
Quantum Magnetism and  
Quantum Criticality

• Classical and quantum phase transitions; RG and scaling 
• Finite-size scaling of simulation data 
• Example: dimerized Heisenberg models 
• J-Q models; valence-bond solids without QMC sign problem 
• Deconfined quantum criticality



Finite-size scaling - “phenomenological RG”

⇠ / |�|�⌫ , � = T � TcCorrelation length divergent for T → Tc
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FIGURE 14. Monte Carlo results for the susceptibility (55) of the Ising model on several different L×L
lattices. (a) shows the temperature dependence, with the vertical line indicating Tc. Note the vertical log
scale. In (b) the data has been scaled using the exact values of the Ising exponents, γ = 7/4 and ν = 1,
and the exact value of Tc in t = (T −Tc)/Tc.

which, using ξ ∼ |t|−1/ν , we can also write as

Q(t,L) = Lσg(tL1/ν). (65)

This scaling law should hold both above (t > 0) and below (t < 0) the critical point.
Exactly at Tc, we recover the size-scaling Q(0,L) ∼ Lσ . To relate σ to the standard
critical exponents, we can use the fact that, for fixed t close to 0, as the system grows the
behavior for any t ̸= 0 eventually has to be given by Eq. (59);Q(t,L→∞)∼ |t|−κ (where
κ is negative for a singular non-divergent quantity, e.g., the for the order parameter we
have κ =−β ). To obtain this form, the scaling function g(x) in (65) must asymptotically
behave as g(x)∼ x−κ for x→ ∞. In order for the size-dependence in (65) to cancel out,
we therefore conclude that σ = κ/ν , i.e.,

Q(t,L) = Lκ/νg(tL1/ν). (66)

To extract the scaling function g(x) using numerical data, one can define

yL = Q(t,L)L−κ/ν , xL = tL1/ν , (67)

and plot yL versus xL for different system sizes. If the scaling hypothesis is correct,
data for different (large) system sizes should fall onto the same curve, which then is
the scaling function (this is referred to as curves collapsing onto each other); g(x) =
yL→∞(x). Fig. 14 illustrates this using Monte Carlo data for the magnetic susceptibility
of the 2D Ising model. The peak location in panel (a) clearly moves toward the known
Tc with increasing L. After scaling the data according to the above procedures, as shown
in panel (b), the curves indeed collapse almost onto each other close to t = 0, but further
away from the critical point deviations are seen for the smaller systems. These are due to
corrections to scaling, which in principle can be described with subleading exponents.
We can apply the scaling form (66) to the correlation length itself, for which κ = ν and

the L-scaling is independent of model-specific exponents. In cases where the universality
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Close to critical point: A(L, T ) = L�/⌫g(⇠/L) = L�/⌫f(�L1/⌫)

Energy scale lowered with increasing system size; L is length scale at criticality



Rough principles of renormalization
1) Kadanoff: Real-space blocking 

Effective degrees of freedom of blocks reflect possible order parameters
- interactions between blocks evolve to some fixed point

E
renormalized 
interactions in 
low-energy subspace

2) Low-energy effective model
 
Repeated decimation of 
high-energy space
- interactions renormalize

…) many other schemes, practical or mainly conceptual
Essence: an infinite number of effective couplings 𝜆i

- flow as length scale is increased (energy scale is decreased): �i(L) = �0
iL

y
i

Relevant (yi>0) or irrelevant (yi<0), 𝜆i0 depends on model parameters
- Very few relevant couplings (“fields”) 



Relevant and irrelevant perturbations of a critical point

hO(~r1)O(~r2)i =
X

i

air
�2�i

Critical correlation function of some operator

The scaling dimensions 𝛥i correspond to the spectrum of ‘orthogonal 
operators’ (continuum fields) contained in the lattice operator O
- Loosely speaking, we say that the smallest 𝛥i is the scaling dimension of O 

h
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We present a way to visualize and quantify renormalization group flows in a space of observables
computed using Monte Carlo simulations. We apply the method to classical three-dimensional clock
models, i.e., the planar (XY) spin model perturbed by a Zq symmetric anisotropy field. The method
performs significantly better than standard techniques for determining the scaling dimension yq of
the Zq field at the critical point if it is irrelevant (q � 4). Furthermore, we analyze all stages of the
complex renormalization flow, including the cross-over from the U(1) Nambu-Goldstone fixed point
to the ultimate Zq symmetry-breaking fixed point due to the relevance of the Zq field inside the
ordered phase. We expect our method to be particularly useful in the context of quantum-critical
points with inherent dangerously irrelevant operators that cannot be tuned away microscopically
but whose renormalization flows can be analyzed exactly as we do here for the clock models.

