
Cluster algorithm for the Ising model
Define bond index corresponding to pair of interacting spins

Write the energy of the Ising ferromagnet as
Number of bonds Nb = dN for a d-dimensional cubic lattice

Write the partition function as

Define bond functions with arguments 0,1 (bond variable):

The loop update is an example of a cluster algorithm. Detour:



Introduce bond variables

Partition function can be written as sum over spins and bonds

The functions Fb depend on the spins:

allowed only between parallel spins

If parallel spins on bond b, probabilities for the bond variable

If anti-parallel spins on bond b

Probabilities: For everything else fixed, probability for a given b



For a fixed bond configuration, spins forming clusters
(spins connected by �filled� bonds) can be flipped and then
give a configuration (term) with the same weight in Z (Fb=1
for all bonds between clusters, Fb unchanged inside cluster).

Swendsen-Wang algorithm
• Start from spin configuration
• Generate bond configuration
• Identify clusters of spins connected by bonds
• Flip each cluster with probability 1/2
• Generate new bonds with the current spins, etc

Spins not connected to any filled bonds are single-spin clusters

(unchanged after flip)



SSE: Linked vertex storage 
for loop update
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The “legs” of a  vertex represents 

the spin states before (below) and 

after (above) an operator has acted

X( ) = vertex list

• operator at p→X(v)

   v=4p+l, l=0,1,2,3

• links to next and

   previous leg

Spin states between operations are redundant; represented by links

• network of linked vertices will be used for loop updates of vertices/operators



do v0 = 0 to 4L� 1 step 2
if (X(v0) < 0) cycle
v = v0
if (random[0� 1] < 1

2 ) then
traverse the loop; for all v in loop, set X(v) = �1

else
traverse the loop; for all v in loop, set X(v) = �2
flip the operators in the loop

endif
enddo

 constructing all loops, flip probability 1/2

 construct and flip a loop

v = v0
do

X(v) = �2
p = v/4; s(p) = flipbit(s(p), 0)
v� = flipbit(v, 0)
v = X(v�); X(v�) = �2
if (v = v0) exit

enddo

Pseudocode: Sweep of loop updates

• by flipping bit 0 of s(p), the operator 
changes from diagonal to off-
diagonal, or vice versa

• moving on the vertex to the adjacent 
spin is also done with a bit flip  

• visited vertices 
are no longer 
needed and 
we set them to 
a negative 
value -1 or -2, 
to indicate that 
the loop has 
been visited 
(-1) or visited 
and flipped (-2)

• p is the location of the operator in 
the original length-L list of 
operatotors 



We also have to modify the stored spin state after the loop update 
• we can use the information in Vfirst() and X() to determine spins to be flipped

• spins with no operators, Vfirst(i)=−1, flipped with probability 1/2

do i = 1 to N
v = Vfirst(i)
if (v = �1) then

if (random[0-1]< 1/2) �(i) = ��(i)
else

if (X(v) = �2) �(i) = ��(i)
endif

enddo

v=Vfirst(i) is the location of the first vertex leg on site i

• flip the spin if X(v)=−2

• (do not flip it if X(v)=−1)

• no operation on i if vfirst(i)=−1; then it is flipped with probability 1/2



Vfirst(:) = �1; Vlast(:) = �1
do p = 0 to L� 1

if (s(p) = 0) cycle
v0 = 4p; b = s(p)/2; s1 = i(b); s2 = j(b)
v1 = Vlast(s1); v2 = Vlast(s2)
if (v1 ⇥= �1) then X(v1) = v0; X(v0) = v1 else Vfirst(s1) = v0 endif
if (v2 ⇥= �1) then X(v2) = v0; X(v0) = v2 else Vfirst(s2) = v0 + 1 endif
Vlast(s1) = v0 + 2; Vlast(s2) = v0 + 3

enddo

Constructing the linked vertex list

creating the last links across the “time” boundary
do i = 1 to N

f = Vfirst(i)
if (f ⇥= �1) then l = Vlast(i); X(f) = l; X(l) = f endif

enddo

Use arrays to keep track of the first and 

last (previous) vertex leg on a given spin

• Vfirst(i) = location v of first leg on site i

• Vlast(i) = location v of last (currently) leg

• these are used to create the links

• initialize all elements to −1

Traverse operator list s(p), p=0,...,L−1

• vertex legs v=4p,4p+1,4p+2,4p+3



Determination of the cut-off L 
• adjust during equilibration

• start with arbitrary (small) n

Keep track of number of operators n

• increase L if n is close to current L

• e.g., L=n+n/3

Example 

• 16×16 system, β=16 ⇒

•  evolution of L

•  n distribution after 
equilibration


•  truncation is no 
approximation



Does it work? 
Compare with exact results 
• 4×4 exact diagonalization

• Bethe Ansatz; long chains

⇐ Energy for long 1D chains

• SSE results for 106 sweeps

• Bethe Ansatz ground state E/N

• SSE can achieve the ground

   state limit (T→0) 

Susceptibility of the 4×4 lattice ⇒

• SSE results from 1010 sweeps

• improved estimator gives smaller

   error bars at high T (where the

   number of loops is larger)



Improved Estimators
SSE with loop updates is an example of a cluster algorithms

- we can utilize improved estimators for many observables

Classical example: Swendsen-Wang Ising cluster algorithm 

For a fixed bond configuration, spins forming clusters
(spins connected by �filled� bonds) can be flipped and then
give a configuration (term) with the same weight in Z (Fb=1
for all bonds between clusters, Fb unchanged inside cluster).

Swendsen-Wang algorithm
• Start from spin configuration
• Generate bond configuration
• Identify clusters of spins connected by bonds
• Flip each cluster with probability 1/2
• Generate new bonds with the current spins, etc

Spins not connected to any filled bonds are single-spin clusters

(unchanged after flip)

Write magnetization as sum over clusters of size nC, sign sC:

M =
NX

i=1

�i =
NclusX

C=1

X

i2C

�i =
NclusX

C=1

sCnC hM2i =
NclusX

C=1

NclusX

C0=1

hnCnC0sCsC0i

hM2i =
NclusX

C=1

hn2
Ci

All cluster orientations (signs) have same weight

- average over all 2Nclus orientations →

This is the improved estimator of <M2>

- only depends on cluster structure



Improved estimators in SSE
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FIGURE63. Example of clusters formed by space-time loops passing through a propagated state |α(p)⟩
(for arbitrary fixed p). Here there are six such clusters, labeled 1, . . . ,6. Open and solid circles correspond
to ↑ and ↓ spins, respectively, in |α(p)⟩. When a loop is flipped, all spins in the corresponding cluster are
also flipped, as indicated here with two different configurations corresponding to the two states of cluster
1 (the sites enclosed by larger circles). Note that the spins within each cluster are always in one of the two
staggered configurations.

5.2.5. Improved estimators

The operator-loop update in the SSE method (as well as loop updates more broadly
[31, 191]) is an example of a cluster update. Such non-local updates were first developed
for classical Monte Carlo simulations of the Ising model [118]. One aspect of cluster
methods is that it is possible to take averages of estimators for physical quantities over
all orientations of the clusters, because the configuration weight does not change upon
flipping a cluster. This is immediately clear in SSE simulations of S = 1/2 Heisenberg
models, because the weight (264) only depends on the number of operators n in the
sequence, which does not change when a loop is flipped. If the number of clusters (here
operator-loops) is m, then the total number of equal-weight configurations is 2m, and
the average over all of these configurations can provide a much less noisy estimator
than one depending on just a single configuration. The crucial point here is that, for
many important quantities, this average can be computed analytically, and the resulting
improved estimator is of a simple form that can be evaluated rapidly in simulations. Here
we only discuss the rather simple cases of the the static (equal-time) structure factor and
the uniform magnetic susceptibility. For improved estimators for some other quantities,
see the review article by Evertz [31].
Consider a propagated state |α(p)⟩, e.g., the stored |α(0)⟩. In the linked vertex

representation of the SSE configuration, illustrated in Fig. 61, there is a loop passing
through each of the spins in this state (with spins without operators acting on them also
considered as individual loops). The same loop can go through many spins in |α(0)⟩, and
all spins belonging to the same loop form a cluster, in the sense that if the loop is flipped
all the spins in the clusters are flipped simultaneously. Note that the loops are objects
in space-time, while the clusters discussed here are defined on a cut at fixed time (here
propagation index p). A cluster can consist of several parts that appear disconnected in
space, since such pieces can be connected in the larger space-time volume where the
loops exists. An example of clusters on a 2D lattice is shown in Fig. 63
Since we are dealing with a bipartite lattice, and because the loop structure is such

that the spin on a vertical loop segment (referring to pictures such as Fig. 61) changes
each time one changes direction when moving along a loop, the spins within a cluster
formed at a given state |α(p)⟩ always have a staggered structure. The staggered magne-
tization ms( j) of a cluster labeled j, with j = 1, . . . ,C, where C is the total number of
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FIGURE 61. A linked-vertex SSE configuration with one loop traced out and shown in both of its
“orientations”, along with the corresponding operator-index sequences. All spins covered by the loop are
flipped, and operators are changed, diagonal↔ off-diagonal, each time the loop passes by (with no net
change of an operator visited twice). Every vertex leg (spin) belongs uniquely to one loop, and spins not
acted upon by any operator (here the one at i= 1) can also be regarded as forming their own loops.

