomplete basis

Zﬁ (my) = () 35, 8i(~1)7) =0



Deconfined quantum criticality:
Néel-VBS transition in 2D

Read and Sachdev, 1989; Senthil, Vishwanath, Balents, Sachdev, Fisher (2004)

e Berry phase related interference effect
-3 in path integral, complex statistical
weight in the field theories, NOT like
classical statistical systems

order parameter

e Order parameters of the Néel state and the VBS state are NOT
the fundamental objects, they are composites of fractional
quasiparticles carrying S = 1/2

e Bind together in the VBS state (confinement) and condensate
the Néel state, deconfine at the critical point leading to a
continuous phase transition

e Violate the LGW paradigm: phase transition separates states
with different broken symmetries should be first order



e The most natural physical realization of the Néel-VBS
transition for SU(2) spins is in frustrated quantum magnets

e however, notoriously difficult to study numerically: sign
problem in QMC



Designer Hamiltonian: J-Q model
Sandvik designs the J-Q model

Q;
1
H=-I) Pj=0Q PiPuPm, Pj=(;—Si8))
(ij) (ijkimn)
Lattice symmetries are kept
e large Q, columnar VBS
VBS order parameter ) v,
Dx = %Z?le(il)hsl‘.si"':ﬁ % — =(5-8)
1 N » ; A : : D,
Dy =52 (=1)"S; - Sits 3| 2iry -
LrLT - =
e small Q, Néel - - PR

Néel order parameter
m, = & >, S;(—1)5 e No sign problem for QMC simulations,

o ideal for QMC study of the DQC physics

Sandvik, PRL 98, 227202(2007)



Finite-size scaling: a critical squared order parameter(A) scales

A(C], L) = L_(H_n)f[(q - qc)Ll/V]a

Data "collapse” for different systems:

J-0, model; ¢, = 0.961(1)
Ny = 0.35(2); na = 0.20(2);
v =0.67(1)

J-Q3 model; g. = 0.600(3)

s = 0.33(2); na = 0.20(2);

vV = 069(2) Lou,Sandvik and Kawashima, PRB
2009

Comparable results for = 3
honeycomb J-Q model =,25
o 2
Alet and Damle, PRB 2013 Kaul et al., PRL 2014 H,QA 15
Exponents drift for large L IR
'\E 0.5

Kawashima et al. PRB 2013

» weak first-order transition?
» or large scaling corrections?

q9=0/(/+0)

Dimer

0 20
N
L (g-q /g,




other ways to study the QDC?

e Study the topological excitations in the VBS state

» Although topological order has mainly been discussed in
the context of exotic states without any long-range order
such as quantum spin liquids, topological excitations can
also arise in the VBS state, e.g. quantum dimer model

» and the consequence to the deconfine criticality

e Direct study the confinement/deconfinement:

spinons and holons in VBS phase and at criticality



emergent topological excitations

refs:
1 . PRB 91, 094426 (2015) (arXiv:1502.01085)
2 . arXivi501.00237



Quantum dimer model and winding number

RVB #

o
 RVB spin liquid i ///_//_/
Vad

VBS
e valence-bond solid (VBS)

Non-trivial non-magnetic ground states can be expressed with
short valence-bond singlet(VBs) motivates the introduction of
Quantum dimer model

o

Square lattice Hamiltonian

Himer =) —J( || W= |+He)+ V(=) =1+ 1)1 D

O

Rokhsar and Kivelson, PRL, 1988



Quantum dimer model and winding number

» Topological order has been discussed in the quantum
dimer model
the winding number

» The definition of the winding number

(a) (b) (c)

reference state (B — A) a valence-bond state (A — B) transition graph, W = (0, 1)

Tang et al PRB 2011



Winding number conservation

» W is a good quantum number in Quantum dimer model:
The Hilbert space can be separated to sectors with different
winding numbers.

(Wi|Hgimer|W2) = 0, if Wy # W)
short bond only and the off-diagonal terms being local, W can
not be changed

» Find the lowest energy eigenstate in different sector by
applying the imaginary time evolution operator to an initial
state

W) = U(r)[Po(W)) = e[ Wo(W))

For m — oo

%) = [0,w)]

|0, W) is the lowest eigenstate state in the W sector.