The renormalization group (RG) provides a powerful
framework both for conceptual understanding of phase
transitions and for calculations [1–3]. A key concept is
that a universal critical point can be stable or unstable
in the presence of perturbations that exist at the micro-
scopic level in real physical systems or models. Whether
or not a perturbation is relevant and destabilizes the crit-
ical point depends on its scaling dimension. Similarly, an
ordered state can also be stable or unstable under the
influence of perturbations. Under an RG process, a sys-
tem flows in a space of couplings which change as the
length scale is increased under coarse graining of the mi-
croscopic interactions, until finally reaching a fixed point
corresponding to a phase or phase transition. At this
point, all the initially present irrelevant couplings have
decayed to zero.

RG flows can also be defined of physical observables
in finite-size calculations, e.g., Monte Carlo (MC) simu-
lations. The RG framework leads to scaling forms that
are very useful for analyzing numerical data—a proce-
dure some times called phenomenological renormaliza-
tion [3–5]. Here we build on these ideas and extend the
standard finite-size scaling of an observable to an entire
flow in a space of two or more observables directly as-
sociated with relevant or irrelevant couplings of inter-
est. The method is particularly useful for visualizing
and quantifying so-called dangerously irrelevant pertur-
bations (DIPs)—those that are irrelevant at a critical
point but become relevant upon coarse graining at any
point inside an adjacent ordered phase [6].

Scaling and RG flows.—Consider a d-dimensional lat-
tice model of length L which can be tuned to a critical
point by a relevant field t; for definiteness we use the

temperature (t = T
c

� T ). With a local operator m
i

and its conjugate field h, we add a term hM = h
P

i

m
i

to the Hamiltonian H; for simplicity we will just write
M = Ldm. We ask whether this perturbation is relevant
or irrelevant, and we would like to find the corresponding
scaling dimension � of m.
In a conventional RG calculation, a flowing field h0 is

computed under a scale transformation. Here we will in-
stead vary the system size, which e↵ectively lowers the
energy scale, and calculate the response hmi using MC
simulations. Together with some quantity Q character-
izing the critical point and phases of the system, we can
trace out curves (MC RG flows) (Q, hmi)

L

as L increases
for fixed values of h and T . These flows are very similar
to conventional RG flows in the space (t, h0).

To relate the flows to exponents, the singular part of
the free-energy density can be expressed in the finite-size
scaling form f

s

(t, h, L) = L�dF
s

(tL1/⌫ , hLy). At t = 0,
the h dependent part is f

s

/ hLy�d to leading order,
and from the Hamiltonian we have f

s

= hhmi / hL��;
thus, the standard relationship y = d � � holds. The
perturbation is irrelevant at the critical point if y < 0,
but, in the case of a DIP, it eventually becomes relevant
as L increases in the ordered phase. The cross-over length
scale ⇠0 / t�⌫

0
(only for t > 0, i.e., T < T

c

) diverges faster
than the conventional correlation length ⇠ / |t|�⌫ .

To take both divergent length scales properly into ac-
count, i.e., to reach the regime where tL1/⌫0

is large, we
adopt the two-length scaling hypothesis [7] and write the
free energy as

f
s

(t, h, L) = L�dF
s

(tL1/⌫ , tL1/⌫0
, hLy,�L�!), (1)

where we have also included a generic scaling correction
with exponent ! > 0. The exponents ⌫0 and y arise

From Hamiltonian: 
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framework both for conceptual understanding of phase
transitions and for calculations [1–3]. A key concept is
that a universal critical point can be stable or unstable
in the presence of perturbations that exist at the micro-
scopic level in real physical systems or models. Whether
or not a perturbation is relevant and destabilizes the crit-
ical point depends on its scaling dimension. Similarly, an
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length scale is increased under coarse graining of the mi-
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corresponding to a phase or phase transition. At this
point, all the initially present irrelevant couplings have
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dure some times called phenomenological renormaliza-
tion [3–5]. Here we build on these ideas and extend the
standard finite-size scaling of an observable to an entire
flow in a space of two or more observables directly as-
sociated with relevant or irrelevant couplings of inter-
est. The method is particularly useful for visualizing
and quantifying so-called dangerously irrelevant pertur-
bations (DIPs)—those that are irrelevant at a critical
point but become relevant upon coarse graining at any
point inside an adjacent ordered phase [6].