accomplishes all these things automatically. This class of updates was initially intro-
duced as a generalization of a cluster algorithm for the Ising model to a model where the
flipped clusters take the form of loops; the classical six-vertex model [191]. The effec-
tive world line system for the S = 1/2 Heisenberg model constructed using the discrete
Suzuki-Trotter decomposition is exactly equivalent to an anisotropic six-vertex model,
and the loop update for it was therefore at the same time a generalization of the clas-
sical cluster update to a quantum mechanical system. These ideas were subsequently
applied also to continuous-time world lines [179] as well as to the off-diagonal updates
in the SSE method [190]. The improvements in performance relative to local updates
are enormous (as in the classical case, leading to a much reduced dynamic exponent)
and brought simulations of quantum spin systems to an entirely new level. Like classical
cluster algorithms, the loop updates are in practice limited to certain classes of models,
of which the isotropic Heisenberg systems is one. Generalizations of the loop concept to
worms [32] and directed loops [33] (both of which can be regarded as loops that are al-
lowed to self-intersect during their construction, unlike the original loop updates where
no self-intersection is allowed) are applicable to a wider range of systems.
For the S = 1/2 model considered here, there is no reason to even discuss local off-

diagonal updates in any greater detail, and we will just focus on how to implement the
much more powerful loop updates. In the case of the SSE method, the operator string is
again the main focus, and the loop update corresponds to constructing a loop of operators
(vertices) connected by the links in the linked-list representation.

Operator-loop updates. An example of an operator-loop and how it is flipped is
shown in Fig. 61. Here “flipping” refers to the spins along the loop (explicitly those on
the vertex legs and implicitly in all propagated states covered by the loop) as well as
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Consider a given slice (propagated state) 

of an SSE configuration

• label the sites according to the loops   

passing through → clusters

In given loop

All spins on given 

sub-lattice A or B are 
same, different on A, B

Staggered magnetization on a cluster is 1/2 of the size of the cluster

- changes sign when loop flipped

- similar to magnetization in SW algorithm

hM2
z,staggi =

1

4

NclusX

C=1

hn2
Ci

The uniform magnetization requires the staggered phases

clusters, is then ms( j) = ±n j, where n j is the number of spins in cluster j. For a given
configuration, the total staggered magnetization Ms = ∑Cj=1ms( j). When averaging the
square of this sum over all the different realizations of cluster orientations, the cross
terms ⟨ms(i)ms( j)⟩= 0 (for i ̸= j). One is then left with just the i= j contributions, and
the staggered structure factor is simply given by

S(π) =
1
4N

〈

C

∑
j=1

n2j

〉

. (282)

Structure factors at other wave-vectors q are only marginally more complicated, de-
manding in place of the cluster sizes n j a summation over each cluster of the phases
φrexp(iq · r), where r refers to sites on a given cluster and φr = ±1 is the staggered
phase factor, which takes care of the staggered spin structure within the clusters (and the
denominator 4 corrects for the fact that the spin values are ±1/2). One can here also use
the fact that the true structure factor must be real-valued for any q.
In principle, equal-time correlation functions such as the structure factor can also

be averaged (fully or partially) over the propagation index p, as in Eq. (267). This,
however, requires more work for the improved estimator than in code {33} for the simple
estimator, because it takes some book keeping during the loop update to construct the
clusters for several fixed p, and doing so may not always pay off. Without this averaging,
however, a simple p-averaged estimator, such as the one implemented in code {33}, may
actually give better results at low-temperatures, where the gain due to averaging can be
very significant. The case q= 0 is special in this regard, because this corresponds to the
total squared magnetization, which is a conserved quantity (i.e., independent on the SSE
propagation index p), and no further averaging over p can then be done to improve the
statistics further. The optimal estimator for the uniform susceptibility (273) is therefore

χ =
β
4N

〈

C

∑
j=1

(

n j

∑
i=1

φi

)2〉

. (283)

Susceptibilities at other wave-vectors involve the full space-time loop structure, not just
the clusters (cut through the loops) formed at a fixed state. For example, the staggered
susceptibility is given by the sum of the squares of all the loop sizes [31].

5.2.6. Program verification

QMC programs should always be verified by comparing results for small systems
with exact diagonalization data. When correctly implemented, the SSE method should
be exact, which means that the deviation of a computed quantity from its true value
should be purely statistical, due to the finite number of sampled configurations. We
have discussed how to quantify the statistical fluctuations in terms of “error bars” in
Sec. 3.2. Deviations beyond the error bars are due either to programming errors of flaws
in the random number generator used. While most programming errors would lead to
obviously wrong results, there are also possible subtle errors that may only lead to
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+1 i on A site

�1 i on B site



off-diagonal update !9b". In the diagonal update the Ising
terms # i , j $ and the constants # i ,i$ are sampled. The con-
stants are used in the off-diagonal update as a means of
achieving easy insertions and removals of two spin-flipping
operators # i ,0$ . With the value h chosen for the constant in
Eq. !2c", the operator replacements do not change the weight
of the SSE configuration. However, the off-diagonal update
also leads to spin flips in the propagated states between p1
and p2 ; % i

z(p1), . . . ,% i
z(p2!1)→!% i

z(p1), . . . ,!% i
z(p2

!1). #p1"p2 also has to be considered, leading to flipped
% i
z(p1), . . . ,% i

z(L!1)% i
z(0), . . . ,% i

z(p2!1)], which is al-
lowed if !and only if" no Ising operators acting on site i are
present in SL between positions p1 and p2. Note that this
constraint is completely local, regardless of the range of the
interaction, and that the update requires no knowledge of the
spin state. This is the reason for the advantage of this simu-

lation scheme over world-line methods #19,7$, where calcu-
lating the acceptance probability for every update requires a
summation over all the spins interacting with those flipped.
Here an allowed off-diagonal update !9b" leaves the weight
unchanged and can be carried out with probability 1.
If h&0, the above updates of the operator sequence suf-

fice for achieving ergodicity. If there are no Ising operators
acting on a site i, % i

z(0), . . . ,% i
z(L!1) can also be flipped

without changes in SL . This update in principle makes simu-
lations using the present scheme possible also for h#0, but
in practice unconstrained spins occur frequently only at high
temperatures, when 'n( is small. Other types of ‘‘classical’’
spin flips—flips of clusters—are also possible, and will be
discussed in Sec. II C.
The simulation can be started with a random state !)(0)(

and a sequence SL containing only #0,0$ operators. The trun-
cation L can be chosen arbitrarily !small"; it is adjusted dur-
ing the equilibration part of the simulation, e.g., by requiring
L"(4/3)n after each update. This ensures than n never
reaches L during the remainder of the simulation, and hence
that there will be no detectable systematic errors arising from
the truncation of the expansion #10$. In the beginning of an
updating cycle, the operator sequence SL and the state
!)(0)( are stored.
The diagonal update !9a" is attempted successively for all

p#1, . . . ,L . In the course of this process, the spin state is
propagated by flipping spins % i

z as off-diagonal operators
# i ,0$ are encountered in SL , so that the states !)(p)( are
generated successively. For an # i , j $→#0,0$ update, i.e., re-
moving a Hamiltonian operator, there are no constraints and
the update should always be accepted with some nonzero
probability. In the case of #0,0$→# i , j $ , i.e., inserting an op-
erator from the Hamiltonian, there are constraints, and the
update may not be allowed for all i , j . However, initially the
indices i , j are left undetermined and it is assumed that any
# i , j $ would be allowed. Under this assumption, the accep-
tance probabilities for the diagonal update are given by

P!#0,0$→# i , j $ "#

*"Nh$2+
i j

!Ji j! #
L!n$*"Nh$2+

i j
!Ji j! # , !10a"

P!#0,0$→# i , j $ "#
L!n$1

L!n$1$*"Nh$2+
i j

!Ji j! # ,
!10b"

where + i j does not include i# j and P"1 should be inter-
preted as probability 1, as usual. These heat-bath probabili-
ties are simply obtained from the ratio of the new and old
prefactors in Eq. !7" when n→n%1:

*%1 #L!!n%1 "$!
!L!n "! , !11"

and the ratio between the matrix element 1 of the #0,0$ op-
erator and the sum Nh$2+ i j!Ji j! of the nonzero matrix el-
ements of all # i , j $ operators. Staying with the assumption
that any # i , j $ is allowed in the update #0,0$→# i , j $ , the rela-

FIG. 1. An SSE configuration for an eight-site one-dimensional
system. Here the truncation L#49, and the expansion order of the
term !i.e., the number of Hamiltonian operators present" n#40. The
solid and open circles represent the spins % i

z(p)#%1, with the
propagation index p#0, . . . ,L corresponding to the different eight-
spin rows. The thick and thin short horizontal bars represent spin-
flip operators Hi ,0 and constants Hi ,i , respectively. The longer lines
represent Ising operators Hi , j (i& j) acting on the spins at the line
ends.
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A. Configuration space

