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We show how efficient loop updates, originally developed for Monte Carlo simulations of quantum spin
systems at finite temperature, can be combined with a ground-state projector scheme and variational calcula-
tions in the valence-bond basis. The methods are formulated in a combined space of spin z components and
valence bonds. Compared to schemes formulated purely in the valence-bond basis, the computational effort is
reduced from up to O!N2" to O!N" for variational calculations, where N is the system size, and from O!m2" to
O!m" for projector simulations, where m!N is the projection power. These improvements enable access to
ground states of significantly larger lattices than previously. We demonstrate the efficiency of the approach by
calculating the sublattice magnetization Ms of the two-dimensional Heisenberg model to high precision, using
systems with up to 256"256 spins. Extrapolating the results to the thermodynamic limit gives Ms

=0.30743!1". We also discuss optimized variational amplitude-product states, which were used as trial states in
the projector simulations, and compare results of projecting different types of trial states.

DOI: 10.1103/PhysRevB.82.024407 PACS number!s": 05.10.Ln, 75.10.Jm, 75.40.Cx, 75.40.Mg

I. INTRODUCTION

An ongoing challenge in simulations of quantum spin sys-
tems is to reach larger lattices sizes, thus enabling more re-
liable extrapolations to the thermodynamic limit. With the
advent of loop-cluster algorithms1–5 and related schemes6,7

developed since the mid-1990s, finite-temperature !T" quan-
tum Monte Carlo !QMC" simulations have become possible
on lattices with millions of spins for models with positive-
definite path integral !world line"8,9 or stochastic series ex-
pansion !SSE" !Ref. 10" representation of the partition func-
tion. The computational effort scales linearly in the number
of spins N. Since the effort also scales as 1 /T, simulations at
very low T or in the ground state !using T low enough to
eliminate finite-T effects", are limited to smaller lattices,
however. The ground state can typically be reached for #104

spins.
Currently accessible system sizes suffice for studying

ground states of many important models, e.g., the two-
dimensional !2D" Heisenberg model11,12 and variants of it
with nonuniform coupling patterns leading to quantum phase
transitions of the antiferromagnet into a disordered ground
state.13,14 In other, similar systems there are still controver-
sial issues15,16 that may need larger lattices to be conclu-
sively resolved. Larger lattice sizes are crucial in systems
exhibiting more complex ground states and quantum phase
transitions. One example of current interest is a class of
“J-Q” models—2D Heisenberg models with four-spin inter-
actions engineered to destroy the antiferromagnetic order and
drive the system into a valence-bond-solid !VBS" state.17–19

The VBS state has intricate fluctuations and the true nature
of its thermodynamic limit is only manifested on large
lattices.17 This illustrates the need to develop better ground-
state methods, as a more efficient alternative to going to very
low T with finite-temperature methods.

In this paper, we introduce a method combining loop up-
dates first developed for finite-T simulations1,2,5 with a

ground-state projector QMC method operating in the VB
basis.20,21 This overcomplete singlet basis has some features
that make it uniquely well suited for studies of spin-
rotationally invariant Hamiltonians such as the Heisenberg
model and its extensions with multispin interactions.17

It has been known for some time2 that there is a simple
and elegant relationship between VB states consisting of N /2
pairs of spins forming singlets22 and the loop algorithm,
which indeed works by switching between a VB basis and a
basis of N spins ↑ and ↓ !for S= 1

2 systems". Here we exploit
this switching for ground-state projections. An attractive fea-
ture of this approach is that it enables the use of very good
singlet trial wave functions, the simplest example of which is
the amplitude-product state proposed by Liang et al.23,24 The
ground state can then be reached much faster than with
finite-T methods, and with much less computational effort
than projector methods formulated purely in the VB
basis.20,25,26 In addition, we show that purely variational cal-
culations can also be made more efficient by combining
spins and VBs, including a loop update similar to one previ-
ously developed for classical dimer models.27,28

The projector QMC algorithm with loops, working in the
combined space of VBs and spins, is in the end very similar
to T#0 SSE and worldline loop algorithms. Essentially, the
T=0 projector approach corresponds to “cutting open” the
periodic imaginary-time boundary and “sealing” the result-
ing open loop segments with valence bonds !which serve as
continuations of the loops".

We demonstrate the efficiency of the projector method by
producing high-precision benchmark results for the sublat-
tice magnetization of the 2D Heisenberg model with up to
256"256 spins. We also discuss the properties of the varia-
tionally optimized amplitude-product states used as a trial
states for the ground-state projections !extending the results
of Ref. 24 to larger lattices".

We begin in Sec. II by summarizing the properties of the
VB basis needed for formulating the algorithms. In Sec. III,
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Common bases for quantum spin systems
Lattice of S=1/2 spins, e.g., Heisenberg antiferromagnet
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One can also use eigenstates of two or more spins

• dimer singlet-triplet basis

The hamiltonian is more complicated in this basis
- but some times can be used to solve sign problems
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Marshall’s sign rule for bipartite antiferromagnets
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groups A and B, respectively. We normally consider bipartite lattices, in which
case A and B should correspond to the two sublattices. Any total-spin singlet
|Ψ⟩ of an even number N of spins can be expanded in products of N/2 of these
bipartite valence-bond states;

|Ψ⟩ =
∑

α

fα|(aα1 , bα1 ) · · · (aαN/2, b
α
N/2)⟩ =

∑

α

fα|Vα⟩, (7.2)

were the index α labels the bond tilings of the lattice, of which there are N
2 !

different ones. We will frequently use the short-hand notation |Vα⟩ introduced
above for a valence-bond basis state, and some times we will use just Vα to refer
to one of the bond tilings.