Scaling and RG flows.—Consider a d-dimensional lat-
tice model of length L which can be tuned to a critical
point by a relevant field t; for definiteness we use the
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� T ). With a local operator m
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P

i

m
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or irrelevant, and we would like to find the corresponding
scaling dimension � of m.
In a conventional RG calculation, a flowing field h0 is

computed under a scale transformation. Here we will in-
stead vary the system size, which e↵ectively lowers the
energy scale, and calculate the response hmi using MC
simulations. Together with some quantity Q character-
izing the critical point and phases of the system, we can
trace out curves (MC RG flows) (Q, hmi)

L

as L increases
for fixed values of h and T . These flows are very similar
to conventional RG flows in the space (t, h0).

To relate the flows to exponents, the singular part of
the free-energy density can be expressed in the finite-size
scaling form f

s

(t, h, L) = L�dF
s

(tL1/⌫ , hLy). At t = 0,
the h dependent part is f

s

/ hLy�d to leading order,
and from the Hamiltonian we have f

s

= hhmi / hL��;
thus, the standard relationship y = d � � holds. The
perturbation is irrelevant at the critical point if y < 0,
but, in the case of a DIP, it eventually becomes relevant
as L increases in the ordered phase. The cross-over length
scale ⇠0 / t�⌫
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(only for t > 0, i.e., T < T

c

) diverges faster
than the conventional correlation length ⇠ / |t|�⌫ .

To take both divergent length scales properly into ac-
count, i.e., to reach the regime where tL1/⌫0

is large, we
adopt the two-length scaling hypothesis [7] and write the
free energy as

f
s

(t, h, L) = L�dF
s

(tL1/⌫ , tL1/⌫0
, hLy,�L�!), (1)

where we have also included a generic scaling correction
with exponent ! > 0. The exponents ⌫0 and y arise

Taylor expand at t=0:
h

H = H0 + h
P

i mi = hM (⌘ hNm = hLdm)

Consider a critical Hamiltonian H0 and add some perturbation M

- The effect of the perturbation grows with L (it is relevant) only if y>0
- Irrelevant perturbation if y<0 (the critical point stays the same)
- A relevant perturbation changes the critical point in some way
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but whose renormalization flows can be analyzed exactly as we do here for the clock models.

The renormalization group (RG) provides a powerful
framework both for conceptual understanding of phase
transitions and for calculations [1–3]. A key concept is
that a universal critical point can be stable or unstable
in the presence of perturbations that exist at the micro-
scopic level in real physical systems or models. Whether
or not a perturbation is relevant and destabilizes the crit-
ical point depends on its scaling dimension. Similarly, an
ordered state can also be stable or unstable under the
influence of perturbations. Under an RG process, a sys-
tem flows in a space of couplings which change as the
length scale is increased under coarse graining of the mi-
croscopic interactions, until finally reaching a fixed point
corresponding to a phase or phase transition. At this
point, all the initially present irrelevant couplings have
decayed to zero.

RG flows can also be defined of physical observables
in finite-size calculations, e.g., Monte Carlo (MC) simu-
lations. The RG framework leads to scaling forms that
are very useful for analyzing numerical data—a proce-
dure some times called phenomenological renormaliza-
tion [3–5]. Here we build on these ideas and extend the
standard finite-size scaling of an observable to an entire
flow in a space of two or more observables directly as-
sociated with relevant or irrelevant couplings of inter-
est. The method is particularly useful for visualizing
and quantifying so-called dangerously irrelevant pertur-
bations (DIPs)—those that are irrelevant at a critical
point but become relevant upon coarse graining at any
point inside an adjacent ordered phase [6].

Scaling and RG flows.—Consider a d-dimensional lat-
tice model of length L which can be tuned to a critical
point by a relevant field t; for definiteness we use the

temperature (t = T
c

� T ). With a local operator m
i

and its conjugate field h, we add a term hM = h
P

i

m
i

to the Hamiltonian H; for simplicity we will just write
M = Ldm. We ask whether this perturbation is relevant
or irrelevant, and we would like to find the corresponding
scaling dimension � of m.
In a conventional RG calculation, a flowing field h0 is

computed under a scale transformation. Here we will in-
stead vary the system size, which e↵ectively lowers the
energy scale, and calculate the response hmi using MC
simulations. Together with some quantity Q character-
izing the critical point and phases of the system, we can
trace out curves (MC RG flows) (Q, hmi)

L

as L increases
for fixed values of h and T . These flows are very similar
to conventional RG flows in the space (t, h0).