Consider the general Hamiltonian for the Ising model in a
transverse field of strength h,

H!!
i , j

J i j" i
z" j

z"h!
i

" i
x , #1$

where !i is a Pauli spin operator (" i
z!#1) and Ji j is the

strength of the interaction between spins i and j, which can
be random or uniform and of any sign. The dimensionality is
arbitrary. Define the operators

H0,0!1, #2a$

Hi ,0!h#" i
$$" i

"$, i%0, #2b$

Hi ,i!h , i%0, #2c$

Hi , j!!Ji j!"Ji j" i
z" j

z , i , j%0, i% j . #2d$

Up to a constant, the Hamiltonian can be written as

H!"!
i!1

N

!
j!0

N

Hi , j . #3$

The constants Hi ,i are introduced for purposes that will be-
come clear below. Note that H0,0 is not included as a term in
the Hamiltonian #3$ but will be important in the simulation
scheme.
In the SSE approach &10' to finite-temperature quantum

Monte Carlo, the partition function Z!Tr(exp(")H)* is
written as a power-series expansion, with the trace expressed
as a sum over diagonal matrix elements in a suitably chosen
basis. Using Eq. #3$ then gives

Z!!
+

!
n!0

,

!
Sn

)n

n! -+!.
l!1

n

Hi(l), j(l)!+/, #4$

where Sn denotes a sequence of n operator-index pairs #here-
after referred to as operators$:

Sn!& i#1 $, j#1 $' , . . . ,& i#n $, j#n $' , #5$

with i(l)!(1, . . . ,N* and j(l)!(0, . . . ,N*. The standard
basis (!+/*!(!"1

z , . . . ,"N
z /* is used.

Because of the constants added to Hi , j in Eq. #2d$, the
eigenvalues of these operators are 2!Ji j! and 0. All nonzero
terms in Eq. #4$ are therefore positive and can be used as
relative probabilities in an importance sampling scheme. A
term is specified by a state !+/ and an operator sequence Sn .
One can show that the total internal energy #including the
constants added to H) is given by &10,20' E!"-n//) .
Hence, the size of the operator sequence to be stored in com-
puter memory scales as )NIN(J), where

IN#J $!
1
N !

i!1

N

!
j!1

N

!Ji j!, #6$

which converges or grows much slower than N for most
cases of interest.
In order to construct an efficient sampling scheme, it is

useful to cut expansion #4$ at some power n!L , sufficiently
high for the remaining truncation error to be exponentially
small and completely negligible &L clearly has to be
0)NIN(J)]. One can then obtain an expansion for which
the length of the operator sequence is constant, by consider-
ing random insertions of L"n unit operators H0,0 in the
product in Eq. #4$. Adjusting for the (n

L) possible insertions
gives

Z!
1
L! !

+
!
SL

)n#L"n $!-+!.
l!1

L

Hi(l), j(l)!+/, #7$

where & i(l), j(l)'!&0,0' is now also an allowed operator in
the sequence SL , and n denotes the number of non-&0,0'
operators. Note again that H0,0 is not part of the Hamiltonian,
but is introduced only for the purpose of constructing a com-
putationally simpler updating scheme where the operator list
has a fixed length.
It is useful to define states !+(p)/!!"1

z (p), . . . ,"N
z (p)/

obtained by propagating !+/!!+(0)/ by the first p operators
in SL :

!+#p $/!r.
l!1

p

Hi(l), j(l)!+/, #8$

where r is a normalization factor. A nonvanishing matrix
element in Eq. #7$ then corresponds to the periodicity condi-
tion !+(L)/!!+(0)/, which requires that for each site i there
is an even number #or zero$ of spin-flipping operators & i ,0'
in SL . Definition #2d$ implies that the Ising operators & i , j '
may act only on states with " i

z!" j
z if Ji j&0 #ferromagnetic$,

or " i
z!"" j

z if Ji j%0 #antiferromagnetic$. There are no other
constraints.
An SSE configuration is illustrated in Fig. 1. The vertical

direction in this representation will be referred to as the SSE
propagation direction. It can be related to the imaginary-time
direction in standard path-integral representations &26'. Note
that this full configuration, including all the states !+(p)/
explicitly, does not have to be stored in the simulation. A
single state and the operator sequence suffice for reproducing
all the states, and such a representation is used in some
stages of the simulation. For some updates it is convenient to
generate other representations, as will be discussed below.

B. Local updates

The sampling of Eq. #7$ can be carried out using simple
operator substitutions of the types

&0,0'p↔& i , j 'p , i , j%0, #9a$

& i ,i'p1& i ,i'p2↔& i ,0'p1& i ,0'p2, i%0, #9b$

where the subscript p indicates the position (p!1, . . . ,L) of
the operator in the sequence SL . The power n is changed by
#1 in the diagonal update #9a$ and is unchanged in the
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Transverse-field Ising model

Arbitrary interactions (incl. random, long-range,…)

erators!. All possible vertices for the transverse Ising model
are shown in Fig. 3. Note that only those Ising vertices that
are compatible with the sign of the interaction between a
given pair of spins are allowed for those spins; again, this is
due to the choice of constant in the bond operator "2d!. In the
computer, the vertices are linked to each other by pointers, so
that from a given vertex leg one can reach the next or pre-
vious vertex that has a leg on the same site "i.e., there are
links that replace the segments of vertical lines of same spins
in Fig. 1!. A detailed discussion of the practical implementa-
tion of a linked vertex list has been given in Ref. #24$.
To construct and flip a quantum cluster, one of the legs of

one of the n vertices is picked at random, and the corre-
sponding spin is flipped. Depending on the type of the ver-
tex, different actions are taken, examples of which are given
in Fig. 4. The arrow pointing into the vertex indicates the
entrance leg. In the case of an Ising vertex, all the four spins
are flipped and the cluster building process branches out
from all the legs, as indicated by the arrows pointing out
from the vertex. Using the pointers of the linked vertex list,
the arrows point to legs of other vertices; these become new
entrance legs which are put on a stack and subsequently pro-
cessed one by one. If the entrance leg is on a constant or
spin-flip vertex, only the entrance spin is flipped. The vertex
type then also changes, in terms of operators from Hi ,0 to
Hi ,i , and vice versa. In these cases there is no branching-out
and no new legs are put on the stack, i.e., this particular
branch of the cluster terminates. If a link points to a spin that
has already been flipped "i.e., two arrows point toward each
other!, that leg should not be used again as an entrance and is
hence not put on the stack. Therefore, each vertex leg can be
visited at most once "each spin can be flipped at most once!
and the cluster is completed when there are no more entrance
legs on the stack. The reason that the cluster can always be
flipped is again that the SSE weight is not affected; the ma-
trix element of the Ising bond operator is not affected when

both spins are flipped "in the absence of an external field in
the z direction, which would necessitate a modified ap-
proach!, and the matrix elements for the constant and spin-
flip operators are both equal to h.
The construction of a single cluster, which is flipped with

probability 1, is a quantum-mechanical analog of the classi-
cal Wolff algorithm #28$; in the absence of the transverse
field the clusters are identical to those of the Wolff algorithm.
Note, however, that there is a difference when constructing
more than one cluster: The number of operators in the SSE
operator list and their positions on the lattice do not change
in the quantum-cluster update. The clusters are therefore
completely deterministic once the operator list is given.
Hence, when constructing several clusters using the same
SSE operator list, it is quite likely that the same cluster is
constructed and flipped multiple times. This is clearly not
desirable. However, one can also construct all clusters, as in
the Swendsen-Wang scheme, and only flip them with prob-
ability 1/2. This is done by always starting a new cluster
from a vertex leg which has not yet been visited. Every ver-
tex leg belongs uniquely to one cluster, and clearly the num-
ber of operations required to complete this update then scales
as L, i.e., typically as %N .
A natural definition of a Monte Carlo step including the

quantum-cluster update is a full sweep of diagonal updates,
followed by the construction of the linked list of vertices, in
which all clusters are constructed and flipped with probabil-
ity 1/2. After that, the updated vertex list is mapped back into
a state !&(0)' and an operator sequence SL . Free spins, i.e.,
those that are not acted on by any operators, can again be
considered as single-spin clusters and should also be flipped
with probability 1/2. No local off-diagonal updates "9b! are
needed.
Since the quantum-cluster update explicitly includes the

quantum-mechanical features of the configurations "i.e., the
presence of spin-flip operators!, it can be expected to work
well also close to a quantum phase transition (Tc!0) driven
by varying h. There are no problems in principle in taking
the T→0 limit, although, as in all finite-T methods, very
large inverse temperatures % have to be used to converge
large lattices to the ground state "especially in the case of
randomized interactions #29$!.

