SSE formalism and program implementation for S=1/2 Heisenberg models (and a bit about TFIMs)

arXiv:1101.3281 [pdf, ps, other] cond-mat.str-el hep-lat doi

Computational Studies of Quantum Spin Systems

arXiv:1909.10591 [pdf, other] cond-mat.str-el

Stochastic Series Expansion Methods

Series expansion representation

Start from the **Taylor expansion** (no approximation)

$$
Z = \text{Tr}\{e^{-\beta H}\} = \sum_{n=0}^{\infty} \frac{(-\beta)^n}{n!} \sum_{\alpha_0} \langle \alpha_0 | H^n | \alpha_0 \rangle
$$

I**ndex sequence** (string) referring to terms of H

$$
H = \sum_{i=1}^{m} H_i
$$

$$
S_n = (a_1, a_2, \dots, a_n)
$$

$$
a_i \in \{1, \dots, m\}
$$

Break up Hⁿ into strings:

$$
Z=\sum_{n=0}^\infty\frac{(-\beta)^n}{n!}\sum_{\alpha_0}\sum_{S_n}\langle\alpha_0|H_{a_n}\cdots H_{a_2}H_{a_1}|\alpha_0\rangle
$$

We should have (always possible): $H_i|\alpha_j\rangle \propto |\alpha_k\rangle$ \log , $\pi_i|\alpha_j\rangle \propto |\alpha_k\rangle$ sible): $H_i|\alpha_i\rangle \propto |\alpha_k\rangle$ α is the operator string S

7 no branching during propagation with operator string corresponds to a "fill-in" unit or in the state in the stat

and *in the stored as are string* and the store as *are string* as *are string* as *are string* as *are stri* and the operator string *SL* is encoded using even and odd integers for diagonal and off-diagonal operators, respectively, according to *s*(*p*) = 2*b*(*p*) +*a*(*p*)−1.

- some strings not allowed (illegal operations) gal operations) β^{n}

For hard-core bosons the (allowed) path weight is: $W(S_n, \alpha_0) = \frac{\beta^n}{n!}$ *n*! wed) path weight is: $W(\mathcal{S}_n, \alpha_0) = \frac{1}{n!}$ swed) path weight is: $W(S_n, \alpha_0) = \frac{P}{I_n}$ $\sum_{i=1}^{\infty}$ spins of the (n, ∞) and $n!$

^Sⁿ = (*a*1*, a*2*,...,an*)*, aⁱ* ² *{*1*,...,m} ^H* ⁼ ^X 4 3 $\bullet\hspace{0.2cm} \bullet\hspace{0.2cm}\circ\hspace{0.2cm}\bullet\hspace{0.2cm}\circ\hspace{0.2cm}\bullet\hspace{0.2cm}\circ\hspace{0.2cm}\circ\hspace{0.2cm}\circ$ 2 1

the operator string. We will later introduce a different compact storage involving some

σ*(i) =* -1 +1 -1 -1 +1 -1 +1 +1

σ*(i) =* -1 +1 -1 -1 +1 -1 +1 +1

1234 | 1235 | 1236 | 1237 | 1238 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239

p

i =

respectively, according to *s*(*p*) = 2*b*(*p*) +*a*(*p*)−1.

spins of the propagated states as well.