To relate the flows to exponents, the singular part of
the free-energy density can be expressed in the finite-size
scaling form f

s

(t, h, L) = L�dF
s

(tL1/⌫ , hLy). At t = 0,
the h dependent part is f

s

/ hLy�d to leading order,
and from the Hamiltonian we have f

s

= hhmi / hL��;
thus, the standard relationship y = d � � holds. The
perturbation is irrelevant at the critical point if y < 0,
but, in the case of a DIP, it eventually becomes relevant
as L increases in the ordered phase. The cross-over length
scale ⇠0 / t�⌫

0
(only for t > 0, i.e., T < T

c

) diverges faster
than the conventional correlation length ⇠ / |t|�⌫ .

To take both divergent length scales properly into ac-
count, i.e., to reach the regime where tL1/⌫0

is large, we
adopt the two-length scaling hypothesis [7] and write the
free energy as

f
s

(t, h, L) = L�dF
s

(tL1/⌫ , tL1/⌫0
, hLy,�L�!), (1)

where we have also included a generic scaling correction
with exponent ! > 0. The exponents ⌫0 and y arise

!
y = scaling dimension of h

RG description of effects of hM at a critical point. Free energy density:
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framework both for conceptual understanding of phase
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that a universal critical point can be stable or unstable
in the presence of perturbations that exist at the micro-
scopic level in real physical systems or models. Whether
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ical point depends on its scaling dimension. Similarly, an
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croscopic interactions, until finally reaching a fixed point
corresponding to a phase or phase transition. At this
point, all the initially present irrelevant couplings have
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lations. The RG framework leads to scaling forms that
are very useful for analyzing numerical data—a proce-
dure some times called phenomenological renormaliza-
tion [3–5]. Here we build on these ideas and extend the
standard finite-size scaling of an observable to an entire
flow in a space of two or more observables directly as-
sociated with relevant or irrelevant couplings of inter-
est. The method is particularly useful for visualizing
and quantifying so-called dangerously irrelevant pertur-
bations (DIPs)—those that are irrelevant at a critical
point but become relevant upon coarse graining at any
point inside an adjacent ordered phase [6].

Scaling and RG flows.—Consider a d-dimensional lat-
tice model of length L which can be tuned to a critical
point by a relevant field t; for definiteness we use the
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� T ). With a local operator m
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and its conjugate field h, we add a term hM = h
P

i
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to the Hamiltonian H; for simplicity we will just write
M = Ldm. We ask whether this perturbation is relevant
or irrelevant, and we would like to find the corresponding
scaling dimension � of m.
In a conventional RG calculation, a flowing field h0 is

computed under a scale transformation. Here we will in-
stead vary the system size, which e↵ectively lowers the
energy scale, and calculate the response hmi using MC
simulations. Together with some quantity Q character-
izing the critical point and phases of the system, we can
trace out curves (MC RG flows) (Q, hmi)
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as L increases
for fixed values of h and T . These flows are very similar
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To relate the flows to exponents, the singular part of
the free-energy density can be expressed in the finite-size
scaling form f
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- t=0 at critical point; e.g., t=T-Tc (relevant field)



Symmetric and symmetry-breaking fields

h

T
critical point

Example: Ising model
- classical model; energy and entropy
At h=0, T tunes to the critical point
- the ‘thermal field’ is t=T-Tc

Changing T changes the prefactor of E in

- E is the operators conjugate to T
e�E(�)/T

Set t=0, tune the magnetic field; E → E+hM
- h ≠ 0 breaks the Z2 symmetry of the model; relevant but not symmetric

Normally systems have one relevant symmetric field
- multi-critical points have more than one

hE(r)E(0) ⇠ r�2�0 , �0 = d� 1/⌫i

hM(r)M(0) ⇠ r�2�M , �M = d� 1/⌫Mi
The exponent 𝛥M is related to the exponent we call 𝜂

hM(r)M(0) ⇠ r�(d�2+⌘) �M = (d� 2 + ⌘)/2i
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Maps to Ising model even though no apparent Ising (Z2) symmetry
Order parameter is density; scalar corresponds to <m> + constant

Tuning the relevant field corresponds to moving tangentially to
the coexistence curve from the critical point (not so easy)
Tuning the symmetry-breaking field corresponds to moving perpendicularly
to the coexistence curve
Moving along some generic path gives a mix of the two scaling dimensions
in correlation functions; one eventually dominates



Example: O(3) transition in 2+1 dimensions (2D quantum) 

