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Common bases for quantum spin systems
Lattice of S=1/2 spins, e.qg., Heisenberg antiferromagnet
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The most common basis is that of ‘up’ and ‘down’ spins
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One can also use eigenstates of two or more spins
 dimer singlet-triplet basis
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The hamiltonian is more compllcated In this basis
- but some times can be used to solve sign problems

[S. Wessel et al. Phys. Rev. B 98, 174432 (2018)]




Marshall’s sign rule for bipartite antiferromagnets
Consider a bipartite S=1/2 Heisenberg model
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and a proposed wave function to describe its ground state
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In a variational calculation we minimize the energy wrt some parameters
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An extreme variational approach is to conS|der each wave function coefficient
(o) as an individually adjustable parameter

Let’s focus on the signs (or phases) of the coefficients:
— diagonal energy contributions independent of the signs
- off-diagonal matrix elements positive; optimal E if wave-function signs change

U*(7)/U* () = ¥ |W(7)|/|T(0)] E must be real (y can also be real)
: - minimum for all negative signs
Marshall’s sign rule T (7)) T(o) < 0

sign always
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The valence bond basis for S=1/2 spins

Valence-bonds between sublattice A, B sites (i) = (| T:1;) — | LiT;))/V2
Basis states; singlet products (obey Marshall’s sign rule)
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The valence bond basis is overcomplete and non-orthogonal

- expansion of arbitrary singlet state is not unique
W) = Z i (all f- positive for non-frustrated system)
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All valence bond states overlap with each other
A 9No—N/2 N = number of loops in overlap graph

Spin correlations from loop structure
<‘/Z‘§z : §]|Vr> . { §(_1)$i—fb‘j+yz‘—yg‘ (i,j in same loop)
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More complicated matrix elements
(e.g., dimer correlations) are also
related to the loop structure

K.S.D. Beach and A.W.S,,
Nucl. Phys. B 750, 142 (2006)
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Projector Monte Carlo in the valence-bond basis
Liang, 1991; AWS, Phys. Rev. Lett 95, 207203 (2005)

(-H)" projects out the ground state from an arbitrary state
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S=1/2 Heisenberg model
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Project with string of bond operators
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Simple reconfiguration of bonds (or no change; diagonal)
* no minus signs for A—B bond ‘direction’ convention
* sign problem does appear for frustrated systems




Sampling the wave function
Simplified notation for operator strings

6-site chain
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Simplest trial wave function: a basis state |1/) ( ( I
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off-diagonal operations (‘bond flips’) niip Py
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Note: all paths contribute - no ‘dead’ (W=0) paths
Sampling: Trivial way: Replace m (m = 2-4) operators at random
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The state has to be re-propagated with the full operator string
- More efficient updating scheme exists (later....)




Expectation values: (A) = (0|A]|0)
Strings of singlet projectors

Pk = H Hik(p)jk (p)> = 1, = 7Ngv, (Nb = number of interaction bOIldS)
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We have to project bra and ket states
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Sampling an amplitude-product state

A better trial state leads to faster n convergence
e bond-amplitude product state [Liang, Doucot, Anderson, 1990]
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* used parametrized state amplitudes -
* determined parameters variationally Vi p; 5 A e P, V)
* improved state by projection Z Z




Variational wave function (2D Heisenberg)

All amplitudes h(x,y) can be optimized

[J. Lou and A\W.S., PRB 2007, AWS and H.-G. Evertz, PRB 2010]

* variational energy error 50% smaller than previously best (<0.1%)

* spin correlations deviate by less than 1% from exact values
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More efficient ground state QMC algorithm — larger lattices

Loop updates in the valence-bond basis
AWS and H. G. Evertz, PRB 2010

Put the spins back in a way compatible with the valence bonds
(ai,bi) = (Taly — Li13)/v2

and sample in a combined space of spins and bonds
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Loop updates similar to those in finite-T methods
(world-line and stochastic series expansion methods)
e good valence-bond trial wave functions can be used
e larger systems accessible

e sample spins, but measure using the valence bonds




Improved Valence-bond Estimators

The transition graphs give us
iImproved estimators automatically

Put the spins back in: Vi)

- staggered spin configurations on each loop
- two ‘orientations’ (loop flips) ?

Average over all the two ‘

orientations of all the loops v t t v
- 2No configurations -> determines overlap (V|V,) = 27o—1V/2
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Some off-diagonal operators can also be considered
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(i,j in different loops)

4-spin correlations depend on 2 loops, etc




T>0 and T=0 algorithms side-by-side

Finite-temperature QMC
(world lines, SSE,...)
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periodic time boundary conditions

e Computer implementations similar

Ground state projection
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open boundaries capped by

valence bonds (2-spin singlets)
[AWS, HG Evertz, 2010]

Trial state can conserve relevant

ground state quantum numbers
(S=0, k=0,...)




Convergence
Trial state expanded in H-eigenstates 0.14
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Conclusion:
e Mm/N >> ep/A

e in valence-bond basis A is the singlet-singlet gap
e trial state also can have fixed momentum k=0 (e.g., ampl. product state)

- only k=0 excited states (gap)

32 x 32 Heisenberg
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Results for 2D Heisenberg model
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Sublattice magnetization H=1J Z S 7‘: e T j:;
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Long-range order. <ms2>> 0 for N—

Quantum Monte Carlo
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Frustrated systems

Consider the full valence-bond basis, including
e normal bonds, connecting A,B spins (sublattices)
e frustrated bonds, connecting A A or B,B

For a non-frustrated system
 projection eliminates frustarted bonds
X

frustrated bonds norm ll bonds

For a frustrated system
e frustrated bonds remain and cause a sign problem
o frustrated bonds can be eliminated using over-completeness

a b C d ki a b C d a b C d

In a simulation, one of the branches can be randomly chosen
 but there is a sign problem