We can make this look more similar to a path integral by introducing partially propagated states: $|\alpha_p\rangle = H_{a_p}\cdots H_{a_2}H_{a_1}|\alpha_0\rangle$ Same looking paths, different weights - we can relate to continuous time (arXiv:1909.10591) Relabel terms of n-sum: replace n+1 by n $\langle H \rangle = -\frac{1}{Z}$ *Z* $\sqrt{}$ ∞ *n*=1 $(-\beta)^n$ *n*! *n* β \sum α_0 $\langle \alpha_0 | H^n | \alpha_0 \rangle$ because that term by n we can extend the sum to include n=0, $\langle \sigma^n | \alpha_0 \rangle$ because that term vanishes respectively, according to *s*(*p*) = 2*b*(*p*) +*a*(*p*)−1. Therefore the energy is: $E = -\langle n \rangle/\beta$ *Can also derive specific heat:* $C = \langle n^2 \rangle - \langle n \rangle^2 - \langle n \rangle$ Follows: $\langle n \rangle \propto \beta N$, $\sigma_n \propto \sqrt{\beta N}$ $\langle H \rangle =$ 1 *Z* \blacktriangledown ∞ *n*=0 $(-\beta)^n$ *n*! $\sqrt{ }$ α_0 **Energy:** $\langle H \rangle = \frac{1}{Z} \sum \frac{(-\rho)}{n!} \sum \langle \alpha_0 | H^n H | \alpha_0 \rangle$ $|\alpha_n\rangle = |\alpha_0\rangle$ $Z = \sum$ ∞ *n*=0 $(-\beta)^n$ *n*! X X α_0 S_n $\langle \alpha_0|H_{\alpha_n}|\alpha_{n-1}\rangle \langle \alpha_{n-1}|\cdots|\alpha_1\rangle \langle \alpha_1|H_{a_1}|\alpha_0\rangle$ *f* σ*(i)* $\frac{1}{\sqrt{1 + 1}}$ $\frac{1}{\sqrt{1 + 1}}$ 1234 | 1235 | 1236 | 1237 | 1238 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239
1240 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 corresponds to the α include β = α , $\vert H^n\vert\alpha_0\rangle$ because that term $\gamma - \langle n \rangle^2 - \langle n \rangle$ have a sign problem—a non-positive definite expansion—because of the factor (−1)*n*² 1234 The Contract of the Contr $sum to include n-0$ and the operator string *SL* is encoded using even and odd integers for diagonal and off-diagonal operators, respectively, according to *s*(*p*) = 2*b*(*p*) +*a*(*p*)−1. σ*(i) =* -1 +1 -1 -1 +1 -1 +1 +1 v_1 α_1 H_{α} α_2 **FIGURE 55.** An SSE configuration for an 8-spin chain, with all the propagated states shown. Open and *i =* 12345678 \mathbf{r} $\left(\right)$ 6 4 3 2 1 corresponds to a "fill-in" unit of the sunnel of the state \mathbf{S} sunnel to the state \mathbf{S} and \mathbf{S} β will later introduce a different compact string. We will alter introduce a different compact storage involving some spins of the propagated states as well. $\mathcal{F} = \mathcal{F}_i$ is a sign problem problem in the \mathcal{F}_i sign problem in the s have a sign problem—a non-positive definite expansion—because of the factor (−1)*n*² in (258). Actually, all the terms are positive for a bipartite lattice. This is because and α

> order to satisfy the "time" periodicity |^α(*L*)⟩ = |^α(0)⟩. We already discussed this in the context of the world line method, where the off-diagonal matrix elements in (244) are

order to satisfy the "time" periodicity |^α(*L*)⟩ = |^α(0)⟩. We already discussed this in the

even number *n*² of off-diagonal operators are required in every allowed configuration, in

in (258). Actually, all the terms are positive for a bipartite lattice. This is because an

Fixed string-length scheme

- **•** n fluctuating → varying size of the sampled configurations
- the expansion can be truncated at some n_{max}=L (exponentially small error if large enough)
- cutt-off at n=L, fill in operator string with unit operators **H₀=I**

$$
n=10 \quad H_4 \boxed{H_7 \boxed{H_1 \boxed{H_6 \boxed{H_2 \boxed{H_1 \boxed{H_8 \boxed{H_3 \boxed{H_3 \boxed{H_5}}}}}}}} \implies
$$

 H_1 H_6 I H_2 H_1 H_8 H_3 H_3 H_7 H_5 $L=14$

- conisider all possible locations in the sequence - overcounting of original strings, correct by

$$
Z = \sum_{\alpha_0} \sum_{S_L} \frac{(-\beta)^n (L-n)!}{L!} \langle \alpha_0 | H_{a_m} \cdots H_{a_2} H_{a_1} | \alpha_0 \rangle
$$

 (L)

n

 \setminus ⁻¹

 $=\frac{n!(L-n)!}{L!}$

L!