Critical at J2/J1 ≈ 2.5202
The J1 and J2 terms are both relevant (no entropy at T=0)
- changing one of them takes us away from the critical point 
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We present a way to visualize and quantify renormalization group flows in a space of observables
computed using Monte Carlo simulations. We apply the method to classical three-dimensional clock
models, i.e., the planar (XY) spin model perturbed by a Zq symmetric anisotropy field. The method
performs significantly better than standard techniques for determining the scaling dimension yq of
the Zq field at the critical point if it is irrelevant (q � 4). Furthermore, we analyze all stages of the
complex renormalization flow, including the cross-over from the U(1) Nambu-Goldstone fixed point
to the ultimate Zq symmetry-breaking fixed point due to the relevance of the Zq field inside the
ordered phase. We expect our method to be particularly useful in the context of quantum-critical
points with inherent dangerously irrelevant operators that cannot be tuned away microscopically
but whose renormalization flows can be analyzed exactly as we do here for the clock models.

The renormalization group (RG) provides a powerful
framework both for conceptual understanding of phase
transitions and for calculations [1–3]. A key concept is
that a universal critical point can be stable or unstable
in the presence of perturbations that exist at the micro-
scopic level in real physical systems or models. Whether
or not a perturbation is relevant and destabilizes the crit-
ical point depends on its scaling dimension. Similarly, an
ordered state can also be stable or unstable under the
influence of perturbations. Under an RG process, a sys-
tem flows in a space of couplings which change as the
length scale is increased under coarse graining of the mi-
croscopic interactions, until finally reaching a fixed point
corresponding to a phase or phase transition. At this
point, all the initially present irrelevant couplings have
decayed to zero.

RG flows can also be defined of physical observables
in finite-size calculations, e.g., Monte Carlo (MC) simu-
lations. The RG framework leads to scaling forms that
are very useful for analyzing numerical data—a proce-
dure some times called phenomenological renormaliza-
tion [3–5]. Here we build on these ideas and extend the
standard finite-size scaling of an observable to an entire
flow in a space of two or more observables directly as-
sociated with relevant or irrelevant couplings of inter-
est. The method is particularly useful for visualizing
and quantifying so-called dangerously irrelevant pertur-
bations (DIPs)—those that are irrelevant at a critical
point but become relevant upon coarse graining at any
point inside an adjacent ordered phase [6].

Scaling and RG flows.—Consider a d-dimensional lat-
tice model of length L which can be tuned to a critical
point by a relevant field t; for definiteness we use the

temperature (t = T
c

� T ). With a local operator m
i

and its conjugate field h, we add a term hM = h
P

i

m
i

to the Hamiltonian H; for simplicity we will just write
M = Ldm. We ask whether this perturbation is relevant
or irrelevant, and we would like to find the corresponding
scaling dimension � of m.
In a conventional RG calculation, a flowing field h0 is

computed under a scale transformation. Here we will in-
stead vary the system size, which e↵ectively lowers the
energy scale, and calculate the response hmi using MC
simulations. Together with some quantity Q character-
izing the critical point and phases of the system, we can
trace out curves (MC RG flows) (Q, hmi)

L

as L increases
for fixed values of h and T . These flows are very similar
to conventional RG flows in the space (t, h0).

To relate the flows to exponents, the singular part of
the free-energy density can be expressed in the finite-size
scaling form f

s

(t, h, L) = L�dF
s

(tL1/⌫ , hLy). At t = 0,
the h dependent part is f

s

/ hLy�d to leading order,
and from the Hamiltonian we have f

s

= hhmi / hL��;
thus, the standard relationship y = d � � holds. The
perturbation is irrelevant at the critical point if y < 0,
but, in the case of a DIP, it eventually becomes relevant
as L increases in the ordered phase. The cross-over length
scale ⇠0 / t�⌫

0
(only for t > 0, i.e., T < T

c

) diverges faster
than the conventional correlation length ⇠ / |t|�⌫ .

To take both divergent length scales properly into ac-
count, i.e., to reach the regime where tL1/⌫0

is large, we
adopt the two-length scaling hypothesis [7] and write the
free energy as

f
s

(t, h, L) = L�dF
s

(tL1/⌫ , tL1/⌫0
, hLy,�L�!), (1)

where we have also included a generic scaling correction
with exponent ! > 0. The exponents ⌫0 and y arise

!

2𝛥≈3.188 → y≈1.406
- consistent with known 1/𝜈

This is the only relevant
symmetric operator at this
transition
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mension of the relevant field of the model. The corre-
sponding correlation function exhibits only small scal-
ing corrections and delivers an exponent compatible
with results based on Binder cumulants; ⌫ = 0.455(2).
Given the well behaved estimators of ⌫, a continuous
transition is the most likely scenario.