Superpositions of valence-bond states are often called resonating valence-
bond (or RVB) states, following Anderson’s pioneering work on frustrated spin
systems with possible liquid-like ground states (states with no broken symme-
tries, in which there normally are predominantly short valence bonds). How-
ever, since any singlet spin state can be expressed in this way, the terminology
is rather meaningless if it is used in this broadest sense. More restricted usage
of the term RVB for spatially uniform spin liquid states follows more closely the
spirit of how the term was originally introduced.

The convention of the site indices a and b in the singlet (7.1) belonging
to sublattices A and B is important, as it corresponds directly to the signs of
the N -spin wave function coefficients in the spin-z basis. If the wave-function
coefficients fα are all positive, the singlet convention is equivalent to Marshall’s
famous sign rule for the ground state of a bipartite Heisenberg model. We
discuss this important theorem next, before studying in detail the properties of
the valence-bond basis.

7.2.1 Marshall’s sign rule

Consider a normalized state of an S = 1
2 spin system, described for now by a

complex wave function Ψ(σ) in the standard z-spin basis,

|Ψ⟩ =
∑

σ

Ψ(σ)|σ⟩, (7.3)

where, for convenience, we use the short-hand notation σ = {Sz
1 , . . . , Sz

N} for
the spins. The expectation value of the energy is

E = ⟨Ψ|H |Ψ⟩ =
∑

σ

∑

τ

Ψ∗(τ)Ψ(σ)⟨τ |H |σ⟩. (7.4)

The hamiltonian is a sum of diagonal and off-diagonal parts; H = Hdia + Hoff ,
in terms of which we can write the expectation value as

E =
∑

σ

|Ψ(σ)|2⟨σ|Hdia|σ⟩+
∑

σ

|Ψ(σ)|2
∑

τ

Ψ∗(τ)

Ψ∗(σ)
⟨τ |Hoff |σ⟩. (7.5)
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and a proposed wave function to describe its ground state

In a variational calculation we minimize the energy wrt some parameters

An extreme variational approach is to consider each wave function coefficient

𝝍(𝜎) as an individually adjustable parameter
Let’s focus on the signs (or phases) of the coefficients:


- diagonal energy contributions independent of the signs

- off-diagonal matrix elements positive; optimal E if wave-function signs change
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The diagonal part is thus independent of the phase of the wave function, whereas
the off-diagonal part depends strongly on it, through the ratio Ψ∗(τ)/Ψ∗(σ),
which we can write as eiδ|Ψ(τ)|/|Ψ(σ)|, where δ is the phase difference. In the
case of the antiferromagnetic Heisenberg model, the non-vanishing off-diagonal
matrix elements are of the form ⟨τ |S+

i S−
j |σ⟩ and ⟨τ |S−

i S+
j |σ⟩, where |τ⟩ must

differ from |σ⟩ by two anti-parallel spins i, j being flipped. All of these matrix
elements are positive. It is then clear that if the wave function phases could be
chosen such that Ψ∗(τ)/Ψ∗(σ) is always real and negative, that choice would
lead to the lowest energy (i.e., for any choice of the magnitude of the wave-
function coefficients, a lower bound on the energy is obtained by assuming δ = π
for all phase differences). For a bipartite system, it is easy to see that it is in
fact possible to choose phases such that this condition is always fulfilled. Per
definition of a bipartite system, one of the spins i, j is always on sublattice A
and the other one is on sublattice B. If the wave function phase, which can be
taken to be just a sign (since the hamiltonian is real), is chosen as

sign[Ψ(Sz
1 , . . . , Sz

N )] = (−1)nA↑ , (7.6)

where nA↑ is the number of ↑ spins on sublattice A, then a spin flip by the
hamiltonian always effects a sign change, i.e., Ψ(τ)/Ψ(σ) ≤ 0 in (7.5) when the
corresponding matrix element is non-zero. Thus, the ground-state wave-function
of a bipartite Heisenberg model can be chosen as real and then obeys the sign
rule (7.6), which is named after Marshall [98]. Since the hamiltonian conserves
the total magnetization, Marshall’s sign rule applies to the lowest-energy state
in every magnetization sector. The rule also can be generalized to higher-spin
models, as well as to bosonic systems, where kinetic-energy hopping terms are
similar to the pair-flip operators of the Heisenberg model.

Marshall signs and valence-bond states

In a variational calculation, a wave function with some adjustable parameters
is optimized by minimizing the expectation value of the hamiltonian of interest.
As we will discuss in detail later in this chapter, the valence-bond basis allows
for very interesting wave-function parametrizations that are ideally suited for
computational work. Knowing that the ground state of a model obeys Marshall’s
sign rule, we of course would like to make sure that any proposed variational
wave function in the valence-bond basis also obeys it. It is easy to see that if
the valence-bond singlets are defined as in (7.1), with sites a and b in sublattices
A and B, respectively, then Marshall’s rule in fact is satisfied [strictly speaking,
with the equally valid alternative definition with nB↑ instead of nA↑ in (7.6)]
when all the wave-function coefficients fα > 0 in the expansion (7.2). Thus, for a
non-frustrated system, we know that a positive-definite valence-bond expansion
is appropriate. This positive-definiteness is a crucial aspect of the computational
methods that we will discuss later on. Conversely, the non-positive-definiteness
for non-bipartite (frustrated) systems, implies that the applicability of these
schemes is more limited for such systems.
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sign[Ψ(Sz
1 , . . . , Sz