III. ONE-DIMENSIONAL „1D… INVERSE-SQUARE
FERROMAGNET

As a nontrivial demonstration of the method, a ferromag-
netic chain with interactions decaying as 1/r2 is considered
next. The interaction is summed over all i , j in Eq. "1!, i.e.,
each pair is counted twice. Periodic boundary conditions are
used. Ji j includes both distances in the periodic system, i.e.,

Ji j!J ji!
J
2 " 1

!i" j !2
#

1

"N"!i" j !!2# , "13!

where J sets the overall energy scale.
The classical 1/r2 Ising chain has been the subject of nu-

merous studies #13–17$. The long-range interaction allows
for a finite-T phase transition even in one dimension. The

FIG. 3. All the possible four-leg and two-leg vertices. "a! Fer-
romagnetic Ising vertices, "b! antiferromagnetic Ising vertices, "c!
constant vertices, and "d! spin-flip vertices.

FIG. 4. Examples of vertex processes: "a! reversal of a ferro-
magnetic Ising vertex, "b! constant to spin flip, and "c! spin flip to
constant.
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A. Configuration space

Consider the general Hamiltonian for the Ising model in a
transverse field of strength h,

H!!
i , j

J i j" i
z" j

z"h!
i

" i
x , #1$

where !i is a Pauli spin operator (" i
z!#1) and Ji j is the

strength of the interaction between spins i and j, which can
be random or uniform and of any sign. The dimensionality is
arbitrary. Define the operators

H0,0!1, #2a$

Hi ,0!h#" i
$$" i

"$, i%0, #2b$

Hi ,i!h , i%0, #2c$

Hi , j!!Ji j!"Ji j" i
z" j

z , i , j%0, i% j . #2d$

Up to a constant, the Hamiltonian can be written as

H!"!
i!1

N

!
j!0

N

Hi , j . #3$

The constants Hi ,i are introduced for purposes that will be-
come clear below. Note that H0,0 is not included as a term in
the Hamiltonian #3$ but will be important in the simulation
scheme.
In the SSE approach &10' to finite-temperature quantum

Monte Carlo, the partition function Z!Tr(exp(")H)* is
written as a power-series expansion, with the trace expressed
as a sum over diagonal matrix elements in a suitably chosen
basis. Using Eq. #3$ then gives

Z!!
+

!
n!0

,

!
Sn

)n

n! -+!.
l!1

n

Hi(l), j(l)!+/, #4$

where Sn denotes a sequence of n operator-index pairs #here-
after referred to as operators$:

Sn!& i#1 $, j#1 $' , . . . ,& i#n $, j#n $' , #5$

with i(l)!(1, . . . ,N* and j(l)!(0, . . . ,N*. The standard
basis (!+/*!(!"1

z , . . . ,"N
z /* is used.

Because of the constants added to Hi , j in Eq. #2d$, the
eigenvalues of these operators are 2!Ji j! and 0. All nonzero
terms in Eq. #4$ are therefore positive and can be used as
relative probabilities in an importance sampling scheme. A
term is specified by a state !+/ and an operator sequence Sn .
One can show that the total internal energy #including the
constants added to H) is given by &10,20' E!"-n//) .
Hence, the size of the operator sequence to be stored in com-
puter memory scales as )NIN(J), where

IN#J $!
1
N !

i!1

N

!
j!1

N

!Ji j!, #6$

which converges or grows much slower than N for most
cases of interest.
In order to construct an efficient sampling scheme, it is

useful to cut expansion #4$ at some power n!L , sufficiently
high for the remaining truncation error to be exponentially
small and completely negligible &L clearly has to be
0)NIN(J)]. One can then obtain an expansion for which
the length of the operator sequence is constant, by consider-
ing random insertions of L"n unit operators H0,0 in the
product in Eq. #4$. Adjusting for the (n

L) possible insertions
gives

Z!
1
L! !

+
!
SL

)n#L"n $!-+!.
l!1

L

Hi(l), j(l)!+/, #7$

where & i(l), j(l)'!&0,0' is now also an allowed operator in
the sequence SL , and n denotes the number of non-&0,0'
operators. Note again that H0,0 is not part of the Hamiltonian,
but is introduced only for the purpose of constructing a com-
putationally simpler updating scheme where the operator list
has a fixed length.
It is useful to define states !+(p)/!!"1

z (p), . . . ,"N
z (p)/

obtained by propagating !+/!!+(0)/ by the first p operators
in SL :

!+#p $/!r.
l!1

p

Hi(l), j(l)!+/, #8$

where r is a normalization factor. A nonvanishing matrix
element in Eq. #7$ then corresponds to the periodicity condi-
tion !+(L)/!!+(0)/, which requires that for each site i there
is an even number #or zero$ of spin-flipping operators & i ,0'
in SL . Definition #2d$ implies that the Ising operators & i , j '
may act only on states with " i

z!" j
z if Ji j&0 #ferromagnetic$,

or " i
z!"" j

z if Ji j%0 #antiferromagnetic$. There are no other
constraints.
An SSE configuration is illustrated in Fig. 1. The vertical

direction in this representation will be referred to as the SSE
propagation direction. It can be related to the imaginary-time
direction in standard path-integral representations &26'. Note
that this full configuration, including all the states !+(p)/
explicitly, does not have to be stored in the simulation. A
single state and the operator sequence suffice for reproducing
all the states, and such a representation is used in some
stages of the simulation. For some updates it is convenient to
generate other representations, as will be discussed below.

B. Local updates

The sampling of Eq. #7$ can be carried out using simple
operator substitutions of the types

&0,0'p↔& i , j 'p , i , j%0, #9a$

& i ,i'p1& i ,i'p2↔& i ,0'p1& i ,0'p2, i%0, #9b$

where the subscript p indicates the position (p!1, . . . ,L) of
the operator in the sequence SL . The power n is changed by
#1 in the diagonal update #9a$ and is unchanged in the
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Elementary operators for the SSE strings:

A. Configuration space

Consider the general Hamiltonian for the Ising model in a
transverse field of strength h,

H!!
i , j

J i j" i
z" j

z"h!
i

" i
x , #1$

where !i is a Pauli spin operator (" i
z!#1) and Ji j is the

strength of the interaction between spins i and j, which can
be random or uniform and of any sign. The dimensionality is
arbitrary. Define the operators

H0,0!1, #2a$

Hi ,0!h#" i
$$" i

"$, i%0, #2b$

Hi ,i!h , i%0, #2c$

Hi , j!!Ji j!"Ji j" i
z" j

z , i , j%0, i% j . #2d$

Up to a constant, the Hamiltonian can be written as

H!"!
i!1

N

!
j!0

N

Hi , j . #3$

The constants Hi ,i are introduced for purposes that will be-
come clear below. Note that H0,0 is not included as a term in
the Hamiltonian #3$ but will be important in the simulation
scheme.
In the SSE approach &10' to finite-temperature quantum

Monte Carlo, the partition function Z!Tr(exp(")H)* is
written as a power-series expansion, with the trace expressed
as a sum over diagonal matrix elements in a suitably chosen
basis. Using Eq. #3$ then gives

Z!!
+

!
n!0

,

!
Sn

)n

n! -+!.
l!1

n

Hi(l), j(l)!+/, #4$

where Sn denotes a sequence of n operator-index pairs #here-
after referred to as operators$:

Sn!& i#1 $, j#1 $' , . . . ,& i#n $, j#n $' , #5$

with i(l)!(1, . . . ,N* and j(l)!(0, . . . ,N*. The standard
basis (!+/*!(!"1

z , . . . ,"N
z /* is used.

Because of the constants added to Hi , j in Eq. #2d$, the
eigenvalues of these operators are 2!Ji j! and 0. All nonzero
terms in Eq. #4$ are therefore positive and can be used as
relative probabilities in an importance sampling scheme. A
term is specified by a state !+/ and an operator sequence Sn .
One can show that the total internal energy #including the
constants added to H) is given by &10,20' E!"-n//) .
Hence, the size of the operator sequence to be stored in com-
puter memory scales as )NIN(J), where

IN#J $!
1
N !

i!1

N

!
j!1

N

!Ji j!, #6$

which converges or grows much slower than N for most
cases of interest.
In order to construct an efficient sampling scheme, it is

useful to cut expansion #4$ at some power n!L , sufficiently
high for the remaining truncation error to be exponentially
small and completely negligible &L clearly has to be
0)NIN(J)]. One can then obtain an expansion for which
the length of the operator sequence is constant, by consider-
ing random insertions of L"n unit operators H0,0 in the
product in Eq. #4$. Adjusting for the (n

L) possible insertions
gives

Z!
1
L! !