Quantum spin model

e The VBS ground states hosted by the J-Q model

Consider the J-QO3 model
:_JZPU_Q Z Pz]Pklen
(ijklmn)

singlet projector P = (Z -S;-S))
large Q limit, strongly ordered columnar VBS

Néel order parameter

m, = 32, s(— 1)

VBS vector order parameter

Z: (=1)%8; - Sits,
S (—1)8; - Sis

2\._2\

order parameter

Q,




Project to the ground state

e Crucial difference from QDM:

Long bonds exist in the J-Q model

[(WilHiq|Wa2) #£0, if Wy # Wa|

Apply the imaginary time evolution operator to an initial state

[Ur-) = U(r)[To(W)) = e~ Wo(W))

For = — o0, and a finite size, winding number is not conserved
[U7) — |0)

|0) is the ground state.



Projector Quantum Monte Carlo method

General idea of QMC :

e rewrite a quantum-mechanical expectation value into a
classical form
) - Tr{Ae A"} of (WIAD) > AW,
Tre—PH (U|W) S We

A, is the estimator of A.

e There are many different ways of doing it:
Worldline (worm), SSE, Fermion determinant, - - -

For ground state calculations

(WolU(T)AU(T)[Wo) > AcWe

A AT ESTi e T SN T




Projector Quantum Monte Carlo method

e using VB basis (in the singlet sector)

0) = fil), v) = (a1, b1) - (an 2, by 2))

ot = (1 - LI)NVE 2

e SSE representation - Z =) W,
¢ loop update algorithm are used

(R N N
Tl I )

e energy estimator n: number of operators, (H) = —(n)/(27).




Set initial states

’ Initial state with only short bonds and a winding number |¥y(w,)) ‘

*—o 0—0 0—0 0—0 o =0 0—0 0—0 o— o =0 0—0 0—0 o0—
PO MO 1111111l
*—o 0—0 0—0 0—0 *—e 0—0 0—0 0—0 *—o 0—0 0—0 0—0
*—e 0—0 0—0 0—0 *—o 0—0 0—0 0—0 *—o 0—0 00— 0—0
*—o 0—0 0—0 0—0 *—e 0—0 0—0 0—0 *—o 0—0 0—0 0—0
PO PO ITIIILLL
W = (0,0) W= (1,0) locally rotated W = (1, 0)

¢ the ground state is dominated by the w, = 0 sector
e local rotations of dimers do not change the winding number
e Winding number can be changed due to long bonds in VBS

How does the presence of long bonds lead to non-conservation
of wW?



How long bonds leads to non-conservation of W?
e Pab|(a7b)"'(cad)> = |(a,b)(c,d)>

’/’ - \\\ 1
NN Pocl(a,b) -+ (e.d)) = S|(a.d)- - (c,b)

¢ A simple one-dimensional example

>0 e>0 e>0 e>0 ( » reference conf.

(®) » transition graph with W =1

W (© > a single projector has acted and
produce a long bond!

7@0450041\0% @ » a second operation leads to a
bond which would have length

5, but has length L — 5 = 3,
and W — 0.

e The maximum bond length to conserve W is L/4




Finite-size scaling of the projection

e Check the winding number of the configurations at 7: P(wy, 7)

e Calculate energy density (H)(w,) only in the initial w, sector

-0.4

1)

-0.5

(w,

<H>

i

e L=32

oo =48 -
o= L=64

el=8 |
—el=16 J

*ecsses
.o .

1)

0.5(-

P( W

20

» For finite L, the state evolves

to a "quasi-eigenstate” before
w, decays to lower values,
with a "quasi-eigenenergy”
(H)(w=1) > (H)(w = 0)

» L — oo, the projected state

U(T)|¥o(wy)) evolves toward
the lowest eigenstate with
winding number wy.

Emergence of the topological quantum number ‘




Relate the energy gap to domain-wall energy

e How to understand the emergent ‘quasi eigenenergy’ of
the topological state?

The winding number effectively counts the number of
domain walls



Relate the energy gap to domain-wall energy
snapshot of the pattern (B, (r)) = (S(r) - S(r + «)), domain walls
e periodic system with W =1

e describe the domain wall, local order parameter

Dy(x) = [(Bx(x,y)) — 5 (Bx(x = 1,y)) — 5 (Bs(x + 1,3))](—1)*
Dy(x) = [(By(x,y)) — (Bs(x,y + 1))](=1)".

