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1: Intro to quantum magnetism and QMC simulations 

2: Stochastic series expansion QMC (S=1/2 Heisenberg, TFIM) 

3: Ground-state projection QMC, valence-bond basis 

4: Quantum criticality, finite-size scaling, phenomenological RG 

5,6: Deconfined quantum criticality, emergent symmetries 

7: Seminar on recent developments 
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A: Emergent U(1) symmetry in classical and quantum clock models 

B: Dynamics from QMC - analytic continuation
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Heisenberg model

H = J
�

�i,j⇥

�Si · �Sj

Prototypical Mott insulator; high-Tc cuprates (antiferromagnets)

CuO2 planes, localized spins on Cu sites

- Lowest-order spin model: S=1/2 Heisenberg

- Super-exchange coupling, J≈1500K

Many other quasi-1D and quasi-2D cuprates

• chains, ladders, impurities and dilution, frustrated interactions, ...

Ladder systems

- even/odd effects
non-magnetic impurities/dilution

- dilution-driven phase transition

• Cu (S = 1/2)
• Zn (S = 0)
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• large U/t in Hubbard model  

→ few doubly-occupied sites, insulator

74 CHAPTER 3. QUANTUM SPIN SYSTEMS

In a similar way, the potential-energy parameters V στ
ijkl , which should be thought

of as arising from already screened Coulomb interactions and, thus, are normally
short-ranged, can be also be expressed as integrals over the Wannier states.

In practice, the tight-binding approach is most useful when the Wannier
states are near-atomic orbitals, so that the probability density of finding an
electron in orbital i is large only around site i and its closest neighbors (as
in the left part of Fig. 3.1). This is typically the case in systems with d or f
valence orbitals. The hopping matrix elements can then be approximated as zero
beyond nearest-neighbor, although in some cases it can be important to include
some further neighbors as well. The hopping and interaction parameters can be
obtained from electronic band structure calculations. However, often they are
just considered as adjustable model parameters, that in the end are determined
by comparing calculations for the lattice model with experiments.

Another simplification of the electron hamiltonian, which we have already
made in the effective model (3.1), is that the nuclei are much heavyer than the
electrons and their motion can either be neglected completely (thus considering
a static lattice) or treated in a harmonic approximation, resulting in phonons
and electron-phonon interactions. We will neglect electron-phonon couplings for
now, but will discuss models including them later, in Sec. 3.4.4.

3.1.2 The Hubbard model of strongly-correlated electrons

One can some times argue that the on-site interaction terms in (3.1), i.e., those
with site indices i = j = k = l (and thus the spins σ ̸= τ , because of Pauli
exclusion) are completely dominant. Keeping only this repulsive interaction,
U = V σσ

iiii , and keeping only the hopping t = tij between nearest-neigbor sites
⟨i, j⟩, we obtain the Hubbard hamiltonian;

H = −t
∑

σ

∑

⟨i,j⟩

(c†σicσj + c†σjcσi) + U
∑

i

n↑in↓i. (3.4)

Here nσi = c†σicσi are the number operators, which are diagonal in the occu-
pation number basis; nσi = 0, 1. The model derives its name from a series of
papers by Hubbard in the 1950s, and 60s [13, 14], but it was also introduced in-
dependently by Gutzwiller around the same time [15]. The essential role of the
on-site repulsive interactions in antiferromagnets was recognized by Anderson,
who first presented a rigorous derivation of the Heisenberg exchange mechanism
from the Hubbard model in a ground-breaking 1959 article [16]. This aspect of
the Hubbard model applies at half-filling (one electron per site) and is our main
interest here. We will not discuss the more general role of the Hubbard model,
away from haf-filling, as the most important prototypical model for strongly-
correlated fermion systems.