N )] = (−1)nA↑ , (7.6)

where nA↑ is the number of ↑ spins on sublattice A, then a spin flip by the
hamiltonian always effects a sign change, i.e., Ψ(τ)/Ψ(σ) ≤ 0 in (7.5) when the
corresponding matrix element is non-zero. Thus, the ground-state wave-function
of a bipartite Heisenberg model can be chosen as real and then obeys the sign
rule (7.6), which is named after Marshall [98]. Since the hamiltonian conserves
the total magnetization, Marshall’s sign rule applies to the lowest-energy state
in every magnetization sector. The rule also can be generalized to higher-spin
models, as well as to bosonic systems, where kinetic-energy hopping terms are
similar to the pair-flip operators of the Heisenberg model.

Marshall signs and valence-bond states

In a variational calculation, a wave function with some adjustable parameters
is optimized by minimizing the expectation value of the hamiltonian of interest.
As we will discuss in detail later in this chapter, the valence-bond basis allows
for very interesting wave-function parametrizations that are ideally suited for
computational work. Knowing that the ground state of a model obeys Marshall’s
sign rule, we of course would like to make sure that any proposed variational
wave function in the valence-bond basis also obeys it. It is easy to see that if
the valence-bond singlets are defined as in (7.1), with sites a and b in sublattices
A and B, respectively, then Marshall’s rule in fact is satisfied [strictly speaking,
with the equally valid alternative definition with nB↑ instead of nA↑ in (7.6)]
when all the wave-function coefficients fα > 0 in the expansion (7.2). Thus, for a
non-frustrated system, we know that a positive-definite valence-bond expansion
is appropriate. This positive-definiteness is a crucial aspect of the computational
methods that we will discuss later on. Conversely, the non-positive-definiteness
for non-bipartite (frustrated) systems, implies that the applicability of these
schemes is more limited for such systems.
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The diagonal part is thus independent of the phase of the wave function, whereas
the off-diagonal part depends strongly on it, through the ratio Ψ∗(τ)/Ψ∗(σ),
which we can write as eiδ|Ψ(τ)|/|Ψ(σ)|, where δ is the phase difference. In the
case of the antiferromagnetic Heisenberg model, the non-vanishing off-diagonal
matrix elements are of the form ⟨τ |S+

i S−
j |σ⟩ and ⟨τ |S−

i S+
j |σ⟩, where |τ⟩ must

differ from |σ⟩ by two anti-parallel spins i, j being flipped. All of these matrix
elements are positive. It is then clear that if the wave function phases could be
chosen such that Ψ∗(τ)/Ψ∗(σ) is always real and negative, that choice would
lead to the lowest energy (i.e., for any choice of the magnitude of the wave-
function coefficients, a lower bound on the energy is obtained by assuming δ = π
for all phase differences). For a bipartite system, it is easy to see that it is in
fact possible to choose phases such that this condition is always fulfilled. Per
definition of a bipartite system, one of the spins i, j is always on sublattice A
and the other one is on sublattice B. If the wave function phase, which can be
taken to be just a sign (since the hamiltonian is real), is chosen as

sign[Ψ(Sz
1 , . . . , Sz

N )] = (−1)nA↑ , (7.6)

where nA↑ is the number of ↑ spins on sublattice A, then a spin flip by the
hamiltonian always effects a sign change, i.e., Ψ(τ)/Ψ(σ) ≤ 0 in (7.5) when the
corresponding matrix element is non-zero. Thus, the ground-state wave-function
of a bipartite Heisenberg model can be chosen as real and then obeys the sign
rule (7.6), which is named after Marshall [98]. Since the hamiltonian conserves
the total magnetization, Marshall’s sign rule applies to the lowest-energy state
in every magnetization sector. The rule also can be generalized to higher-spin
models, as well as to bosonic systems, where kinetic-energy hopping terms are
similar to the pair-flip operators of the Heisenberg model.

Marshall signs and valence-bond states

In a variational calculation, a wave function with some adjustable parameters
is optimized by minimizing the expectation value of the hamiltonian of interest.
As we will discuss in detail later in this chapter, the valence-bond basis allows
for very interesting wave-function parametrizations that are ideally suited for
computational work. Knowing that the ground state of a model obeys Marshall’s
sign rule, we of course would like to make sure that any proposed variational
wave function in the valence-bond basis also obeys it. It is easy to see that if
the valence-bond singlets are defined as in (7.1), with sites a and b in sublattices
A and B, respectively, then Marshall’s rule in fact is satisfied [strictly speaking,
with the equally valid alternative definition with nB↑ instead of nA↑ in (7.6)]
when all the wave-function coefficients fα > 0 in the expansion (7.2). Thus, for a
non-frustrated system, we know that a positive-definite valence-bond expansion
is appropriate. This positive-definiteness is a crucial aspect of the computational
methods that we will discuss later on. Conversely, the non-positive-definiteness
for non-bipartite (frustrated) systems, implies that the applicability of these
schemes is more limited for such systems.
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The diagonal part is thus independent of the phase of the wave function, whereas
the off-diagonal part depends strongly on it, through the ratio Ψ∗(τ)/Ψ∗(σ),
which we can write as eiδ|Ψ(τ)|/|Ψ(σ)|, where δ is the phase difference. In the
case of the antiferromagnetic Heisenberg model, the non-vanishing off-diagonal
matrix elements are of the form ⟨τ |S+