Here n is the number of H_i , i>0 instances in the sequence of L ops - the summation over n is now implicit

L can be chosen automatically by the simulation (shown later)

Stochastic Series expansion (SSE): S=1/2 Heisenberg model

Write H as a bond sum for arbitrary lattice

$$
H = J \sum_{b=1}^{N_b} \mathbf{S}_{i(b)} \cdot \mathbf{S}_{j(b)},
$$

Diagonal (1) and off-diagonal (2) bond operators

$$
H_{1,b} = \frac{1}{4} - S_{i(b)}^z S_{j(b)}^z,
$$

\n
$$
H_{2,b} = \frac{1}{2} (S_{i(b)}^+ S_{j(b)}^- + S_{i(b)}^- S_{j(b)}^+).
$$

\n
$$
H = -J \sum_{b=1}^{N_b} (H_{1,b} - H_{2,b}) + \frac{J N_b}{4}
$$

Four non-zero matrix elements

$$
\langle \uparrow_{i(b)} \downarrow_{j(b)} |H_{1,b}| \uparrow_{i(b)} \downarrow_{j(b)} \rangle = \frac{1}{2} \qquad \langle \downarrow_{i(b)} \uparrow_{j(b)} |H_{2,b}| \uparrow_{i(b)} \downarrow_{j(b)} \rangle = \frac{1}{2}
$$

$$
\langle \downarrow_{i(b)} \uparrow_{j(b)} |H_{1,b}| \downarrow_{i(b)} \uparrow_{j(b)} \rangle = \frac{1}{2} \qquad \langle \uparrow_{i(b)} \downarrow_{j(b)} |H_{2,b}| \downarrow_{i(b)} \uparrow_{j(b)} \rangle = \frac{1}{2}
$$

Partition function

$$
Z = \sum_{\alpha} \sum_{n=0}^{\infty} (-1)^{n_2} \frac{\beta^n}{n!} \sum_{S_n} \left\langle \alpha \left| \prod_{p=0}^{n-1} H_{a(p),b(p)} \right| \alpha \right\rangle
$$

 n_2 = number of a(i)=2 (off-diagonal operators) in the sequence

Index sequence: $S_n = [a(0), b(0)], [a(1), b(1)], \ldots, [a(n-1), b(n-1)]$

2D square lattice bond and site labels

SSE effectively provides a discrete representation of the time continuum! • computational advantage; only integer operations in sampling

Monte Carlo sampling scheme

$$
P_{\text{accept}}([0,0] \to [1,b]) = \min\left[\frac{\beta N_b}{2(L-n)}, 1\right]
$$

$$
P_{\text{accept}}([1,b] \to [0,0]) = \min\left[\frac{2(L-n+1)}{\beta N_b}, 1\right]
$$

Pseudocode: Sweep of diagonal updates

do
$$
p = 0
$$
 to $L - 1$
\nif $(s(p) = 0)$ then
\n $b = \text{random}[1, ..., N_b]$
\nif $\sigma(i(b)) = \sigma(j(b))$ cycle
\nif $(\text{random}[0 - 1] < P_{\text{insert}}(n))$ then $s(p) = 2b$; $n = n + 1$ endif
\nelseif $(\text{mod}[s(p), 2] = 0)$ then
\nif $(\text{random}[0 - 1] < P_{\text{remove}}(n))$ then $s(p) = 0$; $n = n - 1$ endif
\nelse
\n $b = s(p)/2$; $\sigma(i(b)) = -\sigma(i(b))$; $\sigma(j(b)) = -\sigma(j(b))$
\nendif
\nendo

Code explanation:

- **•** To insert operator, bond b generated at random among 1,...,Nb
	- can be done only if connected spins i(b),j(b) are anti-parallel
	- if so, do it with probability $P_{insert}(n)$
- **•** Existing diagonal operator can always be removed
	- do it with probability P_{remove}(n)
- **•** If off-diagonal operator, advance the state
	- extract bond b, flip spins at i(b),j(b)

O ff-diagonal updates

Local update

Change the type of two operators

- **•** constraints
- **•** inefficient
- **•** cannot change winding numbers

Operator-loop update

- **•** Many spins and operators can be changed simultaneously
- **•** can change winding numbers