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Lecture plan

1: Intro to quantum magnetism and QMC simulations

2: Stochastic series expansion QMC (S=1/2 Heisenberg, TFIM)
3: Ground-state projection QMC, valence-bond basis

4: Quantum criticality, finite-size scaling, phenomenological RG
5,6: Deconfined quantum criticality, emergent symmetries

7: Seminar on recent developments

Supporting lectures by Hui Shao

A: Emergent U(1) symmetry in classical and quantum clock models

B: Dynamics from QMC - analytic continuation

Reading material: | will provide a list

Questions: Ask anytime! Write on chat also OK, someone will monitor




Brief introduction to quantum magnetism
and quantum phase transitions

arXiv:1101.3281 [pdf, ps, other] hep-lat ¥

Computational Studies of Quantum Spin Systems



Helsenberg model R e
large U/t in Hubbard model > (6) z-

— few doubly-occupied sites, insulator
Half-filling = S=1/2 Heisenberg antiferromagnet:

superexchange mechanism
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Ladder systems non-magnetic impurities/dilution
- even/odd effects - dilution-driven phase transition

Nature of ground state (ordered vs disordered), excitations,...




Quantum versus classical antiferromagnets

i /]ﬂ )ﬂ /]1 Starting point: Heisenberg model
A A X B35S S | o
A .

- nearest-neighbor interactions (J>0)
7(,1’4’ 41 - extend by longer-range or multi-spin couplings

- maintain spin-rotation invariance

Consider 2 spins:
- Classical (S=c0) ground state is any anti-parallel configuration

- S=1/2 (extreme quantum) is a singlet (singlet-triplet gap = J)

/r J/ Gl m—\m

Extended quantum magnets (N—o0) can have aspects of
- classical-like antiferromagnetic order
- non-classical effects can some times be understood using singlets




Classical and quantum phase transitions

Classical (thermal) phase transition

- Fluctuations regulated by temperature T>0

Quantum (ground state, T=0) phase transition

- Fluctuations regulated by parameter g in Hamiltonian
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In both cases phase transitions can be

- first-order (discontinuous): finite correlation length € as g—gc org—gc
- continuous: correlation length diverges, §~|g-gc|™ or §~|T-T¢|

There are many similarities between classical and quantum transitions
- and also important differences

The quantum phases (ground states) can also be highly non-trivial
- even with rather simple lattice models



Example: Néel-paramagnetic quantum phase transition
Dimerized S=1/2 Heisenberg models

¢ every spin belongs to a dimer (strongly-coupled pair)

e many possibilities, e.g., bilayer, dimerized single layer

=== Strong interactions

g=Jo/J1 J = \Weak interactions
2
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Singlet formation on strong bonds = Néel - quantum-paramagnetic transition
Ground state (T=0) phases
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A = spin gap

= 3D classical Heisenberg (O3) universality class; QMC confirmed
Experimental realization (3D coupled-dimer system): TICuCls




More complex non-magnetic states; systems with 1 spin per unit cell

H JZSISJ g X
(1.3)
- highly non-trivial non-magnetic ground states are possible, e.g.,

= resonating valence-bond (RVB) spin liquid
= valence-bond solid (VBS)

Non-magnetic states often have natural descriptions with valence bonds

RVB
Z ﬁ — = lquj)/\@

The basis including bonds of all lengths
is overcomplete in the singlet sector

* non-magnetic states dominated by short bonds




Frustrated quantum spins

Competing antiferromagnetic interactions
- structure of ground state can be highly non-trivial
- “spin liquid”, other non-trivial guantum paramagnets

Ising spins: T, |

Even classical spin
models (Ising, XY,
Heisenberg) can be
highly non-trivial when
the interactions are
frustrated

bipartite non-bipartite
un-frustrated  frustrated

Be careful with classical pictures and intuition:

A DN

classical Heisenberg Quantum S=1/2 Heisenberg




Other types of competing interactons: J-Q models

The Heisenberg interaction is equivalent to a singlet-projector
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- we can construct models with products of singlet projectors
- no frustration in the conventional sense (QMC can be used)
- correlated singlet projection reduces the antiferromagnetic order
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W JJ\ Jl\ JJ\ J’\ O + all translations
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@ \i, JICJ (n and rotations
The J-Q model with two projectors:
(27) (2 kl)

* Hosts Néel-VBS quantum phase transition, appears to be continuous
* Not a realistic microscopic model for materials

- “Designer Hamiltonian” for VBS physics and Néel-VBS transition

- Can mimic some aspects of conventional frustrated interactions
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What’s so special about quantum-criticality?