i S−
j |σ⟩ and ⟨τ |S−

i S+
j |σ⟩, where |τ⟩ must

differ from |σ⟩ by two anti-parallel spins i, j being flipped. All of these matrix
elements are positive. It is then clear that if the wave function phases could be
chosen such that Ψ∗(τ)/Ψ∗(σ) is always real and negative, that choice would
lead to the lowest energy (i.e., for any choice of the magnitude of the wave-
function coefficients, a lower bound on the energy is obtained by assuming δ = π
for all phase differences). For a bipartite system, it is easy to see that it is in
fact possible to choose phases such that this condition is always fulfilled. Per
definition of a bipartite system, one of the spins i, j is always on sublattice A
and the other one is on sublattice B. If the wave function phase, which can be
taken to be just a sign (since the hamiltonian is real), is chosen as

sign[Ψ(Sz
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N )] = (−1)nA↑ , (7.6)

where nA↑ is the number of ↑ spins on sublattice A, then a spin flip by the
hamiltonian always effects a sign change, i.e., Ψ(τ)/Ψ(σ) ≤ 0 in (7.5) when the
corresponding matrix element is non-zero. Thus, the ground-state wave-function
of a bipartite Heisenberg model can be chosen as real and then obeys the sign
rule (7.6), which is named after Marshall [98]. Since the hamiltonian conserves
the total magnetization, Marshall’s sign rule applies to the lowest-energy state
in every magnetization sector. The rule also can be generalized to higher-spin
models, as well as to bosonic systems, where kinetic-energy hopping terms are
similar to the pair-flip operators of the Heisenberg model.

Marshall signs and valence-bond states

In a variational calculation, a wave function with some adjustable parameters
is optimized by minimizing the expectation value of the hamiltonian of interest.
As we will discuss in detail later in this chapter, the valence-bond basis allows
for very interesting wave-function parametrizations that are ideally suited for
computational work. Knowing that the ground state of a model obeys Marshall’s
sign rule, we of course would like to make sure that any proposed variational
wave function in the valence-bond basis also obeys it. It is easy to see that if
the valence-bond singlets are defined as in (7.1), with sites a and b in sublattices
A and B, respectively, then Marshall’s rule in fact is satisfied [strictly speaking,
with the equally valid alternative definition with nB↑ instead of nA↑ in (7.6)]
when all the wave-function coefficients fα > 0 in the expansion (7.2). Thus, for a
non-frustrated system, we know that a positive-definite valence-bond expansion
is appropriate. This positive-definiteness is a crucial aspect of the computational
methods that we will discuss later on. Conversely, the non-positive-definiteness
for non-bipartite (frustrated) systems, implies that the applicability of these
schemes is more limited for such systems.

E must be real (𝝍 can also be real)

- minimum for all negative signs

sign always
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The diagonal part is thus independent of the phase of the wave function, whereas
the off-diagonal part depends strongly on it, through the ratio Ψ∗(τ)/Ψ∗(σ),
which we can write as eiδ|Ψ(τ)|/|Ψ(σ)|, where δ is the phase difference. In the
case of the antiferromagnetic Heisenberg model, the non-vanishing off-diagonal
matrix elements are of the form ⟨τ |S+

i S−
j |σ⟩ and ⟨τ |S−

i S+
j |σ⟩, where |τ⟩ must

differ from |σ⟩ by two anti-parallel spins i, j being flipped. All of these matrix
elements are positive. It is then clear that if the wave function phases could be
chosen such that Ψ∗(τ)/Ψ∗(σ) is always real and negative, that choice would
lead to the lowest energy (i.e., for any choice of the magnitude of the wave-
function coefficients, a lower bound on the energy is obtained by assuming δ = π
for all phase differences). For a bipartite system, it is easy to see that it is in
fact possible to choose phases such that this condition is always fulfilled. Per
definition of a bipartite system, one of the spins i, j is always on sublattice A
and the other one is on sublattice B. If the wave function phase, which can be
taken to be just a sign (since the hamiltonian is real), is chosen as

sign[Ψ(Sz
1 , . . . , Sz

N )] = (−1)nA↑ , (7.6)

where nA↑ is the number of ↑ spins on sublattice A, then a spin flip by the
hamiltonian always effects a sign change, i.e., Ψ(τ)/Ψ(σ) ≤ 0 in (7.5) when the
corresponding matrix element is non-zero. Thus, the ground-state wave-function
of a bipartite Heisenberg model can be chosen as real and then obeys the sign
rule (7.6), which is named after Marshall [98]. Since the hamiltonian conserves
the total magnetization, Marshall’s sign rule applies to the lowest-energy state
in every magnetization sector. The rule also can be generalized to higher-spin
models, as well as to bosonic systems, where kinetic-energy hopping terms are
similar to the pair-flip operators of the Heisenberg model.