+
!
SL

)n#L"n $!-+!.
l!1

L

Hi(l), j(l)!+/, #7$

where & i(l), j(l)'!&0,0' is now also an allowed operator in
the sequence SL , and n denotes the number of non-&0,0'
operators. Note again that H0,0 is not part of the Hamiltonian,
but is introduced only for the purpose of constructing a com-
putationally simpler updating scheme where the operator list
has a fixed length.
It is useful to define states !+(p)/!!"1

z (p), . . . ,"N
z (p)/

obtained by propagating !+/!!+(0)/ by the first p operators
in SL :

!+#p $/!r.
l!1

p

Hi(l), j(l)!+/, #8$

where r is a normalization factor. A nonvanishing matrix
element in Eq. #7$ then corresponds to the periodicity condi-
tion !+(L)/!!+(0)/, which requires that for each site i there
is an even number #or zero$ of spin-flipping operators & i ,0'
in SL . Definition #2d$ implies that the Ising operators & i , j '
may act only on states with " i

z!" j
z if Ji j&0 #ferromagnetic$,

or " i
z!"" j

z if Ji j%0 #antiferromagnetic$. There are no other
constraints.
An SSE configuration is illustrated in Fig. 1. The vertical

direction in this representation will be referred to as the SSE
propagation direction. It can be related to the imaginary-time
direction in standard path-integral representations &26'. Note
that this full configuration, including all the states !+(p)/
explicitly, does not have to be stored in the simulation. A
single state and the operator sequence suffice for reproducing
all the states, and such a representation is used in some
stages of the simulation. For some updates it is convenient to
generate other representations, as will be discussed below.

B. Local updates

The sampling of Eq. #7$ can be carried out using simple
operator substitutions of the types

&0,0'p↔& i , j 'p , i , j%0, #9a$

& i ,i'p1& i ,i'p2↔& i ,0'p1& i ,0'p2, i%0, #9b$

where the subscript p indicates the position (p!1, . . . ,L) of
the operator in the sequence SL . The power n is changed by
#1 in the diagonal update #9a$ and is unchanged in the
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A. Configuration space

Consider the general Hamiltonian for the Ising model in a
transverse field of strength h,

H!!
i , j

J i j" i
z" j

z"h!
i

" i
x , #1$

where !i is a Pauli spin operator (" i
z!#1) and Ji j is the

strength of the interaction between spins i and j, which can
be random or uniform and of any sign. The dimensionality is
arbitrary. Define the operators

H0,0!1, #2a$

Hi ,0!h#" i
$$" i

"$, i%0, #2b$

Hi ,i!h , i%0, #2c$

Hi , j!!Ji j!"Ji j" i
z" j

z , i , j%0, i% j . #2d$

Up to a constant, the Hamiltonian can be written as

H!"!
i!1

N

!
j!0

N

Hi , j . #3$

The constants Hi ,i are introduced for purposes that will be-
come clear below. Note that H0,0 is not included as a term in
the Hamiltonian #3$ but will be important in the simulation
scheme.
In the SSE approach &10' to finite-temperature quantum

Monte Carlo, the partition function Z!Tr(exp(")H)* is
written as a power-series expansion, with the trace expressed
as a sum over diagonal matrix elements in a suitably chosen
basis. Using Eq. #3$ then gives

Z!!
+

!
n!0

,

!
Sn

)n

n! -+!.
l!1

n

Hi(l), j(l)!+/, #4$

where Sn denotes a sequence of n operator-index pairs #here-
after referred to as operators$:

Sn!& i#1 $, j#1 $' , . . . ,& i#n $, j#n $' , #5$

with i(l)!(1, . . . ,N* and j(l)!(0, . . . ,N*. The standard
basis (!+/*!(!"1

z , . . . ,"N
z /* is used.

Because of the constants added to Hi , j in Eq. #2d$, the
eigenvalues of these operators are 2!Ji j! and 0. All nonzero
terms in Eq. #4$ are therefore positive and can be used as
relative probabilities in an importance sampling scheme. A
term is specified by a state !+/ and an operator sequence Sn .
One can show that the total internal energy #including the
constants added to H) is given by &10,20' E!"-n//) .
Hence, the size of the operator sequence to be stored in com-
puter memory scales as )NIN(J), where

IN#J $!
1
N !

i!1

N

!
j!1

N

!Ji j!, #6$

which converges or grows much slower than N for most
cases of interest.
In order to construct an efficient sampling scheme, it is

useful to cut expansion #4$ at some power n!L , sufficiently
high for the remaining truncation error to be exponentially
small and completely negligible &L clearly has to be
0)NIN(J)]. One can then obtain an expansion for which
the length of the operator sequence is constant, by consider-
ing random insertions of L"n unit operators H0,0 in the
product in Eq. #4$. Adjusting for the (n

L) possible insertions
gives

Z!
1
L! !

+
!
SL

)n#L"n $!-+!.
l!1

L

Hi(l), j(l)!+/, #7$

where & i(l), j(l)'!&0,0' is now also an allowed operator in
the sequence SL , and n denotes the number of non-&0,0'
operators. Note again that H0,0 is not part of the Hamiltonian,
but is introduced only for the purpose of constructing a com-
putationally simpler updating scheme where the operator list
has a fixed length.
It is useful to define states !+(p)/!!"1

z (p), . . . ,"N
z (p)/

obtained by propagating !+/!!+(0)/ by the first p operators
in SL :

!+#p $/!r.
l!1

p

Hi(l), j(l)!+/, #8$

where r is a normalization factor. A nonvanishing matrix
element in Eq. #7$ then corresponds to the periodicity condi-
tion !+(L)/!!+(0)/, which requires that for each site i there
is an even number #or zero$ of spin-flipping operators & i ,0'
in SL . Definition #2d$ implies that the Ising operators & i , j '
may act only on states with " i

z!" j
z if Ji j&0 #ferromagnetic$,

or " i
z!"" j

z if Ji j%0 #antiferromagnetic$. There are no other
constraints.
An SSE configuration is illustrated in Fig. 1. The vertical

direction in this representation will be referred to as the SSE
propagation direction. It can be related to the imaginary-time
direction in standard path-integral representations &26'. Note
that this full configuration, including all the states !+(p)/
explicitly, does not have to be stored in the simulation. A
single state and the operator sequence suffice for reproducing
all the states, and such a representation is used in some
stages of the simulation. For some updates it is convenient to
generate other representations, as will be discussed below.

B. Local updates

The sampling of Eq. #7$ can be carried out using simple
operator substitutions of the types

&0,0'p↔& i , j 'p , i , j%0, #9a$

& i ,i'p1& i ,i'p2↔& i ,0'p1& i ,0'p2, i%0, #9b$

where the subscript p indicates the position (p!1, . . . ,L) of
the operator in the sequence SL . The power n is changed by
#1 in the diagonal update #9a$ and is unchanged in the
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A. Configuration space

Consider the general Hamiltonian for the Ising model in a
transverse field of strength h,

H!!
i , j

J i j" i
z" j

z"h!
i

" i
x , #1$

where !i is a Pauli spin operator (" i
z!#1) and Ji j is the

strength of the interaction between spins i and j, which can
be random or uniform and of any sign. The dimensionality is
arbitrary. Define the operators

H0,0!1, #2a$

Hi ,0!h#" i
$$" i

"$, i%0, #2b$

Hi ,i!h , i%0, #2c$

Hi , j!!Ji j!"Ji j" i
z" j

z , i , j%0, i% j . #2d$

Up to a constant, the Hamiltonian can be written as

H!"!
i!1

N

!
j!0

N

Hi , j . #3$

The constants Hi ,i are introduced for purposes that will be-
come clear below. Note that H0,0 is not included as a term in
the Hamiltonian #3$ but will be important in the simulation
scheme.
In the SSE approach &10' to finite-temperature quantum

Monte Carlo, the partition function Z!Tr(exp(")H)* is
written as a power-series expansion, with the trace expressed
as a sum over diagonal matrix elements in a suitably chosen
basis. Using Eq. #3$ then gives

Z!!
+

!
n!0

,

!
Sn

)n

n! -+!.
l!1

n

Hi(l), j(l)!+/, #4$

where Sn denotes a sequence of n operator-index pairs #here-
after referred to as operators$:

Sn!& i#1 $, j#1 $' , . . . ,& i#n $, j#n $' , #5$

with i(l)!(1, . . . ,N* and j(l)!(0, . . . ,N*. The standard
basis (!+/*!(!"1

z , . . . ,"N
z /* is used.

Because of the constants added to Hi , j in Eq. #2d$, the
eigenvalues of these operators are 2!Ji j! and 0. All nonzero
terms in Eq. #4$ are therefore positive and can be used as
relative probabilities in an importance sampling scheme. A
term is specified by a state !+/ and an operator sequence Sn .
One can show that the total internal energy #including the
constants added to H) is given by &10,20' E!"-n//) .
Hence, the size of the operator sequence to be stored in com-
puter memory scales as )NIN(J), where

IN#J $!
1
N !

i!1

N

!
j!1

N

!Ji j!, #6$

which converges or grows much slower than N for most
cases of interest.
In order to construct an efficient sampling scheme, it is

useful to cut expansion #4$ at some power n!L , sufficiently
high for the remaining truncation error to be exponentially
small and completely negligible &L clearly has to be
0)NIN(J)]. One can then obtain an expansion for which
the length of the operator sequence is constant, by consider-
ing random insertions of L"n unit operators H0,0 in the
product in Eq. #4$. Adjusting for the (n

L) possible insertions
gives

Z!
1
L! !