- large T>0 quantum-critical “fan” where T is the only relevant energy scale
- physical quantities show power laws governed by the T=0 critical point

+ 2D Neel t
T high-T', lattice effects s -pararr]agne
“cross-over diagram”
[Chakravarty, Halperin,
Ps Nelson, PRB 1988]
QC A
QC: Universal quantum
RC Qb critical scaling regime
T'= 0 Néel order non-magnetic g

—

Changing T is changing the imaginary-time size L::
- Finite-size scaling at gc leads to power laws

E~T7 (correlation length)
e - (specific heat)

x(0) ~T (uniform magnetic susceptibility)

QMC needed to study large lattices; ground states, transitions, T>0,...
- to test predictions, discover new physics,...




Deconfined quantum criticality

Senthil, Vishwanath, Balents, Sachdev, Fisher (Science 2004)
(+ many previous works; Read & Sachdev, Sachdev & Murthy, Motrunich & Vishwanath....)

Continuous AF - VBS transition at T=0
- would be violation of Landau rule

- first-order would normally be expected
- role of topological defects

N

order parameter

Numerical (QMC) tests using J-Q models
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The “J-Q” model with two projectors (J-Q2 model)
H-——JY e @) ¢ .C,
i (37 k)
- Neel-VBS transition appears to be continuous

* Possibly very weakly first-order -
- Ongoing studies (will be discussed), also J-Q3 and ‘larger’ models

e Unusual scaling properties, spinons [Shao, Guo, Sandvik (Science 2016)]




Introduction to quantum Monte Carlo
simulations of spin models

arXiv:1101.3281 [pdf, ps, other] hep-lat Ef

Computational Studies of Quantum Spin Systems

arXiv:1909.10591 [pdf, other]

Stochastic Series Expansion Methods



Path integrals on the lattice, imaginary time

We want to compute a thermal expectation value

(A) = Te{Ae™0H)

where 3=1/T (and possibly T—0). How to deal with the exponential operator?

“Time slicing” of the partition function
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Choose a basis and insert complete sets of states;
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Use apprOX|mat|on for imaginary time evolution operator. Simplest way
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Leads to error < A,. Limit A, — 0 can be taken

Trotter decomposition: error o A%




Trotter decomposition e2(4+5) = 2428 L O(A2[A, B))
Example: Heisenberg chain
H=He+Ho, He= ) Si Siy1, Ho= ) Si-Sin

even 1 odd %
All terms within He and Ho commute —

e_AT(He+HO) = He_ATSi'Si+1 He_ATSi'Si—}—l ot O(A?_)
iz 90

Use in Z, insert complete sets of states between all exponentials
- graphical representation of terms; world lines

B
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Looks like error should be LA ~ BAr
- actually ~BA< because trace is taken
- procedure is equivalent to using higher-order Trotter dcomposition

e—AT(He+HO) = e—ATHe/Qe—ATHOe—ATHe/Q I O(Ai)




Example of linear approximation and A-—0: hard-core bosons

Fi—i—— 5 = S el =l =
(2,7) (2,5)
Equivalent to S=1/2 XY model
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World line representation of
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Expectation values
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We want to write this in a form suitable for MC importance sampling
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(Al = (4) = (A({a}))w
Z{a} W({a})
W({{a}) = weight

For any quantity diagonal in the A({a}) = estimator

occupation numbers (spin z):

A({a}) = Alay,) or A({al}) = Z Alay)

Kinetic energy (here full energy). Multlply and divide by W,

1
I A e o ({a}) <&1‘Kij‘a0> = {O _} 0
<C¥1|1 == ATK‘O&O> 7 AT 1

Average over all slices = count number of kinetic jumps

iy = 8,y = L 4a) o N () o< BN

There should be of the order BN “jumps” (regardless of approximation used)




Including interactions

For any diagonal interaction V (Trotter, or split-operator, approximation)
e o o 00 oo Ja) o e e be o)

Product over all times slices —
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The continuous time limit

Limit A:—0: number of kinetic jumps remains finite, store events only
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local updates (problem when A:—0?)

- consider probability of inserting/removing
events within a time window

* non-zero integrated probabilitis for insertion
at all times, choose random time.

Special methods (loop
and worm updates)
developed for efficient
sampling of the paths
In the continuum