The VBS angle §(x) = atan | 25041 |




Domain wall energy

o (Effective) Winding number and VBS angle change
wy = ¢/(27).
e Define the domain wall energy

K(wx, L) = ((H)w, — (H)o)/(wx4L)

0.2F ~—¢=47 (periodic, Wx=2)

| +-¢=2x (periodic, w =1)
0.15- — ¢=n (open)

— 0=nt/2(open)
o L
0.1 / ]

0.05

1 1 1 1 1
0 0.02 0.04 0.06 : 008 0.1 0.12
I

o Different calculations give consistent results for L — o



Imaginary-time life time of the quasi-eigenstate

» 71/, is the life time at which
P(wy) =1/2
| @
2 o ° oo’
5 Op ° o,/LJ/./'
E o e
5///’ o trial state in Fig. 1 (c)
-1F e trial state in Fig. 1 (b) ]
- ; ‘ ;
_ oL ® g
» Take a long total time _ o
B=MA, UQB)|To(wy)) £IF I et
H g H ” - - ////O//./. d le
» 7 =mA, is the "time slice ol —7  ° o: = |
» Measure P(w,) at 7 S . ‘ ‘Wfi’zf
In(L)

\ life time grows asymptotically as L*




Why the life time so short?

o bond-length distribution at 7, ® Gomparing Py of bond-length
> L/4 in the ground state and

of inthe w, = 1 states at 7,
~ 5t
é\
E -10r
-15¢ o
=
0 1 2 3
In@) o for w =1, at P(w =1)=1/2
o in th d stat
Lots of long bonds are generated ! e groum ;ae
in the transient states inw)

» Ground state, | Py o< exp(—aL®")




Real-time evolution

So far, the lifetime is actually the 'time’ that the state staying in
W after projecting time.

Not the real time that the state staying in the initial state in the
real evolving of state.

They can be connected using a simplified model.



Real-time evolution: a two-state model
We consider a very simplified two-state model:
» | ])and | 1) correspond to w, = 0, 1 sectors, respectively
» with energies —e¢, e
perturbed by an off-diagonal matrix element x <« e

Hy = < —xa )6‘ )

Imaginary time evolving: [{(1 |¢(7))|> = 1/2 leads to
X
exp(—27y 2€) = %

v

v

together with the scaling ¢ ~ L and 7, ~ L®
x ~ Lexp(—L'™®)

Real time decay rate

: 2x* o
P(]) % sin?(1v/ €2 + x2), v=" e 2"
X +e



At deconfined critical point

FSS of VB domain-wall energy,

ko< L0 b~ 1.80(1
Atq=0/(J + Q) = 0.6, critical > M
point between VBS and Néel. a0 wBs, B

F o-aq=1.0(VBS), p=3L/16

0.1

0.01

order parameter

<111

!

B = L/4 is long enough to
converge the energy.



At deconfined critical point

o there are two diverging length scales

Ex(g—q)™",  owx(qg—q) ™ vV >v

domain-wall energy can be expressed as xk = K/A
K is a stiffness: energy cost of a twist of the VB order
A is the width of the region over which the twist distributes.

According to DQC theory, K « 1/¢, A < {pw

1

v+v'
K o x(qg—q
E€pw ( <)

v/v

translate to finite size at g.: {pw = L, § = &y

w(ge) oc L=+

we have b =1+ v/v/, and v/v/ = 0.80(1)
The only other estimate from analysis of the emergent U(1)
symmetry: /v’ = 0.83((4), J. Lo etal PRB 80, 180414(R)(2009)



Spinons and holons in the VBS and at deconfined critical
point

work in progress



Spinons and holons in the VBS and at DQC

e Intuitive picture of spinon confinement in the VBS phase

» The VBS ground state is a product of singlets if fluctuations
are neglected

» A spinon is an S = 1/2 excitations

» An S = 1 (triplon) excitation can be regarded as a bound
state of two spinons

e confined spinons
e confinement due to ‘string’ in VBS background

)))
)))
)))
)))

2))))))
2))))))
2)))0))
2)))0))
2))))))

II

I
II
[

22)22))
) )0,
)))i
))))
))).
22)22))



Holons and spinons in the VBS and at critical point

e what really happens in the VBS?

Create two defects (spinons or holons), e.g. ‘dig two holes’, try

to separate them

e The intuitive picture:
linear confining potential due
to ‘string’ of VBS mismatches

This picture assumes only short
bonds




Holons and spinons in the VBS and at critical point

e Quantum dimer saneriee et al, PRB 90, 245143 (2014) linear potential

340 13
140 © = i
0 iylo v
120 T ==a E=a
100 -0.2 t 0 }5"
-0.3 3407 %Y 1 H
80 = m .l
0.4
60 o ) )
o Potential between two static charge
40 22
-0.6 A=0.5
=
20 -0.7
0 038 = @
0 20 40 60 80 100 120 140

8
10 15 20 25 30 35 40 45
r



Holons and spinons in the VBS and at critical point

Generate two holons, expect confinement: linear potential
e We find the potential is short-ranged

T
oo =32
ool =64

AR/ (V)

AE/EV)

e —o 0

. ) 6 00q=1.0 1
q = 0/(J + Q), Ey/V: ground state energy density eeq=038
0= =0.6

V(r) = AE/(Ey/V)

3 s %ré iT 13 15



Snapshot of the bond pattern (B,), (B,)

LI rrrrrrrrrrerrr e r e ererd
Lherrrrrrrrrerrrrrr et e er el

_rrrrrrrrrrrerrrrrrer o e
Llhrrrrrrrrrrerrrrrr et errererd
Llrrrrrrrrrrrerrrrrrrrtrerrererd

No global change, no confining string observed, why?