First, we discuss the representation of the electron states of on the lattice. In
order to keep track of fermion anticommutation, multi-electron states in the site
occupation number basis have to be defined in terms of a products of creation
operators acting on a vacuum state |vac⟩; the empty lattice. We then have to
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Many variants of Heisenberg model motivated by materials

Nature of ground state (ordered vs disordered), excitations,…

H = J
X

hiji

~Si · ~Sj



Quantum versus classical antiferromagnets

H = J
�

�i,j⇥

Si · Sj + g ⇥ · · ·

Starting point: Heisenberg model


- nearest-neighbor interactions (J>0)

- extend by longer-range or multi-spin couplings

- maintain spin-rotation invariance

Consider 2 spins: 
- Classical (S=∞) ground state is any anti-parallel configuration


| "#i � | #"ip
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=

Extended quantum magnets (N→∞) can have aspects of

- classical-like antiferromagnetic order

- non-classical effects can some times be understood using singlets

- S=1/2 (extreme quantum) is a singlet (singlet-triplet gap = J)



Classical (thermal) phase transition 
- Fluctuations regulated by temperature T>0 
Quantum (ground state, T=0) phase transition 
- Fluctuations regulated by parameter g in Hamiltonian

Classical and quantum phase transitions

There are many similarities between classical and quantum transitions 
- and also important differences
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FIGURE 3. Temperature (T ) or coupling (g) dependence of the order parameter (e.g., the magnetization
of a ferromagnet) at a continuous (a) and a first-order (b) phase transition. A classical, thermal transition
occurs at some temperature T = Tc, whereas a quantum phase transition occurs at some g= gc at T = 0.

where the spin correlations decay exponentially with distance [60].
While quasi-1D antiferromagnets were actively studied experimentally already in the

1960s and 70s, these efforts were further stimulated by theoretical developments in the
1980s. Haldane conjectured [55], based on a field-theory approach, that the Heisenberg
chain has completely different physical properties for integer spin (S = 1,2, . . .) and
“half-odd integer” spin (S = 1/2,3/2, . . .). It was known from Bethe’s solution that the
S = 1/2 chain has a gapless excitation spectrum (related to the power-law decaying
spin correlations). Haldane suggested the possibility of the S= 1 chain instead having a
ground state with exponentially decaying correlations and a gap to all excitations; a kind
of spin liquid state [26]. This was counter to the expectation (based on, e.g., spin wave
theory) that increasing S should increase the tendency to ordering. Haldane’s conjecture
stimulated intense research activities, theoretical as well as experimental, on the S = 1
Heisenberg chain and 1D systems more broadly. There is now completely conclusive
evidence from numerical studies that Haldane was right [61, 62, 63]. Experimentally,
there are also a number of quasi-one-dimensional S = 1/2 [64] and S = 1 [65] (and
also larger S [66]) compounds which show the predicted differences in the excitation
spectrum. A rather complete and compelling theory of spin-S Heisenberg chains has
emerged (and includes also the VBS transitions for half-odd integer S), but even to this
date various aspects of their unusual properties are still being worked out [67]. There are
also many other variants of spin chains, which are also attracting a lot of theoretical and
experimental attention (e.g., systems including various anisotropies, external fields [68],
higher-order interactions [69], couplings to phonons [70, 71], long-range interactions
[72, 73], etc.). In Sec. 4 we will use exact diagonalization methods to study the S= 1/2
Heisenberg chain, as well as the extended variant with frustrated interactions (and also
including long-range interactions). In Sec. 5 we will investigate longer chains using the
SSE QMC method. We will also study ladder-systems consisting of several coupled
chains [9], which, for an even number of chains, have properties similar to the Haldane
state (i.e., exponentially decaying spin correlations and gapped excitations).

2.4. Models with quantum phase transitions in two dimensions

The existence of different types of ground states implies that phase transitions can
occur in a system at T = 0 as some parameter in the hamiltonian is varied (which
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In both cases phase transitions can be 
- first-order (discontinuous): finite correlation length ξ as g→gc or g→gc 
- continuous: correlation length diverges, ξ~|g-gc|-ν or ξ~|T-Tc|-ν

The quantum phases (ground states) can also be highly non-trivial 
- even with rather simple lattice models



Example: Néel-paramagnetic quantum phase transition 
Dimerized S=1/2 Heisenberg models 
• every spin belongs to a dimer (strongly-coupled pair) 
• many possibilities, e.g., bilayer, dimerized single layer

⇒ 3D classical Heisenberg (O3) universality class; QMC confirmed

Singlet formation on strong bonds ➙ Néel - quantum-paramagnetic transition
  Ground state (T=0) phases