Marshall signs and valence-bond states

In a variational calculation, a wave function with some adjustable parameters
is optimized by minimizing the expectation value of the hamiltonian of interest.
As we will discuss in detail later in this chapter, the valence-bond basis allows
for very interesting wave-function parametrizations that are ideally suited for
computational work. Knowing that the ground state of a model obeys Marshall’s
sign rule, we of course would like to make sure that any proposed variational
wave function in the valence-bond basis also obeys it. It is easy to see that if
the valence-bond singlets are defined as in (7.1), with sites a and b in sublattices
A and B, respectively, then Marshall’s rule in fact is satisfied [strictly speaking,
with the equally valid alternative definition with nB↑ instead of nA↑ in (7.6)]
when all the wave-function coefficients fα > 0 in the expansion (7.2). Thus, for a
non-frustrated system, we know that a positive-definite valence-bond expansion
is appropriate. This positive-definiteness is a crucial aspect of the computational
methods that we will discuss later on. Conversely, the non-positive-definiteness
for non-bipartite (frustrated) systems, implies that the applicability of these
schemes is more limited for such systems.

Marshall0s sign rule



|Vr� =
N/2�

b=1

(irb, jrb), r = 1, . . . (N/2)!

The valence bond basis for S=1/2 spins
(i, j) = (| ⇥i⇤j⌅ � | ⇤i⇥j⌅)/

⌃
2Valence-bonds between sublattice  A, B sites

A
B

Basis states; singlet products (obey Marshall’s sign rule)

|�� =
�

r

fr|Vr�

The valence bond basis is overcomplete and non-orthogonal

• expansion of arbitrary singlet state is not unique

(all fr positive for non-frustrated system)

�Vl|Vr⇥|Vr�|Vl�

All valence bond states overlap with each other
�Vl|Vr⇥ = 2N��N/2 N� = number of loops in overlap graph

Spin correlations from loop structure
⇤Vl|⇤Si · ⇤Sj |Vr⌅

⇤Vl|Vr⌅
=

�
3
4 (�1)xi�xj+yi�yj

0
(i,j in same loop)

(i,j in different loops)

More complicated matrix elements 

(e.g., dimer correlations) are also 

related to the loop structure

K.S.D. Beach and  A.W.S., 

Nucl. Phys. B 750, 142 (2006)



(-H)n projects out the ground state from an arbitrary state

H =
�

�i,j⇥

⌅Si · ⌅Sj = �
�

�i,j⇥

Hij , Hij = (1
4 � ⌅Si · ⌅Sj)

S=1/2 Heisenberg model

Project with string of bond operators
�

{Hij}

n⇥

p=1

Hi(p)j(p)|�⇥ � r|0⇥ (r = irrelevant)

Simple reconfiguration of bonds (or no change; diagonal)

• no minus signs for A→B bond ‘direction’ convention 

• sign problem does appear for frustrated systems

Action of bond operators

Hab|...(a, b)...(c, d)...� = |...(a, b)...(c, d)...�

Hbc|...(a, b)...(c, d)...� =
1
2

|...(c, b)...(a, d)...�
A BAB

(a,b)

(a,d)

(c,d)(c,b)

(i, j) = (| ⇥i⇤j⌅ � | ⇤i⇥j⌅)/
⌃

2

Projector Monte Carlo in the valence-bond basis
Liang, 1991; AWS, Phys. Rev. Lett 95, 207203 (2005)

(�H)n|�⇤ = (�H)n
�

i

ci|i⇤ ⇥ c0(�E0)n|0⇤



�

{Hij}

n⇥

p=1

Hi(p)j(p) =
�

k

Pk, k = 1, . . . Nn
b

Sampling the wave function
Simplified notation for operator strings

|��

Simplest trial wave function: a basis state |Vr�

The weight Wkr of a path is given by the number of 
off-diagonal operations (‘bond flips’) nflip

Hab|...(a, b)...(c, d)...� = |...(a, b)...(c, d)...�

Hbc|...(a, b)...(c, d)...� =
1
2

|...(c, b)...(a, d)...�
Wkr =

�
1
2

⇥nflip

n = ndia + nflip

Note: all paths contribute - no ‘dead’ (W=0) paths
Sampling: Trivial way: Replace m (m ≈ 2-4) operators at random

Paccept =
�

1
2

⇥nnew
flip �nold

flip

The state has to be re-propagated with the full operator string

• More efficient updating scheme exists (later....)

6-site chain

Pk|Vr� = Wkr|Vr(k)�



Expectation values: �A⇥ = �0|A|0⇥
Strings of singlet projectors

Pk =
n�

p=1

Hik(p)jk(p), k = 1, . . . , Nn
b (Nb = number of interaction bonds)

We have to project bra and ket states
�

k

Pk|Vr⇤ =
�

k

Wkr|Vr(k)⇤ ⇥ (�E0)nc0|0⇤

�

g

⇤Vl|P �
g =

�

g

⇤Vl(g)|Wgl ⇥ ⇤0|c0(�E0)n

|Vr��Vl| A

- Monte Carlo sampling 

   of operator strings

- Estimators based on 

   transition graphs

6-spin chain example: �A⇥ =
�

g,k�Vl|P �
g APk|Vr⇥�

g,k�Vl|P �
g Pk|Vr⇥

=
�

g,k WglWkr�Vl(g)|A|Vr(k)⇥
�

g,k WglWkr�Vl(g)|Vr(k)⇥



Sampling an amplitude-product state
A better trial state leads to faster n convergence
• bond-amplitude product state [Liang, Doucot, Anderson, 1990] 

|�0� =
�

k

N/2⇥

b=1

h(xrb, yrb)|Vk�

Update state by reconfiguring two bonds

d

c

b

a

Paccept =
h(xc, yc)h(xd, yd)
h(xa, ya)h(xb, yb)