+
!
SL

)n#L"n $!-+!.
l!1

L

Hi(l), j(l)!+/, #7$

where & i(l), j(l)'!&0,0' is now also an allowed operator in
the sequence SL , and n denotes the number of non-&0,0'
operators. Note again that H0,0 is not part of the Hamiltonian,
but is introduced only for the purpose of constructing a com-
putationally simpler updating scheme where the operator list
has a fixed length.
It is useful to define states !+(p)/!!"1

z (p), . . . ,"N
z (p)/

obtained by propagating !+/!!+(0)/ by the first p operators
in SL :

!+#p $/!r.
l!1

p

Hi(l), j(l)!+/, #8$

where r is a normalization factor. A nonvanishing matrix
element in Eq. #7$ then corresponds to the periodicity condi-
tion !+(L)/!!+(0)/, which requires that for each site i there
is an even number #or zero$ of spin-flipping operators & i ,0'
in SL . Definition #2d$ implies that the Ising operators & i , j '
may act only on states with " i

z!" j
z if Ji j&0 #ferromagnetic$,

or " i
z!"" j

z if Ji j%0 #antiferromagnetic$. There are no other
constraints.
An SSE configuration is illustrated in Fig. 1. The vertical

direction in this representation will be referred to as the SSE
propagation direction. It can be related to the imaginary-time
direction in standard path-integral representations &26'. Note
that this full configuration, including all the states !+(p)/
explicitly, does not have to be stored in the simulation. A
single state and the operator sequence suffice for reproducing
all the states, and such a representation is used in some
stages of the simulation. For some updates it is convenient to
generate other representations, as will be discussed below.

B. Local updates

The sampling of Eq. #7$ can be carried out using simple
operator substitutions of the types

&0,0'p↔& i , j 'p , i , j%0, #9a$

& i ,i'p1& i ,i'p2↔& i ,0'p1& i ,0'p2, i%0, #9b$

where the subscript p indicates the position (p!1, . . . ,L) of
the operator in the sequence SL . The power n is changed by
#1 in the diagonal update #9a$ and is unchanged in the
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Possible local updates:

A. Configuration space

Consider the general Hamiltonian for the Ising model in a
transverse field of strength h,

H!!
i , j

J i j" i
z" j

z"h!
i

" i
x , #1$

where !i is a Pauli spin operator (" i
z!#1) and Ji j is the

strength of the interaction between spins i and j, which can
be random or uniform and of any sign. The dimensionality is
arbitrary. Define the operators

H0,0!1, #2a$

Hi ,0!h#" i
$$" i

"$, i%0, #2b$

Hi ,i!h , i%0, #2c$

Hi , j!!Ji j!"Ji j" i
z" j

z , i , j%0, i% j . #2d$

Up to a constant, the Hamiltonian can be written as

H!"!
i!1

N

!
j!0

N

Hi , j . #3$

The constants Hi ,i are introduced for purposes that will be-
come clear below. Note that H0,0 is not included as a term in
the Hamiltonian #3$ but will be important in the simulation
scheme.
In the SSE approach &10' to finite-temperature quantum

Monte Carlo, the partition function Z!Tr(exp(")H)* is
written as a power-series expansion, with the trace expressed
as a sum over diagonal matrix elements in a suitably chosen
basis. Using Eq. #3$ then gives

Z!!
+

!
n!0

,

!
Sn

)n

n! -+!.
l!1

n

Hi(l), j(l)!+/, #4$

where Sn denotes a sequence of n operator-index pairs #here-
after referred to as operators$:

Sn!& i#1 $, j#1 $' , . . . ,& i#n $, j#n $' , #5$

with i(l)!(1, . . . ,N* and j(l)!(0, . . . ,N*. The standard
basis (!+/*!(!"1

z , . . . ,"N
z /* is used.

Because of the constants added to Hi , j in Eq. #2d$, the
eigenvalues of these operators are 2!Ji j! and 0. All nonzero
terms in Eq. #4$ are therefore positive and can be used as
relative probabilities in an importance sampling scheme. A
term is specified by a state !+/ and an operator sequence Sn .
One can show that the total internal energy #including the
constants added to H) is given by &10,20' E!"-n//) .
Hence, the size of the operator sequence to be stored in com-
puter memory scales as )NIN(J), where

IN#J $!
1
N !

i!1

N

!
j!1

N

!Ji j!, #6$

which converges or grows much slower than N for most
cases of interest.
In order to construct an efficient sampling scheme, it is

useful to cut expansion #4$ at some power n!L , sufficiently
high for the remaining truncation error to be exponentially
small and completely negligible &L clearly has to be
0)NIN(J)]. One can then obtain an expansion for which
the length of the operator sequence is constant, by consider-
ing random insertions of L"n unit operators H0,0 in the
product in Eq. #4$. Adjusting for the (n

L) possible insertions
gives

Z!
1
L! !

+
!
SL

)n#L"n $!-+!.
l!1

L

Hi(l), j(l)!+/, #7$

where & i(l), j(l)'!&0,0' is now also an allowed operator in
the sequence SL , and n denotes the number of non-&0,0'
operators. Note again that H0,0 is not part of the Hamiltonian,
but is introduced only for the purpose of constructing a com-
putationally simpler updating scheme where the operator list
has a fixed length.
It is useful to define states !+(p)/!!"1

z (p), . . . ,"N
z (p)/

obtained by propagating !+/!!+(0)/ by the first p operators
in SL :

!+#p $/!r.
l!1

p

Hi(l), j(l)!+/, #8$

where r is a normalization factor. A nonvanishing matrix
element in Eq. #7$ then corresponds to the periodicity condi-
tion !+(L)/!!+(0)/, which requires that for each site i there
is an even number #or zero$ of spin-flipping operators & i ,0'
in SL . Definition #2d$ implies that the Ising operators & i , j '
may act only on states with " i

z!" j
z if Ji j&0 #ferromagnetic$,

or " i
z!"" j

z if Ji j%0 #antiferromagnetic$. There are no other
constraints.
An SSE configuration is illustrated in Fig. 1. The vertical

direction in this representation will be referred to as the SSE
propagation direction. It can be related to the imaginary-time
direction in standard path-integral representations &26'. Note
that this full configuration, including all the states !+(p)/
explicitly, does not have to be stored in the simulation. A
single state and the operator sequence suffice for reproducing
all the states, and such a representation is used in some
stages of the simulation. For some updates it is convenient to
generate other representations, as will be discussed below.

B. Local updates

The sampling of Eq. #7$ can be carried out using simple
operator substitutions of the types

&0,0'p↔& i , j 'p , i , j%0, #9a$

& i ,i'p1& i ,i'p2↔& i ,0'p1& i ,0'p2, i%0, #9b$

where the subscript p indicates the position (p!1, . . . ,L) of
the operator in the sequence SL . The power n is changed by
#1 in the diagonal update #9a$ and is unchanged in the
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Cluster update for Transverse-field Ising models

erators!. All possible vertices for the transverse Ising model
are shown in Fig. 3. Note that only those Ising vertices that
are compatible with the sign of the interaction between a
given pair of spins are allowed for those spins; again, this is
due to the choice of constant in the bond operator "2d!. In the
computer, the vertices are linked to each other by pointers, so
that from a given vertex leg one can reach the next or pre-
vious vertex that has a leg on the same site "i.e., there are
links that replace the segments of vertical lines of same spins
in Fig. 1!. A detailed discussion of the practical implementa-
tion of a linked vertex list has been given in Ref. #24$.
To construct and flip a quantum cluster, one of the legs of

one of the n vertices is picked at random, and the corre-
sponding spin is flipped. Depending on the type of the ver-
tex, different actions are taken, examples of which are given
in Fig. 4. The arrow pointing into the vertex indicates the
entrance leg. In the case of an Ising vertex, all the four spins
are flipped and the cluster building process branches out
from all the legs, as indicated by the arrows pointing out
from the vertex. Using the pointers of the linked vertex list,
the arrows point to legs of other vertices; these become new
entrance legs which are put on a stack and subsequently pro-
cessed one by one. If the entrance leg is on a constant or
spin-flip vertex, only the entrance spin is flipped. The vertex
type then also changes, in terms of operators from Hi ,0 to
Hi ,i , and vice versa. In these cases there is no branching-out
and no new legs are put on the stack, i.e., this particular
branch of the cluster terminates. If a link points to a spin that
has already been flipped "i.e., two arrows point toward each
other!, that leg should not be used again as an entrance and is
hence not put on the stack. Therefore, each vertex leg can be
visited at most once "each spin can be flipped at most once!
and the cluster is completed when there are no more entrance
legs on the stack. The reason that the cluster can always be
flipped is again that the SSE weight is not affected; the ma-
trix element of the Ising bond operator is not affected when

both spins are flipped "in the absence of an external field in
the z direction, which would necessitate a modified ap-
proach!, and the matrix elements for the constant and spin-
flip operators are both equal to h.
The construction of a single cluster, which is flipped with