� = spin gaps

weak interactions
strong interactions

Experimental realization (3D coupled-dimer system): TlCuCl3



• highly non-trivial non-magnetic ground states are possible, e.g.,

➡ resonating valence-bond (RVB) spin liquid

➡ valence-bond solid (VBS)

H = J
�

�i,j⇥

Si · Sj + g ⇥ · · ·
More complex non-magnetic states; systems with 1 spin per unit cell

Non-magnetic states often have natural descriptions with valence bonds

= (⇥i⇤j � ⇤i⇥j)/
⌅

2
i j

• non-magnetic states dominated by short bonds

�

�

The basis including bonds of all lengths 
is overcomplete in the singlet sector



Frustrated  quantum spins
Competing antiferromagnetic interactions

- structure of ground state can be highly non-trivial

- “spin liquid”, other non-trivial quantum paramagnets 

Ising spins: ", #

bipartite non-bipartite

un-frustrated frustrated

Even classical spin 
models (Ising, XY, 
Heisenberg) can be 

highly non-trivial when 

the interactions are 
frustrated

Be careful with classical pictures and intuition:

classical Heisenberg

9/3/19, 2:51 PMinterlayerinteraction-dependence-of-latent-heat-in-the-heisenberg-m…ngular-lattice-with-competing-interactions-4-638.jpg 638×479 pixels

Page 1 of 1http://image.slidesharecdn.com/pre-88-052138-presentation-131128051…ngular-lattice-with-competing-interactions-4-638.jpg?cb=1385616045
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Quantum S=1/2 Heisenberg



The Heisenberg interaction is equivalent to a singlet-projector
Cij = 1

4 � ⇤Si · ⇤Sj

Other types of competing interactons: J-Q models

• we can construct models with products of singlet projectors 
• no frustration in the conventional sense (QMC can be used) 
• correlated singlet projection reduces the antiferromagnetic order

+ all translations
   and rotations

The J-Q model with two projectors:

H = �J
�

�ij⇥

Cij �Q
�

�ijkl⇥

CijCkl

• Hosts Néel-VBS quantum phase transition, appears to be continuous 
• Not a realistic microscopic model for materials 
• “Designer Hamiltonian” for VBS physics and Néel-VBS transition 
• Can mimic some aspects of conventional frustrated interactions

!



What’s so special about quantum-criticality? 
- large T>0 quantum-critical “fan” where T is the only relevant energy scale

- physical quantities show power laws governed by the T=0 critical point

Changing T is changing the imaginary-time size Lτ:  
- Finite-size scaling at gc leads to power laws

⇠ ⇠ T�1

C ⇠ T 2

�(0) ⇠ T

(correlation length)
(specific heat)

(uniform magnetic susceptibility)

2D Neel-paramagnet

“cross-over diagram” 
[Chakravarty, Halperin, 
Nelson, PRB 1988]


T = 0 Néel order non-magnetic

high-T , lattice e�ects

�
⇢s

QC: Universal quantum

critical scaling regime

QMC needed to study large lattices; ground states, transitions, T>0,… 
- to test predictions, discover new physics,…



= ⟨S⃗i · S⃗j⟩

The “J-Q” model with two projectors (J-Q2 model)

H = �J
�

�ij⇥

Cij �Q
�

�ijkl⇥

CijCkl

• Néel-VBS transition appears to be continuous 
• Possibly very weakly first-order 
• Ongoing studies (will be discussed), also J-Q3 and ‘larger’ models

Deconfined quantum criticality
Senthil, Vishwanath, Balents, Sachdev, Fisher (Science 2004)
(+ many previous works; Read & Sachdev, Sachdev & Murthy, Motrunich & Vishwanath….)

Continuous AF - VBS transition at T=0

- would be violation of Landau rule

- first-order would normally be expected

- role of topological defects 

Cij = 1
4 � ⇤Si · ⇤Sj

Numerical (QMC) tests using J-Q models

[Shao, Guo, Sandvik (Science 2016)]• Unusual scaling properties, spinons

f̃ (dL1/n,L1/n'–1/n,L–w). If f̃ (d = 0) is constantwhen
L → 1, then L1/n'–1/n acts like just another ir-
relevant field, as in the standard scenario for dan-
gerously irrelevant perturbations in classical clock
models (31). Our proposal is a different large-L
limit of Eq. 2, controlled by y = dL1/n', which leads
to concrete predictions of scaling anomalies. In
the case of the stiffness, the correct thermody-
namic limit is obtained with ñ ¼ n0 and k = zn if
f(x,y,L–w)º yzn for largeL. Then rs(d =0)º L–zn/n',
which we can also obtain with ñ ¼ n and f̃ º
Lz(1–n/n') for d → 0. A function f̃ behaving as a
power ofLwas implicitly suggested in (19), though
with no specific form.
This alternative scaling behavior corresponds