If reconfiguration accepted
• calculate change in projection weight
• used for final accept/reject prob. 
S. Liang [PRB 42, 6555 (1990)]
• used parametrized state amplitudes
• determined parameters variationally
• improved state by projection

|Vr��Vl|� �A



Variational wave function (2D Heisenberg)
All amplitudes h(x,y) can be optimized  

[J. Lou and A.W.S., PRB 2007, AWS and H.-G. Evertz, PRB 2010]

• variational energy error 50% smaller than previously best (<0.1%)

• spin correlations deviate by less than 1% from exact values

• amplitudes decay as ∼1/r3

measurement procedures for equal-time observables with re-
spect to the original VB projector algorithm, we refer to the
literature for this aspect of the simulations.20,21,30

In some applications, instead of measuring a ground-state
expectation value !0"A"0#, one is interested in matrix ele-
ments of the form !R"A"0#, where "R# is a reference state,
normally the Néel state in the z-component basis. This cor-
responds to sampling the wave function itself $generating the
basis states with probability proportional to the positive-
definite wave-function coefficients%. The energy $including
excitation energies in different momentum sectors% can be
computed like this,20,21 and also calculations of entanglement
entropy can be formulated in this way.34–36 A mixed matrix
element can also easily be sampled in the spin-bond basis. In
this case, the loops terminating on the state "R# should never
be flipped because "R# is a single-spin configurations $in the
case of the Néel state—other reference states are also pos-
sible and would require other rules for the boundary loops%.

V. RESULTS

As a demonstration of the efficiency of the methods, we
present results for the sublattice magnetization Ms of the 2D
Heisenberg model. This quantity has been calculated in nu-
merous previous studies, but the currently best published es-
timate, Ms=0.3070$3%, obtained on the basis of T&0 QMC
results for L up to 16, is already more than ten years old.12

Recently, the density-matrix renormalization-group method
was used to calculate Ms on rectangular lattices with N
&200 sites, giving a result consistent with the above value
and with a similar precision.37 Results have also been ob-
tained using finite-T data and scaling forms that, in principle,
allow simultaneous T→0, L→! extrapolations. With L up
to 160 and 1 /T up to 12, Ref. 38 reported Ms=0.30793$3%.
This is higher than $and well outside the error bars of% the
T=0 results cited above. In order to resolve the discrepancy,
it would be useful to have ground-state results based on
larger lattices. Here we consider L up to 256.

Below we first discuss convergence aspects of the VB
method, including the behavior with different trial states, and
then present results and finite-size extrapolation of the sub-
lattice magnetization.

A. Variational calculations

We first discuss the amplitude-product states used as trial
states for the ground-state projection. The quality of the
variationally optimized states 'i.e., all amplitudes h$x ,y%
were determined by variational Monte Carlo simulations, as
explained in Sec. III( is illustrated in Fig. 5 for system sizes
L up to 80. Results for up to L=32 were previously presented
in Ref. 24—here we improve slightly on those results, thanks
to the more efficient sampling procedures allowing for better
statistics for the computed derivatives. The results are com-
pared to converged results of the QMC projector method
$which can be considered as exact to within small statistical
errors that are not visible in the graphs%. The relative error of
the variational energy is "0.1% for large systems. The sub-
lattice magnetization falls on a smooth curve in good agree-

ment $better than 1%% with the projected data for L up to
&24. For larger systems, the behavior becomes erratic, how-
ever, being higher or lower $outside the error bars% than the
projected data in a seemingly random way. This can be ex-
plained as due to the energy becoming less sensitive to the
long-range spin correlations for increasing L, i.e., there are
states with significantly different sublattice magnetizations
but energy expectation values that are the same to within the
precision of the simulations. To obtain the correct best sub-
lattice magnetization for large L $corresponding to the mini-
mum energy determined to extreme precision% with the varia-
tional approach therefore requires unreasonably long
simulations $which is true in general in variational calcula-
tions; not just with the amplitude-product states used here%.

B. Convergence of the ground-state projection

Turning now to results of the projector method, it is useful
to test the convergence as a function of the projection power
m for different trial wave functions. Clearly, the preferred
option is to use the best variational state available but opti-
mizing an amplitude-product state also takes some time $de-
pending on how close to the energy minimum one strives%,
and, as we have seen above, for large systems it may not
even be possible to find the truly optimal amplitudes. Figure
6 shows the energy and the sublattice magnetization for L
=32 versus m /N, obtained using trial states with amplitudes
h$r%=1 /rp, p=2,3 ,4, without any optimization, as well as
with amplitudes obtained in two independent optimization
runs. It is known24,39 that the optimal amplitudes decay as
1 /r3 asymptotically but the short-bond amplitudes show de-
viations from this form. Indeed, the best convergence is seen
for p=3 but with optimized amplitudes, the convergence is
still much faster. Although the two optimized variational
states have very similar energies, there are still clear differ-
ences in the convergence of the sublattice magnetization, re-
lated to the insensitivity of the variational energy to the long-
distance spin correlations.
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FIG. 5. $Color online% The energy $lower panel% and the squared
sublattice magnetization $upper panel% of the optimized variational
and ground-state projected states.
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Variational energy can be further

improved by including optimized

bond correlations; Lin et al. PRB 2012

(posted on course web site) 



Loop updates in the valence-bond basis
AWS and H. G. Evertz, PRB 2010

(ai, bi) = (↑i↓j − ↓i↑j)/
√

2

Put the spins back in a way compatible with the valence bonds

and sample in a combined space of spins and bonds

Loop updates similar to those in finite-T methods

(world-line and stochastic series expansion methods)