probability 1, is a quantum-mechanical analog of the classi-
cal Wolff algorithm #28$; in the absence of the transverse
field the clusters are identical to those of the Wolff algorithm.
Note, however, that there is a difference when constructing
more than one cluster: The number of operators in the SSE
operator list and their positions on the lattice do not change
in the quantum-cluster update. The clusters are therefore
completely deterministic once the operator list is given.
Hence, when constructing several clusters using the same
SSE operator list, it is quite likely that the same cluster is
constructed and flipped multiple times. This is clearly not
desirable. However, one can also construct all clusters, as in
the Swendsen-Wang scheme, and only flip them with prob-
ability 1/2. This is done by always starting a new cluster
from a vertex leg which has not yet been visited. Every ver-
tex leg belongs uniquely to one cluster, and clearly the num-
ber of operations required to complete this update then scales
as L, i.e., typically as %N .
A natural definition of a Monte Carlo step including the

quantum-cluster update is a full sweep of diagonal updates,
followed by the construction of the linked list of vertices, in
which all clusters are constructed and flipped with probabil-
ity 1/2. After that, the updated vertex list is mapped back into
a state !&(0)' and an operator sequence SL . Free spins, i.e.,
those that are not acted on by any operators, can again be
considered as single-spin clusters and should also be flipped
with probability 1/2. No local off-diagonal updates "9b! are
needed.
Since the quantum-cluster update explicitly includes the

quantum-mechanical features of the configurations "i.e., the
presence of spin-flip operators!, it can be expected to work
well also close to a quantum phase transition (Tc!0) driven
by varying h. There are no problems in principle in taking
the T→0 limit, although, as in all finite-T methods, very
large inverse temperatures % have to be used to converge
large lattices to the ground state "especially in the case of
randomized interactions #29$!.

III. ONE-DIMENSIONAL „1D… INVERSE-SQUARE
FERROMAGNET

As a nontrivial demonstration of the method, a ferromag-
netic chain with interactions decaying as 1/r2 is considered
next. The interaction is summed over all i , j in Eq. "1!, i.e.,
each pair is counted twice. Periodic boundary conditions are
used. Ji j includes both distances in the periodic system, i.e.,

Ji j!J ji!
J
2 " 1

!i" j !2
#

1

"N"!i" j !!2# , "13!

where J sets the overall energy scale.
The classical 1/r2 Ising chain has been the subject of nu-

merous studies #13–17$. The long-range interaction allows
for a finite-T phase transition even in one dimension. The

FIG. 3. All the possible four-leg and two-leg vertices. "a! Fer-
romagnetic Ising vertices, "b! antiferromagnetic Ising vertices, "c!
constant vertices, and "d! spin-flip vertices.

FIG. 4. Examples of vertex processes: "a! reversal of a ferro-
magnetic Ising vertex, "b! constant to spin flip, and "c! spin flip to
constant.

ANDERS W. SANDVIK PHYSICAL REVIEW E 68, 056701 "2003!

056701-6

Start at arbitrary in-leg and apply weight-preserving operator changes

- growing “to do” list (stack) from each out-leg

- until stack is empty

- divides the entire system into clusters

- similar to classical S-W algorithm

Long-range interactions
Goal: avoid summations over interactions Jij

- we can first assume that all diagonal operators are allowed, then

where [i,j] in [0,0]->[i,j] is a still undetermined interaction

- the actual [i,j] is chosen in a second step using cumulative probabilities:

tive probability of an operator with the first index i is P(i)
!! jM i j , where Mij is the nonzero matrix element corre-
sponding to Hij "i.e., h for i! j and and 2!Ji j! else#. The
normalized cumulative probabilities Pc(k!1, . . . ,N) are
stored in a pregenerated table:

Pc"k #!

!
i!1

k

P" i #

!
i!1

N

P" i #

. "12#

In order to select the first index i of the operator $ i , j % to be
inserted, a random number 0&R"1 is generated. The table
Pc is searched "using, e.g., a simple binary search# for the
smallest k for which Pc(k)'R; the first index of the opera-
tor $ i , j % is then i!k . The second index can be chosen in a
completely analogous way, with the relative probability for j,
given i, being Mij . For a random system with long-range
interactions, a pregenerated table with N2 elements is hence
needed for storing all the cumulative probabilities for the
second index. For nonrandom interactions in a translationally
invariant system, the first index can be selected at random
with equal probabilities without searching a table, and the
size of the second table is reduced to N. For a short-range or
truncated interaction the table size is smaller, corresponding
to the number of spins within the range of the interaction;
clearly, the whole selection process should then be reduced
to a single step for obtaining both i and j "e.g., selecting one
out of a total number (N of operators and reading the cor-
responding i , j from a table#. The two-step procedure is ad-
vantageous for nonrandom long-range interactions, where it
allows for the reduction of the size of the probability table
from N2 to N. For random models, the storage requirement is
always N2, and it may then again be better to combine the
first and second index searches, using a single size-N2 table
for all the cumulative probabilities of $ i , j % . For short-range
random interactions the size of the table is N times the num-
ber of spins within the interaction range.
The operator $ i , j % generated as above may or may not be

allowed in the current spin configuration !)(p)*. If + i
z(p)

and + j
z(p) indeed are in an allowed state, $ i , j % is inserted at

position p. Otherwise, the operator $0,0% is left unchanged.
This accept/reject step leads to the correct probabilities for
selecting among all the allowed diagonal operators $ i , j % .
The off-diagonal update "9b# can be efficiently carried out

if SL is first partitioned into separate subsequences for each
site i. Subsequence i contains only spin-flipping operators
$ i ,0% and constants $ i ,i% . Their positions in SL are also
stored, to be used for recombining the subsequences after the
update. The constraints on modifications at site i imposed by
Ising operators $ i , j % or $ j ,i% "for any j) can be stored as
flags indicating the presence of one or several of these op-
erators between neighboring subsequence operators. Updat-
ing a subsequence amounts to selecting two nonconstrained
neighboring operators at random from the subsequence, and
carrying out substitution "9b# if the two operators are identi-
cal. If they are different, they can be permuted. A number

proportional to the subsequence length of such pair updates
is carried out for each subsequence, after which they are
recombined into a new SL .
The diagonal update "9a# at all positions in SL requires

(L ln(N)(,N ln(N)IN(J) operations, where the factor ln(N)
is the scaling of the average number of operations needed to
search the cumulative probability table"s# in the case of long-
range interactions. Partitioning SL into subsequences and up-
dating all of them according to Eq. "9b# requires on the order
of L operations. Hence, the number of operations for a full
updating cycle of the degrees of freedom of the system "one
Monte Carlo step# scales as ,N ln(N)IN(J). This should be
compared to the ,N2 scaling in world-line methods $7,19%,
where one power of N is due to the summation required to
calculate the weight change when flipping a spin interacting
with N other spins. Here this summation has been circum-
vented by writing the interactions in the SSE formalism as
fluctuating constraints that are purely local.

C. Classical cluster update

In the Swendsen-Wang cluster algorithm $11% for the clas-
sical Ising model, i.e., with h!0 and a uniform nearest-
neighbor interaction of strength J, auxiliary bond variables
bi j are introduced in order to construct clusters of spins that
can be flipped independently of each other. Given a spin
configuration, and with initially all bond variables bi j!0,
for every interacting spin pair for which + i+ j!#J/!J! "i.e.,
the orientation energetically favored# the bond variable is set,
bi j!1, with probability P!1#e#2!J!,. When all bonds
have been visited, clusters of spins connected by bi j!1
bonds are formed, and each of these clusters is flipped with
probability 1/2. Single spins not connected to any bi j!1
bond are single-spin clusters. After the clusters have been
flipped, all the bond variables are again set to zero and the
process is repeated. This scheme can in fact be constructed
using the SSE formalism, as an alternative to the Fortuin-
Kasteleyn mapping $27%, on which the Swendsen-Wang al-
gorithm is based.
The relation to the Swendsen-Wang algorithm is shown as

follows, by applying the SSE method to the classical Ising
model, now again considering a general form of the interac-
tion Ji j and with the bond operator Hij!!Ji j!#Ji j+ i

z+ j
z as in

Eq. "2d#. Since all operators Hij commute, the operator e#,H

can be written as a product of operators e,Hi j!1$,Hij
$••• . The uniqueness of the power-series expansion then
implies that in the SSE, where e#,H is expanded directly, the
probability of having one or more operators Hij on a bond
i , j when + i+ j!#Ji j /!Ji j! is 1#e#2!Ji j!,, i.e., exactly the
probability of having the bond variable bi j!1 in the
Swendsen-Wang scheme. In a configuration + i+ j!Ji j /!Ji j!
there can be no operators on the bond in the SSE, and the
Swendsen-Wang bi j!1 probability is also zero per construc-
tion. One can hence make the connection that one or more
operators acting on a spin pair in the SSE scheme correspond
to a filled bond (bi j!1) in the Swendsen-Wang algorithm.
The definition of a cluster is then exactly the same in the two
algorithms. Clearly, such a cluster in the SSE can also always
be flipped, since the Ising operators only impose constraints
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N is the total number of diagonal ops
Choose op #k using bisection in the table Pc()