To set the stage, we briefly summarize some stan-
dard facts on critical scaling. Consider a Hamiltonian
H

c

tuned to a quantum critical point to which a per-
turbation is added that maintains all the symmetries
of H

c

;
H = H

c

+ �
X

r

D(r), (1)

where r denotes the lattice coordinates and D(r) are
local operators. Normally H is written in a form with
some tunable parameter g such that, for some critical
value g = g

c

, H(g
c

) = H
c

and � = g � g
c

. We as-
sume that the system develops long-range order when
� > 0, with an order parameter m(r) such that hmi =
hm(r)i / �� for small � > 0 and m = 0 for � < 0.
The critical exponent � depends on the universality
class of H

c

in the thermodynamic limit. On either
side of the phase transition, the exponential decay of
the correlation function C

m

(r) = hm(0)m(r)i � hmi2
defines the divergent correlation length, ⇠ / |�|�⌫ . At
� = 0, the correlation function takes the critical form
C

m

(r) / r�2�

m , where �
m

= �/⌫ is the scaling di-
mension of the operator m.

In QMC calculations ⌫ is typically extracted us-
ing finite-size scaling of some dimensionless quantity,
such as the Binder ratio R = hM4i/hM2i2, where
M =

P
r m(r). Neglecting scaling corrections, in the

neighborhood of the critical point we have R(�, L) =
R(�L1/⌫

), by which ⌫ (and the critical point g
c

if it
is not known) can be obtained from data for different
values of � and L. A less common method is to use
the relation 1/⌫ = d��

D

, where d is the space-time
dimensionality (here d = 3) and �

D

is the scaling di-
mension of the perturbing operator D in Eq. (1). The
scaling dimension can be obtained from the power-
law decay C

D

(r) / r�2�

D of the correlation function
C

D

(r) = hD(0)D(r)i � hDi2 at g
c

.
It is not clear to us why ⌫ is not commonly ex-

tracted from C
D

(r), but there are two potential draw-
backs: (i) Often �

D

is rather large, e.g., in the case
of the O(3) universality class (of which we will show
an example below) �

D

⇡ 1.6, so that the correlation
function decays rapidly and is difficult to compute pre-
cisely (with small relative statistical errors) at large
r. (ii) The operator D is often off-diagonal and may
appear to be technically difficult to compute. How-
ever, although the latter issue is absent in simulations
of classical systems, the scaling dimension �

D

is still
normally not computed.

Here we will take advantage of the fact that exist-
ing estimates of ⌫ at the DQCP (⌫ ⇡ 0.45 in both the

J–Q[26] and loop[32] models) correspond to a rather
small value of the scaling dimension, �

D

⇡ 0.8, and
therefore it may be possible to compute it reliably
in this case (as was done recently for the transverse-
field Ising chain, where, in the notation used here,
�

D

= 1

[44]). Furthermore, we point out that off-
diagonal correlation functions of operators that are
terms of the Hamiltonian have very simple estimators
within the Stochastic Series Expansion (SSE) QMC
method.[29,30,45,46] The quantum fluctuations are here
represented by a string of length n of terms H

i

of H,
with mean length hni = |hHi|/T , where T is the tem-
perature. A connected correlation function of any two
terms is given by[46]

C
ab

⌘hH
a

H
b

i � hH
a

ihH
b

i
=T 2

�
hn

ab

(n� 1)i � hn
a

ihn
b

i
�
, (2)

where n
a

is the number of operators H
a

in the string
and n

ab

is the number of times that H
a

and H
b

ap-
pear adjacent to each other. This expression can be
easily applied to all location pairs (a, b) in a single
scan of the operator string, and translational invari-
ance can be exploited at no additional cost to improve
the statistics.

As a demonstration of the method, we first con-
sider the S = 1/2 bilayer Heisenberg Hamiltonian

H = J
1

X

a=1,2

X

hiji

S
a,i

· S
a,j

+ J
2

NX

i=1

S
1,i

· S
2,i

, (3)

where hiji denotes nearest neighbors on a square pe-
riodic lattice with N = L2 sites and a is the layer
index. This system has an AFM ground state for
g ⌘ J

2

/J
1

< g
c

and is a quantum paramagnet domi-
nated by inter-layer singlet formation for g > g

c

. The
O(3) quantum phase transition has been investigated
in many previous works. Here we take g

c

= 2.52205 for
the critical point[47,48] and study a correlation func-
tion corresponding to the perturbation D in Eq. (1).
Since both the J

1

and J
2

interactions drive the system
away from the critical point, we can study correlations
between either type of terms (i.e., they have the same
scaling dimension). We use the J