to xº (x') n/n' saturating at xº L n/n' when x'→ L
upon approaching the critical point, in contrast
to the standard scenario in which x grows until it
also reaches L (32). The criticality at distances r <
Ln/n' is conventional, whereas r> Ln/n' is governed
by the unconventional power laws. Different be-
haviors for r ≪ L and r ≈ L were observed in a
recent loop-model study (24), and a dangerously
irrelevant field was proposed as a possible expla-
nation, but with no quantitative predictions of
the kind offered by our approach. The anomalous
scaling law controlled by n/n', which we confirm
numerically below, is an unexpected feature of
DQCphysics andmay also apply to other systems
with two divergent lengths.
The J-Qmodel (15) for spins S = 1/2 is defined

using singlet projectors (Pij = 1/4 – Si · Sj) as

H ¼ −J
X

hiji

Pij − Q
X

hijkli

PijPkl ð3Þ

where hiji denotes nearest-neighbor sites on a
periodic square lattice with L2 sites, and ij and kl
in hijkliform the horizontal and vertical edges of
2 × 2 plaquettes. The Hamiltonian H has all sym-
metries of the square lattice, and the VBS ground
state for g= J/Q< gc (with gc≈ 0.045) is columnar,
breaking the translational and 90° rotational sym-
metries spontaneously. The Néel state for g > gc
breaks the spin rotation symmetry.
Although we have argued that the asymptotic

L→1 behavior when d ≠ 0 in Eq. 2 is controlled
by the second argument of f, the critical finite-
size scaling close to d = 0 (when dL1/n is of order
1) can still be governed by the first argument (32).
Wewill demonstrate that, depending on the quan-
tity, either dL1/n or dL1/n' is the relevant argument,
and, therefore, n and n' can be extracted using
single-parameter scaling. We will first consider
dimensionless quantities, corresponding to k =
0 in Eq. 2, before testing the anomalous powers
of L in other quantities.
If the effective one-parameter scaling holds

close to gc, then Eq. 2 implies thatA(g,L1) =A(g,L2)
at some point g that we denote g*(L1,L2), and a
crossing-point analysis (Fisher’s phenomenolog-
ical renormalization) can be performed (29). For a
k = 0 quantity, if L1 = L and L2 = rL with r >
1 being constant, a Taylor expansion of f shows
that the crossing points g*(L) approach gc as
g*(L) – gcº L–(1/n+w), if n is the relevant exponent
(which we assume here for definiteness). A* =

A(g*) approaches its limit Ac as A*(L) – Ac º
L–w, and it can also be shown that the quantity

1
n$ðLÞ

¼ 1
lnðrÞ

ln
dAðg; rLÞ=dg
dAðg;LÞ=dg

! "

g¼g$
ð4Þ

converges to 1/n at the rate L–w. In practice,
simulation data can be generated on a grid of
points close to the crossing values, with poly-
nomials used for interpolation and derivatives.
We present details and tests of such a scheme for
the Ising model in (32).

In the S = 1 sector, spinon physics can be
studiedwith projector QMC simulations in a basis
of valence bonds (singlet pairs) and two unpaired
spins (33, 34). Previously, the size of the spinon
bound state in the J-Qmodel was extrapolated to
the thermodynamic limit (35), but the results were
inconclusive as to the rate of divergence upon
approaching the critical point. Here we consider
the critical finite-size behavior. We define the size
L of the spinon pair by using the strings connect-
ing theunpaired spins in valence-bond simulations
(Fig. 1) (32–34).
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Fig. 1. Illustration of spinons. Shown is a QMC transition graph (33, 34) representing a sampled overlap
hyleftjyrighti of S = 1 states with two strings (spinons, shown in red and green) in a background of valence-
bond loops. Arches above and below the plane represent the states jyrighti and hyleftj, respectively.
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Fig. 2. (L,2L) crossing-point analysis. The size of the spinon bound state and the Binder ratio were
used to generate the left and right panels, respectively. The monotonic quantities were fitted with
simple power-law corrections; two additional subleading corrections were included in the fits of the non-
monotonic quantities.
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Introduction to quantum Monte Carlo 
simulations of spin models 