Visualize the generation of long bond

0

e A very long bond forms
with ends close to the
holons, corresponds to
two spinons forming a
singlet

¢ holon+spinon forming
two composite particles
(full electron).

e the cost of separating
the two particles is very
small

K<l [>[5H] [+



The spinon-holon composite particle

e deep VBS phase e at 0,

mstep= 1 mstep= 1

KIIQR>I] [=Pel+] K] <[> [>]A] =[] +
e average distance diverges as the
¢ bound state of holon-spinon pair  deconfined quantum critical point is

approaching



Direct measure the holon-spinon distance
The size of the composite particle can be characterized by the
spinon-holon mean distance

0.3

: ‘ ‘
L=16
=q=06 (q)) & L=24
12 fit of q=0.6 (r=0.1164+0.263L) 7 0.25 L=32
00¢=0.7,0.8,0.9 " L=40
10F- eeq=1.0 (deep VBS) q 02 Lt L=40
B er L=48
g gl 1 L=56
z < o015f% L=64
s 1 %
L:: *
01+
4 1 :
0.05 F * o,
oL |
0 L L Il L L L 0 - . . . .
8 16 24 N 32 40 48 0 50 100 150 200 250
(@-a L™

e As g = 03/(J + Q3) approaches the deconfined critical
point, the average distance of the holon-spinon pair
diverges with system size linearly.

e dimensionless ratio (r)/L

e data collapsing: g. = 0.6, = 0.63

» no log correction is needed, unlike in studies of the
magnetization distribution Baneriee, Damle and Alet, PR8, 2010 .



The two-spinon distance in the J-Q, model
e aS=1state

Y

)))
))
))
))

N T

(0,8 = DIU(T)U(7)[¢=(0,5 = 1))

2)23)))

MC transition graph representing (i, |1g) of S = 1 states
e two strings (spinons) in a background of loops formed by
valence bonds.

e Archs above and below the plane represent |¢g) and (¢y|,
respectively.

»2232)))
1))
1))

>
“ >
>

—

Tang and Sandvik, PRL 2011; Banerjee and Damle, J. Stat. Mech 2010



The two-spinon distance in the J-Q, model

0.055

%
=0.050

0.045F—

0.4090

S 04085

<

0.4080

From Binder ratio

04075

14

<

12
1.0

16F

From 2-spinon distance 007
//
// 5 006 /
ya 0.05 yd
v
- B
e . 0.04
<
)10 e
P T
/ x_1.494/
d <
. 148
-
- 147
\\g& 2.0
doy N
<15
., *‘\“‘
. 1.0 )
- -
0 0.06

0.02
/1

0 0.05 0.1
/L

e The two-spinon distance (A)/L is
also universal, like the Binder
ratio of Néel order parameter.

e Solving the crossing points of
(A(L))/L and (A(2L))/2L versus g

g —qe o L~W/V'H9) ALY /JL-R o« L%

and 1/v' can be extracted from slopes
at the crossing point

e we find ¢, = 0.04463(4),v" = 0.58(2) (here we take g = 0,/J)
e o/ is the domain wall width exponent!

e From Binder ratio, we have v = 0.446 which controls the
correlation.

e v/v =0.77(3) agrees with the result obtained from the VBS
domain-Wall energy



Conclusion

e We have studied that the topological excitations in the VB state

>

demonstrated a mechanism of the decay of winding
numbers in a VBS; different from the quantum dimer model
imaginary life time of winding state diverges as a power of
the system size L.

The winding number effectively counts the number of
domain walls, the energy gap is the domain wall energy

A simplified two-states model shows the real-time life time
of the topological excitation is exponentially long in L: a
well-defined conserved quantum number for large systems
At DQC, the domain-wall energy turns to zero; we found
v/v' = 0.80(1), support the DQC theory

e Preliminary results of the confinement of spinons/holons

>

>

>

In the VBS, the confining potential is not linear, due to
quantum fluctuations of VBS background (long bonds)
Critical region, NO logarithmic corrections in the FSS of
spinon/holon pair distance.

We obtained ' and v/’ = 0.8 in supporting of the DQC
theory
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