2

terms, which form
a simple square lattice, and define

C
2

(r
ij

) ⌘ h(S
1,i

·S
2,i

)(S
1,j

·S
2,j

)i�hS
1,i

·S
2,i

i2, (4)

where r
ij

denotes the separation of the sites i and j.
Investigating the decay of the correlations, we can

either study large lattices and focus on r ⌧ L to
eliminate finite-size effects or take r of order L and
study the size dependence. Here we opt for the lat-
ter method with r = (L/2 � 1, 0), for which there
are more equivalent points for averaging than for the
high-symmetry points (L/2, 0) and (L/2, L/2). For
the expected O(3) universality class in 2+1 dimen-
sions ⌫ ⇡ 0.711,[49] corresponding to a scaling dimen-
sion �

2

⇡ 1.594 of the J
2

interaction. As shown in

057502-2

Bilayer Heisenberg model

J1

J2

Figure 1. The bilayer Heisenberg model with intraplane coupling J1 (blue bonds) and interplane
coupling J2 (red vertical bonds). The open circles stand for removed dimers (i.e., the two spins
are removed, not just the coupling between them). By tuning the coupling ratio g = J2/J1 a
QPT can be reached for any dilution fraction p < pc, with pc ⇡ 0.407 [8] being the classical
percolation point.

According to previous studies, at the classical percolation point, pc ⇡ 0.407, the percolating
cluster remains ordered until the quantum critical point located at g⇤c = 0.118(6) [9, 6]. In this
paper, we study the QPT when p < pc and obtain the phase diagram at T = 0 (shown in Fig. 2)
using the e�cient stochastic series expansion (SSE) quantum Monte Carlo (QMC) method [10].
While this criticality has been studied previously [6, 7], we here re-examine it in light of recent
studies [11, 12] of other, similar quantum phase transitions where no changes in the critical
exponents were found in the presence of disorder—in violation of the Harris criterion [13] for
the relevance of disorder. In addition, we study “quantum glass” (Gri�ths) behavior away from
the critical curve. Such phases come in two main variants in random quantum spin systems and
boson systems: the Bose glass (BG) and Mott glass (MG) [14]. Both of them are gapless, with
the BG having a non-zero uniform susceptibility �u (compressibility in Boson language, where
the magnetization of a spin system is mapped onto the density of the Boson system) at T = 0
while the MG has a vanishing �u at T = 0 [15]. It is believed that the MG can only exist in
random systems with particle-hole symmetry [16], though recently evidence has been found of
similar behavior also without this symmetry (an MG or and e↵ective MG with extremely small
essentially undetectable T = 0 compressibility) [17]. In our previous work, the MG phase was
investigated in a two-dimensional square-lattice dimerized Heisenberg model with three di↵erent
nearest-neighbor couplings [12] and the suscetibility was found to follow a stretched exponential
form. We here find the same characteristic form in the diluted bilayer.

2. Model and critical behavior

The Hamiltonian of the S = 1/2 spin model illustrated in Fig. 1 is give by

H = J1
X

a=1,2

X

hiji
Si,a · Sj,a + J2

X

i

Si,1 · Si,2, (1)

where a = 1 (2) stands for the upper (lower) plane of the bilayer system. Dimers of spins, one in
the upper layer and one in the lower layer (coupled by the intra-dimer coupling J2), are removed
at random with probability p < pc. We normalize by setting the intra-plane interaction J1 = 1.
In the clean system, p = 0, the system goes through a QPT between Néel to quantum disordered
phase at the critical point located at gc(p = 0) = 2.525(2) [18]. The critical exponents are the
same as the classical 3D Heisenberg model, i.e., the 3D O(3) universality class. When g = 0,
the model turns into two separate diluted 2D square lattice Heisenberg and at the classical
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percolation point.
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phase at the critical point located at gc(p = 0) = 2.525(2) [18]. The critical exponents are the
same as the classical 3D Heisenberg model, i.e., the 3D O(3) universality class. When g = 0,
the model turns into two separate diluted 2D square lattice Heisenberg and at the classical

2

J1

J2

Figure 1. The bilayer Heisenberg model with intraplane coupling J1 (blue bonds) and interplane
coupling J2 (red vertical bonds). The open circles stand for removed dimers (i.e., the two spins
are removed, not just the coupling between them). By tuning the coupling ratio g = J2/J1 a
QPT can be reached for any dilution fraction p < pc, with pc ⇡ 0.407 [8] being the classical
percolation point.