- time scales as ln(N)

Cluster update remains the same for any kind of interaction

- total time for updating sweep scales as βNln(N) with long-range interactions

off-diagonal update !9b". In the diagonal update the Ising
terms # i , j $ and the constants # i ,i$ are sampled. The con-
stants are used in the off-diagonal update as a means of
achieving easy insertions and removals of two spin-flipping
operators # i ,0$ . With the value h chosen for the constant in
Eq. !2c", the operator replacements do not change the weight
of the SSE configuration. However, the off-diagonal update
also leads to spin flips in the propagated states between p1
and p2 ; % i

z(p1), . . . ,% i
z(p2!1)→!% i

z(p1), . . . ,!% i
z(p2

!1). #p1"p2 also has to be considered, leading to flipped
% i
z(p1), . . . ,% i

z(L!1)% i
z(0), . . . ,% i

z(p2!1)], which is al-
lowed if !and only if" no Ising operators acting on site i are
present in SL between positions p1 and p2. Note that this
constraint is completely local, regardless of the range of the
interaction, and that the update requires no knowledge of the
spin state. This is the reason for the advantage of this simu-

lation scheme over world-line methods #19,7$, where calcu-
lating the acceptance probability for every update requires a
summation over all the spins interacting with those flipped.
Here an allowed off-diagonal update !9b" leaves the weight
unchanged and can be carried out with probability 1.
If h&0, the above updates of the operator sequence suf-

fice for achieving ergodicity. If there are no Ising operators
acting on a site i, % i

z(0), . . . ,% i
z(L!1) can also be flipped

without changes in SL . This update in principle makes simu-
lations using the present scheme possible also for h#0, but
in practice unconstrained spins occur frequently only at high
temperatures, when 'n( is small. Other types of ‘‘classical’’
spin flips—flips of clusters—are also possible, and will be
discussed in Sec. II C.
The simulation can be started with a random state !)(0)(

and a sequence SL containing only #0,0$ operators. The trun-
cation L can be chosen arbitrarily !small"; it is adjusted dur-
ing the equilibration part of the simulation, e.g., by requiring
L"(4/3)n after each update. This ensures than n never
reaches L during the remainder of the simulation, and hence
that there will be no detectable systematic errors arising from
the truncation of the expansion #10$. In the beginning of an
updating cycle, the operator sequence SL and the state
!)(0)( are stored.
The diagonal update !9a" is attempted successively for all

p#1, . . . ,L . In the course of this process, the spin state is
propagated by flipping spins % i

z as off-diagonal operators
# i ,0$ are encountered in SL , so that the states !)(p)( are
generated successively. For an # i , j $→#0,0$ update, i.e., re-
moving a Hamiltonian operator, there are no constraints and
the update should always be accepted with some nonzero
probability. In the case of #0,0$→# i , j $ , i.e., inserting an op-
erator from the Hamiltonian, there are constraints, and the
update may not be allowed for all i , j . However, initially the
indices i , j are left undetermined and it is assumed that any
# i , j $ would be allowed. Under this assumption, the accep-
tance probabilities for the diagonal update are given by

P!#0,0$→# i , j $ "#

*"Nh$2+
i j

!Ji j! #
L!n$*"Nh$2+

i j
!Ji j! # , !10a"

P!#0,0$→# i , j $ "#
L!n$1

L!n$1$*"Nh$2+
i j

!Ji j! # ,
!10b"

where + i j does not include i# j and P"1 should be inter-
preted as probability 1, as usual. These heat-bath probabili-
ties are simply obtained from the ratio of the new and old
prefactors in Eq. !7" when n→n%1:

*%1 #L!!n%1 "$!
!L!n "! , !11"

and the ratio between the matrix element 1 of the #0,0$ op-
erator and the sum Nh$2+ i j!Ji j! of the nonzero matrix el-
ements of all # i , j $ operators. Staying with the assumption
that any # i , j $ is allowed in the update #0,0$→# i , j $ , the rela-

FIG. 1. An SSE configuration for an eight-site one-dimensional
system. Here the truncation L#49, and the expansion order of the
term !i.e., the number of Hamiltonian operators present" n#40. The
solid and open circles represent the spins % i

z(p)#%1, with the
propagation index p#0, . . . ,L corresponding to the different eight-
spin rows. The thick and thin short horizontal bars represent spin-
flip operators Hi ,0 and constants Hi ,i , respectively. The longer lines
represent Ising operators Hi , j (i& j) acting on the spins at the line
ends.

STOCHASTIC SERIES EXPANSION METHOD FOR . . . PHYSICAL REVIEW E 68, 056701 !2003"

056701-3

off-diagonal update !9b". In the diagonal update the Ising
terms # i , j $ and the constants # i ,i$ are sampled. The con-
stants are used in the off-diagonal update as a means of
achieving easy insertions and removals of two spin-flipping
operators # i ,0$ . With the value h chosen for the constant in
Eq. !2c", the operator replacements do not change the weight
of the SSE configuration. However, the off-diagonal update
also leads to spin flips in the propagated states between p1
and p2 ; % i

z(p1), . . . ,% i
z(p2!1)→!% i

z(p1), . . . ,!% i
z(p2

!1). #p1"p2 also has to be considered, leading to flipped
% i
z(p1), . . . ,% i

z(L!1)% i
z(0), . . . ,% i

z(p2!1)], which is al-
lowed if !and only if" no Ising operators acting on site i are
present in SL between positions p1 and p2. Note that this
constraint is completely local, regardless of the range of the
interaction, and that the update requires no knowledge of the
spin state. This is the reason for the advantage of this simu-

lation scheme over world-line methods #19,7$, where calcu-
lating the acceptance probability for every update requires a
summation over all the spins interacting with those flipped.
Here an allowed off-diagonal update !9b" leaves the weight
unchanged and can be carried out with probability 1.
If h&0, the above updates of the operator sequence suf-

fice for achieving ergodicity. If there are no Ising operators
acting on a site i, % i

z(0), . . . ,% i
z(L!1) can also be flipped

without changes in SL . This update in principle makes simu-
lations using the present scheme possible also for h#0, but
in practice unconstrained spins occur frequently only at high
temperatures, when 'n( is small. Other types of ‘‘classical’’
spin flips—flips of clusters—are also possible, and will be
discussed in Sec. II C.
The simulation can be started with a random state !)(0)(

and a sequence SL containing only #0,0$ operators. The trun-
cation L can be chosen arbitrarily !small"; it is adjusted dur-
ing the equilibration part of the simulation, e.g., by requiring
L"(4/3)n after each update. This ensures than n never
reaches L during the remainder of the simulation, and hence
that there will be no detectable systematic errors arising from
the truncation of the expansion #10$. In the beginning of an
updating cycle, the operator sequence SL and the state
!)(0)( are stored.
The diagonal update !9a" is attempted successively for all

p#1, . . . ,L . In the course of this process, the spin state is
propagated by flipping spins % i

z as off-diagonal operators
# i ,0$ are encountered in SL , so that the states !)(p)( are
generated successively. For an # i , j $→#0,0$ update, i.e., re-
moving a Hamiltonian operator, there are no constraints and
the update should always be accepted with some nonzero
probability. In the case of #0,0$→# i , j $ , i.e., inserting an op-
erator from the Hamiltonian, there are constraints, and the
update may not be allowed for all i , j . However, initially the
indices i , j are left undetermined and it is assumed that any
# i , j $ would be allowed. Under this assumption, the accep-
tance probabilities for the diagonal update are given by

P!#0,0$→# i , j $ "#

*"Nh$2+
i j

!Ji j! #
L!n$*"Nh$2+

i j
!Ji j! # , !10a"

P!#0,0$→# i , j $ "#
L!n$1

L!n$1$*"Nh$2+
i j

!Ji j! # ,
!10b"

where + i j does not include i# j and P"1 should be inter-
preted as probability 1, as usual. These heat-bath probabili-
ties are simply obtained from the ratio of the new and old
prefactors in Eq. !7" when n→n%1:

*%1 #L!!n%1 "$!
!L!n "! , !11"

and the ratio between the matrix element 1 of the #0,0$ op-
erator and the sum Nh$2+ i j!Ji j! of the nonzero matrix el-
ements of all # i , j $ operators. Staying with the assumption
that any # i , j $ is allowed in the update #0,0$→# i , j $ , the rela-

FIG. 1. An SSE configuration for an eight-site one-dimensional
system. Here the truncation L#49, and the expansion order of the
term !i.e., the number of Hamiltonian operators present" n#40. The
solid and open circles represent the spins % i

z(p)#%1, with the
propagation index p#0, . . . ,L corresponding to the different eight-
spin rows. The thick and thin short horizontal bars represent spin-
flip operators Hi ,0 and constants Hi ,i , respectively. The longer lines
represent Ising operators Hi , j (i& j) acting on the spins at the line
ends.
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