• good valence-bond trial wave functions can be used

• larger systems accessible

• sample spins, but measure using the valence bonds

|����|

A

More efficient ground state QMC algorithm → larger lattices 



⇤Vl|⇤Si · ⇤Sj |Vr⌅
⇤Vl|Vr⌅

=
�

3
4 (�1)xi�xj+yi�yj

0
(i,j in same loop)

(i,j in different loops)

Improved Valence-bond Estimators

�Vl|Vr⇥|Vr�|Vl�

The transition graphs give us 
improved estimators automatically

Put the spins back in: 
- staggered spin configurations on each loop 
- two ‘orientations’ (loop flips)

hM2
z,staggi =

1

4

NclusX

C=1

hn2
Ci

Some off-diagonal operators can also be considered

Average over all the two  
orientations of all the loops 
- 2No configurations -> determines overlap �Vl|Vr⇥ = 2N��N/2

4-spin correlations depend on 2 loops, etc



T>0 and T=0 algorithms side-by-side

• Computer implementations similar
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periodic time boundary conditions

Finite-temperature QMC 

(world lines, SSE,...)

!22"# and there is no explicit dependence in Eq. !26" on the
operator string !! ," ,e , f" and spin !i , j" indices. An example
configuration is shown in Fig. 4. On a bipartite lattice, the
weights are positive since minus signs present in the states
$Eq. !6"# compensate those arising from an odd number of
off-diagonal operators $Eq. !25"# !or, equivalently, all signs
could be eliminated by a sublattice rotation2".

C. Sampling method

We now briefly describe the Monte Carlo sampling pro-
cedures. Starting with VB configurations Vr , Vl !where nor-
mally one would take Vr=Vl for simplicity" and compatible
spin configurations Zr=Zl, an initial string containing only
diagonal operators Hab!1" can be used !consistent with the
constraint that each operator must act on two antiparallel
spins". Successive configurations maintaining the constraints
are generated with three types of updates.

In the first update—the “diagonal update”—the combined
string P!"

ef
= !P"

f
"TP!

e
!where the transpose T of an operator

sequence just corresponds to writing it in the reverse order,
corresponding to acting with it on a bra state instead of a ket"
containing 2m operators is traversed and each diagonal op-
erator in it is updated !moved to a randomly selected bond",
under the condition that it acts on antiparallel spins. This step
corresponds to changing the vertex breakup in the original
world-line loop scheme.1,2 As in the SSE method,5,10 the con-
straints are checked by keeping the single state Z!p−1",
which is needed for moving a diagonal operator at location p
in the string. This state is obtained by acting on the originally
stored ket spin configuration Zr!0"=Zr with the first p opera-
tors in the sequence. It is changed !by flipping two spins"
whenever an off-diagonal operator is encountered in the
course of traversing the positions p=1, . . . ,2m. At the end of
this procedure, the stored bra state is obtained, Zr!2m"=Zl,
for a valid configuration.

In a second updating stage—the loop update—a linked
list of operator vertices is first constructed. A vertex consists
of the spin states “entering” and “exiting” an operator, as
shown in Fig. 4. They connect, forming loops. The only dif-
ference with respect to the operator loops in the SSE method
is that a loop can now be connected to the ket or bra VB
state, and the valence bonds constitute parts of such loops

!replacing the periodic boundary conditions used at T#0".
To keep nonzero !indeed, constant" matrix elements of the
operators Hab, all spins on a loop have to be flipped together,
in the process changing also Hab!1"↔Hab!2". Each loop is
flipped with probability 1/2. In practice, all loops are con-
structed, and the random decision of whether or not to flip a
loop is made before the loop is constructed. Vertices in a
loop that is not to be flipped are just flagged as visited so that
the same loop is not traversed more than once !i.e., a loop
construction is always started from a vertex leg that has not
yet been visited".

The reason for constructing all the clusters and flipping
each with probability 1/2, instead of generating single clus-
ters starting from random seed locations and flipping them
with probability 1 !as in the classical Wolff method31", is that
the de facto loop structure is only changed when performing
the diagonal updates. One would therefore potentially gener-
ate the same cluster several times, which would lead to lower
efficiency compared to uniquely identifying all clusters and
flipping each at most once. In principle, one could modify
the algorithm with combined diagonal and cluster updates
but this is more complicated and would probably not lead to
improvements in efficiency in most cases.

A flipped loop including one or several VBs will cause
spin flips in the stored spin configurations Zl or Zr. In the
loop updating procedure, we do not have to explicitly keep
track of any other spins than those in Zl and Zr. The four
spins at the operators !the vertex legs" are irrelevant at the
loop updating stage because all the vertices automatically
involve only operations on antiparallel spins, both before and
after a loop flip. For each vertex encountered when con-
structing a loop, we therefore simply have to change the
operator-type index, 1↔2, in the list of operators !i.e., the
same list P!"

ef
used in the diagonal update and to construct

the linked vertex list".
The third type of update—the state update—is identical to

the VB reconfigurations described in Sec. III for the varia-
tional calculation. Normally one would use an amplitude-
product state with coefficients in Eq. !9", which enter in the
weight $Eq. !26"#. Reconfigurations of the bonds can be car-
ried out with either two-bond or bond-loop moves, as ex-
plained in Sec. III. They only change the loop connections at
the VB “end caps.”

