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Interacting lattice bosons: clean system
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Two ground states SF and MI

Greiner et al., Nature (‘02)   

t U

I MI: integer filling, insulating,
gapped

I SF: any filling fraction, gapless

Two ways from MI to SF



Interacting lattice bosons: site-disorder present
Fascinating interplay between disorder, interactions and
SF
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I SF: any filling fraction, gapless
I MI: integer filling, insulating, gapped
I Quantum Glass: insulating but

Gapless;
believed: always compressible (BG)
in 2D



Previous studies of the site-disordered BH model

T = 0 phase diagram: QG state always intervenes SF and MI ?

[Fisher et al, PRB, 1989]

Söyler ’11; Prokof’ev, ’04; Pollet, ’09; Herbut, ’97; ’98; Weichman, ’96,
’08; Svistunov, ’96;

Singh; ’92; Pazmandi; ’98; Pai, ’96;

Scalettar, ’91; Krauth, ’91; Kisker; ’97; Sen, ’01; Lee, ’01; Wu, ’08;
Bissbort, ’09



Recent progress
QG is a Griffiths phase in which rare large regions of phase A inside
phase B lead to singularities.

0 2 4 6 8 10 12 14 16 18
µ

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

ρ

εN−1

εN+1

εN

εN
∆

µ
∆

ε −

M

Λ cΛ

I Λ > ∆M/2, arbitrarily large regions of SF
inside the MI.

I Λ < Λc, SF puddles NOT percolating,
insulating.

I Fundamentally different from the MI:
gapless due to arbitrarily large SF region

Pollet et al, PRL, 2009
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Recent progress

Phase diagram

µ/U vs. t/U for given Λ
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Our work: the temperature behavior of κ

I We find κ in certain region of QG:

κ ∼ exp(−b/Tα), α < 1

κ→ 0 when T → 0⇒ Mott Glass

MI: the above form with α = 1 and b = ∆

In contrast to the commonly accepted theory of
site-disordered bosons

Gapless does not necessarily imply a compressible state
You can add or remove a particle with infinitesimal cost, but the
total amount of the cost can be zero comparing to system size
N

I such MG only found in 1D system with explicit P-H
symmetry, e.g.,hopping disorder Altman et al, PRL, 2004.



QMC simulations
I method: SSE QMC with directed-loop updates
I Adjust µ to ensure ρ = 〈n〉/N = 1
I Fix U/t = 22, 2D: QG for 4.2 < Λ < 7.8
I Average over up to thousands of realizations
I For β = t/T up to 8, eliminate finite-size effects by using L

up to 32.

Λ/t

Söyler et al, 2011
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QMC simulations: Low-T κ distribution
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QMC simulations : κ− T behavior
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I κ in QG (MG) follows the
exponential form

κ ∼ exp(−b/Tα)

α ≈ 0.77 for Λ = 6
α ≈ 0.53 for Λ = 7

I MI points (Λ = 0 and 3):
agrees with the
conventional α = 1
exponential

κ ∝ e−∆/T

I SF point (Λ = 9):
κ(T) converges rapidly
to a non-zero value
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“QG should be a compressible BG” may fail, why?

The compressibility is normalized by the system volume!

κ =
∂ρ

∂µ
=

1
TN

∑
n

∫
dεe−ε/Tρn(ε)(n− 〈n〉)2∑

n

∫
dεe−ε/Tρn(ε)

ρn(ε): density of states with n bosons.



MI state of a clean system:
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ε − Gap ∆ = ∆M
2 to adding(removing) a boson.

The added particle disperse as a free
boson(large U),

εq = ∆ + 4t − 2t[cos(qx) + cos(qy)]

At low T→ flat density of states in a band of width W

ρN±1(ε) =

{
N/W , ε ∈ [∆,∆ + W]
0 , otherwise

Only consider the n = N sector in the denominator,
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MI, Comparing with QMC simulations
U/t = 22, ρ = 1, ∆M ≈ 8.34

I Clean system: The pure exponential form agrees with
QMC. We obtain ∆ ≈ 4.2
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I Weak disordered system (Λ > 0), ∆→ averaged gap
The pure exponential form agrees with our QMC for Λ = 3.
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QG state
Gapless: GS no longer dominates, can be ignored in the
partition function, however

I Contribution to κ from the N ± 1 sectors:

κ1 ≈
2

TN

∫
dεe−ε/Tρn±1(ε)(±1)2∑
n=N±1

∫
dεe−ε/Tρn(ε)

∝ 1
TN
→ 0

I Contribution from other sectors?
To get κ size independent, need enough low-energy states
in sectors with |n− N| ∼

√
N

This is the case for SF state, but may not be the case for a
QG due to finite size gaps of SF domains in 2D
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Percolation scenario

Consider an ensemble of SF domains below the percolation
threshold

MI

SF

I Finite-size (m) gap ∝ 1
ma , a unknown

exponent.
I Given T = 1

ma , all domains of sizes
s < m gapped, NO contribution to κ

I Only domains of sizes s > m
contribute to κ
Prob. of a site belong to an SF
domain with s > m is ∝ exp(−bmc), c
unknown exponent.

thus
κ ∝ exp(−bT−c/a) = exp(−bT−α)



Cross-over behavior
Always a contribution from the MI background,

κMI ∝ exp(−∆/T), ∆: average gap

total
κ ∝ κMI + exp(−bT−α)

I κMI negligible at low T when α < 1

I Approaching the MG–MI transition
from MG side, b diverges.
κ crosses over to κMI, i.e., α = 1

I Approaching the MG-SF transition
from MG, α→ 0.
κ evolves smoothly between the MG
form and the constant κ at the
transition
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I Jump happens at T = 0
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Compressible QG state (2D)
For very large Λ, the system enter QG state again, but
compressible
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Incompressible and Compressible QG state in 1D
Take U/t = 8 as an example, ∆M/2 ≈ 1.5
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Conclusions and discussion

I Based on plausible arguments and unbiased QMC results:
there is an incompressible QG phase at T = 0 for
commensurate filling and moderate disorder strength.

I Mechanism: finite-size gap of finite SF domains
surrounded by an MI. The gap decreases with increasing
size of the SF domain, but as long as the SF do NOT
percolate, lead to incompressibility in T = 0.

I The factor 1/N in κ: number of particles can be added, but
may NOT enough to offer a Nonzero κ at T → 0.
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Conclusions and discussion

I For extremly large disorder strength, the percolation
scenario doesn’t apply.

I Our QMC for ρ = 1.
Commensurate fillings might be special in 2D
There is an emergent particle-hole symmetry at integer ρ

I The percolation picture may does not apply at noninteger
fillings.
A compressible BG might exist at noninteger filling.

Weak-disorder RG: 2D integer filling have a different fixed
point. Krüger, PRB 2011
Others: no distinction Fisher PRB 89, Pollet PRL 09



Thank You!



The emergent particle-hole symmetry at integer ρ and makes
these systems special.

Blue: histograms of 〈ni〉 in l× l box;
Red: histograms obtained by randomly averaging l× l 〈ni〉
(β = 8, 500 realizations.)
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Even lower temperature
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