arXiv:1101.3281  [pdf, ps, other]  cond-mat.str-el hep-lat doi

Computational Studies of Quantum Spin Systems

arXiv:1909.10591  [pdf, other]  cond-mat.str-el

Stochastic Series Expansion Methods



Path integrals on the lattice, imaginary time

⇤A⌅ =
1
Z

Tr{Ae��H}

We want to compute a thermal expectation value

where β=1/T (and possibly T→0). How to deal with the exponential operator?

Z =
�

�0

�

�1

· · ·
�

�L�1

⇥�0|e��� H |�L�1⇤ · · · ⇥�2|e��� H |�1⇤⇥�1|e��� H |�0⇤

Choose a basis and insert complete sets of states;

Z = Tr{e��H} = Tr

�
L⇤

l=1

e��� H

⇥
“Time slicing” of the partition function

�� = �/L

Z ⇤
�

{�}

⌅�0|1��⇥H|�L�1⇧ · · · ⌅�2|1��⇥H|�1⇧⌅�1|1��⇥H|�0⇧

Use approximation for imaginary time evolution operator. Simplest way

Leads to error           . Limit                 can be taken �� � 0� ��

Trotter decomposition: error   � ��
2



Trotter decomposition e�(A+B) = e�Ae�B +O(�2[A,B])
Example: Heisenberg chain

H = H
e

+H
o

, H
e

=
X

even i

Si · Si+1

, H
o

=
X

odd i

Si · Si+1

All terms within He and Ho commute →

e��⌧ (He

+H
o

) =
Y

i=1,3,...

e��⌧Si·Si+1

Y

i=2,4,...

e��⌧Si·Si+1 +O(�2
⌧ )

Use in Z, insert complete sets of states between all exponentials

- graphical representation of terms; world lines

0

β

τ

Δτ

FIGURE 54. A 1D world line configuration based on the checkerboard decomposition with the Suzuki-
Trotter approximation. Kinetic jumps of the bosons (or flips of a pair of ↑ and ↓ spins) are allowed only
across the shaded squares (plaquettes). A time slice of width Δτ consists of two consecutive rows of pla-
quettes. The six isolated plaquettes shown to the right correspond to the non-zero matrix elements, which
in the case of a spin model with Heisenberg interactions (for world lines and empty sites corresponding
to ↑ and ↓ spins, respectively) are given by Eq. (244).

(kinetic jumps) are allowed only on the shaded plaquettes in Fig. 54. More complicated
“loop” and “directed loop” updates, in which large segments of several world lines can
be moved simultaneously, are used in modern algorithms [31, 191, 33] (which we will
discuss in detail below in the context of the stochastic series expansion method).

Application to the Heisenberg model. It is useful to consider a particular example
of the path weights in the Suzuki-Trotter approach. Let us compute the plaquette matrix
elements for the antiferromagnetic Heisenberg interaction;Hi,i+1 = Si ·Si+1. In this case
the boson occupation numbers in (243) are replaced by spin states ↑ and ↓. We can
consider the world lines forming between the ↑ spins (and note that we could also draw
world lines for the ↓ spins in pictures such as Fig. 54; they occupy all sites not covered
by ↑ world lines and cross those lines at each diagonal segment). The calculation just
involves straight-forward algebra and we just list the results for the six allowed (non-
zero) matrix elements;

⟨↑i↑ j |e−ΔτHi j | ↑i↑ j⟩= ⟨↓i↓ j |e−ΔτHi j | ↓i↓ j⟩= +e−Δτ/4

⟨↑i↓ j |e−ΔτHi j | ↑i↓ j⟩= ⟨↓i↑ j |e−ΔτHi j | ↓i↑ j⟩= +eΔτ/4 cosh(Δτ/2) (244)
⟨↓i↑ j |e−ΔτHi j | ↑i↓ j⟩= ⟨↑i↓ j |e−ΔτHi j | ↓i↑ j⟩=−eΔτ/4 sinh(Δτ/2)