D. Measuring observables

When measuring operator expectation values, one can go
back to a pure VB !=loop" representation, using the estimator
$Eq. !23"#. This corresponds to summing over all loop orien-
tations. Most quantities of interest can be expressed in terms
of the loops in the transposition graph corresponding to
%Vl!"" &Vr!!"'.2,23,29,30 Note that these transposition-graph
loops can also be obtained from the “space-time” loops con-
structed in the updates, by connecting the sites !in practice,
just assigning a label, the loop number $i" crossed by the
same loop at the propagation midpoint !indicated by a
dashed line in Fig. 4". The space-time loops can also provide
access to imaginary-time correlation functions2 in the ground
state !see Sec. IV A". Since there are no differences in the

FIG. 4. !Color online" A VB-spin-operator configuration con-
tributing to %%&!−H"2m&%' for a four-site system with m=2. The
arcs to the left and right indicate VB states %Vl&, &Vr' and the two
columns of filled and open circles represent ↑ and ↓ spins of com-
patible spin states %Zj

l
&, &Zj

r
'. The spins at the four operators !verti-

ces" are also indicated. There are three loops, part of which consist
of VBs. Expectation values are evaluated at the midpoint indicated
by the dashed line.
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open boundaries capped by 

valence bonds (2-spin singlets)

[AWS, HG Evertz, 2010]

Ground state projection

Trial state can conserve relevant 

ground state quantum numbers 

(S=0, k=0,...)
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Conclusion: 
• m/N >> e0/Δ


• in valence-bond basis Δ is the singlet-singlet gap

• trial state also can have fixed momentum k=0 (e.g., ampl. product state)

    - only k=0 excited states (gap)

In some cases, the convergence of the sublattice magne-
tization is nonmonotonic !while the energy always has to
converge monotonically", as illustrated in Fig. 7. The behav-
ior depends on details of the variationally optimized ampli-
tudes; likely nonmonotonicity can be traced to incomplete
optimization.

C. Extrapolation of the sublattice magnetization

We now discuss large-scale calculations for the 2D
Heisenberg model. We have calculated Ms

2 as well as the
spin-correlation function C!L /2,L /2", which equals Ms

2

when L→!, for lattices with L up to 256, making sure that
the results are well converged to the ground state in all cases.
The raw data are listed in Table I The results are graphed
versus 1 /L in Fig. 8, along with polynomial fits11 used to
extrapolate to L=!. The extrapolated Ms

2 and C!L /2,L /2"
agree statistically and are stable with respect to the range of

L included and the order of the polynomials. The statistics is
slightly better for C and the polynomial needed to fit it is one
order smaller than for Ms

2. Based on C, we estimate Ms
=0.30743!1", somewhat above the previous T=0 results.12,37

The error bar is more than an order of magnitude smaller.
The higher value from finite-T simulations38 can be ruled out
!differing by more than 15 of its error bars from our result".
This illustrates difficulties with unknown corrections to the
!T ,L" scaling forms. Extrapolating T=0 properties directly
as a function of a single parameter !1 /L" can in general be
expected to be more reliable. Indeed, since the appearance of
the !unpublished" original short version of the present
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FIG. 6. !Color online" Convergence of the energy !lower panel"
and the squared sublattice magnetization !upper panel" for L=32
states projected using different trial states; amplitude-product states
with amplitudes h!r"=1 /rp !p=2,3 ,4" as well as with h!x ,y" deter-
mined by minimizing the energy !in two independent optimizations,
giving slightly different amplitudes".
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FIG. 7. !Color online" Convergence of the squared sublattice
magnetization for L=64 !L=20 in the inset", using an optimized
trial state. The dashed lines show the result " error bar of SSE
calculations !using loop updates" at very low temperatures !#
=8192 in the case of L=64".

TABLE I. Projector QMC results for the squared sublattice
magnetization and the correlation function at maximal separation
for several L$L lattices. The numbers within parentheses indicate
the statistical error !one standard deviation of the average" in the
last digit of the displayed values.

L Ms
2 C!L /2,L /2"

8 0.177843!1" 0.137595!2"
10 0.159372!2" 0.128552!2"
12 0.147448!2" 0.122586!2"
14 0.139153!2" 0.118380!2"
16 0.133067!2" 0.115263!2"
18 0.128412!2" 0.112857!2"
20 0.124748!2" 0.110954!2"
24 0.119350!2" 0.108125!2"
28 0.115573!2" 0.106126!2"
32 0.112782!2" 0.104636!2"
40 0.108943!3" 0.102571!3"
48 0.106431!3" 0.101208!3"
56 0.104661!3" 0.100239!3"
64 0.103345!3" 0.099514!4"
80 0.101523!4" 0.098501!4"
96 0.100325!5" 0.097831!5"

128 0.098843!16" 0.096990!17"
192 0.097371!11" 0.096161!11"
256 0.096669!17" 0.095765!16"
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FIG. 8. !Color online" Finite-size scaling of the sublattice mag-
netization. The curves are polynomials fitted to 16%L%256 data
!cubic for C and fourth order for Ms

2". The inset shows the deviation
of the simulation results for C!L /2,L /2" from the corresponding fit.
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32⇥ 32 Heisenberg



L⨉L lattices up to 256⨉256, T→0

AWS & HG Evertz 2010
ms = 0.30743(1)

H = J
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Si · Sj

Long-range order: <ms2> > 0 for N→∞

 Quantum Monte Carlo 
- finite-size calculations
- no approximations
- extrapolation to infinite size

Reger & Young (world-line) 1988
ms = 0.30(2)
� 60 % of classical value

Results for 2D Heisenberg model
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