The weight of a world line configuration is a product of these matrix elements, all of
which are pictorially represented in the right part of Fig. 54. Note the minus sign in
front of the off-diagonal matrix elements. For an allowed world line configuration, all
the signs cancel out due to the periodicity constraint on the world lines. This is true
also for world line methods applied to bipartite lattices in higher dimensions, but for
frustrated systems there is a “sign problem” because of the presence of both negative and
positiveweights (as we will discuss further in Sec. 5.1.3). In practice, world line methods
and similar QMC approaches are therefore useful primarily for studies of bipartite spin
systems and bosons models. For a fermion system, permutation of world lines also
lead to sign problems, except in one dimension where only global cyclical permutations
(winding) are possible (with associated signs that can be avoided by choosing periodic
or anti-periodic boundary conditions [176, 187]).
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Equivalent to 

6-vertex model 

in classical  

stat mech

Looks like error should be L𝛥𝝉2 ~ β𝛥𝝉

- actually ~β𝛥𝝉2 because trace is taken

- procedure is equivalent to using higher-order Trotter dcomposition

e��⌧ (He

+H
o

) = e��⌧He

/2e��⌧Hoe��⌧He

/2 +O(�2
⌧ )O(�3
⌧ )



Example of linear approximation and 𝛥𝝉→0: hard-core bosons

H = K = �
�

�i,j⇥

Kij = �
�

�i,j⇥

(a†jai + a†iaj) ni = a†iai � {0, 1}

Equivalent to S=1/2 XY model 

H = �2
�

⇥i,j⇤

(Sx
i Sx

j + Sy
i Sy

j ) = �
�

⇥i,j⇤

(S+
i S�

j + S�
i S+

j ), Sz = ±1
2
⇤ ni = 0, 1

world line moves for 
Monte Carlo sampling

World line representation of

Z =
�

{�}

W ({�}), W ({�}) = �nK
⇥ nK = number of “jumps”

Z ⇤
�

{�}

⌅�0|1��⇥H|�L�1⇧ · · · ⌅�2|1��⇥H|�1⇧⌅�1|1��⇥H|�0⇧



⇥A⇤ =
1
Z

�

{�}

⇥�0|e��� |�L�1⇤ · · · ⇥�2|e��� H |�1⇤⇥�1|e��� HA|�0⇤

Expectation values

⇧A⌃ =

�
{�} A({�})W ({�})
�

{�} W ({�}) �⇥ ⇧A⌃ = ⇧A({�})⌃W

We want to write this in a form suitable for MC importance sampling

W ({�}) = weight
A({�}) = estimatorFor any quantity diagonal in the 


occupation numbers (spin z):

A({�}) = A(�n) or A({�}) =
1
L

L�1�

l=0

A(�l)

There should be of the order βN “jumps” (regardless of approximation used)

Kinetic energy (here full energy). Multiply and divide by W, 

Ke��� K � K
1
0
1

Kij({�}) =
⇧�1|Kij |�0⌃

⇧�1|1 ���K|�0⌃
⇥ {0,

1
��

}

Average over all slices → count number of kinetic jumps

⇤K⌅ ⇥ N � ⇤nK⌅ ⇥ �N⇥Kij⇤ =
⇥nij⇤

�
, ⇥K⇤ = �⇥nK⇤

�



Including interactions
For any diagonal interaction V (Trotter, or split-operator, approximation)

e��� H = e��� Ke��� V + O(�2
� ) ⇥ ⌅�l+1|e��� H |�l⇧ � e��� Vl⌅�l+1|e��� K |�l⇧

Product over all times slices →

W ({�}) = �nK
� exp

�
���

L�1⇤

l=0

Vl

⇥

local updates (problem when Δτ→0?)

• consider probability of inserting/removing 

events within a time window

• non-zero integrated probabilitis for insertion 

at all times, choose random time.

The continuous time limit
Limit Δτ→0: number of kinetic jumps remains finite, store events only

Special methods (loop 
and worm updates)

developed for efficient

sampling of the paths

in the continuum

Pacc = min
⇤
�2

�exp
�
�Vnew

Vold

⇥
, 1

⌅