According to previous studies, at the classical percolation point, pc ⇡ 0.407, the percolating
cluster remains ordered until the quantum critical point located at g⇤c = 0.118(6) [9, 6]. In this
paper, we study the QPT when p < pc and obtain the phase diagram at T = 0 (shown in Fig. 2)
using the e�cient stochastic series expansion (SSE) quantum Monte Carlo (QMC) method [10].
While this criticality has been studied previously [6, 7], we here re-examine it in light of recent
studies [11, 12] of other, similar quantum phase transitions where no changes in the critical
exponents were found in the presence of disorder—in violation of the Harris criterion [13] for
the relevance of disorder. In addition, we study “quantum glass” (Gri�ths) behavior away from
the critical curve. Such phases come in two main variants in random quantum spin systems and
boson systems: the Bose glass (BG) and Mott glass (MG) [14]. Both of them are gapless, with
the BG having a non-zero uniform susceptibility �u (compressibility in Boson language, where
the magnetization of a spin system is mapped onto the density of the Boson system) at T = 0
while the MG has a vanishing �u at T = 0 [15]. It is believed that the MG can only exist in
random systems with particle-hole symmetry [16], though recently evidence has been found of
similar behavior also without this symmetry (an MG or and e↵ective MG with extremely small
essentially undetectable T = 0 compressibility) [17]. In our previous work, the MG phase was
investigated in a two-dimensional square-lattice dimerized Heisenberg model with three di↵erent
nearest-neighbor couplings [12] and the suscetibility was found to follow a stretched exponential
form. We here find the same characteristic form in the diluted bilayer.

2. Model and critical behavior

The Hamiltonian of the S = 1/2 spin model illustrated in Fig. 1 is give by

H = J1
X

a=1,2

X

hiji
Si,a · Sj,a + J2

X

i

Si,1 · Si,2, (1)

where a = 1 (2) stands for the upper (lower) plane of the bilayer system. Dimers of spins, one in
the upper layer and one in the lower layer (coupled by the intra-dimer coupling J2), are removed
at random with probability p < pc. We normalize by setting the intra-plane interaction J1 = 1.
In the clean system, p = 0, the system goes through a QPT between Néel to quantum disordered
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While this criticality has been studied previously [6, 7], we here re-examine it in light of recent
studies [11, 12] of other, similar quantum phase transitions where no changes in the critical
exponents were found in the presence of disorder—in violation of the Harris criterion [13] for
the relevance of disorder. In addition, we study “quantum glass” (Gri�ths) behavior away from
the critical curve. Such phases come in two main variants in random quantum spin systems and
boson systems: the Bose glass (BG) and Mott glass (MG) [14]. Both of them are gapless, with
the BG having a non-zero uniform susceptibility �u (compressibility in Boson language, where
the magnetization of a spin system is mapped onto the density of the Boson system) at T = 0
while the MG has a vanishing �u at T = 0 [15]. It is believed that the MG can only exist in
random systems with particle-hole symmetry [16], though recently evidence has been found of
similar behavior also without this symmetry (an MG or and e↵ective MG with extremely small
essentially undetectable T = 0 compressibility) [17]. In our previous work, the MG phase was
investigated in a two-dimensional square-lattice dimerized Heisenberg model with three di↵erent
nearest-neighbor couplings [12] and the suscetibility was found to follow a stretched exponential
form. We here find the same characteristic form in the diluted bilayer.
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Binder ratios and cumulants
Consider the dimensionless ratio

We know R2 exactly for N→∞

R2 =
�m4⇥
�m2⇥2

• for T<Tc: P(m)→δ(m-m*)+δ(m+m*)

       m*=|peak m-value|.  R2→1 • for T>Tc: P(m)→exp[-m2/a(N)]


     a(N)∼N-1 R2→3  (Gaussian integrals)

Curves for different
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Extrapolate crossing
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to infinite size
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The Binder cumulant is defined as (n-component order parameter; n=1 for Ising)
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Systematic crossing-point analysis (2D Ising)

⇒ scaling corrections in crossings

  ~L-(1/ν+ω)    for T* → Tc


   ~L-ω          for U* → U(Tc)

Fit with Lmin=12: Tc=2.2691855(5). Correct: Tc=2.2691853...
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Figure 3: Binder cumulant for the 2D Ising model with L = 16, 32, 64 in the neighborhood of
the points at which the curves cross each other. The vertical and horizontal dashed lines indicate
the critical temperature Tc and the value of the cumulant at Tc, respectively. The solid curves
are cubic polynomial fits to the data sets. Error bars are much smaller than the plot symbols.

Fig. 3 shows examples of data for three different system sizes, where cubic polynomials
have been fitted to the data. The crossing points are extracted numerically to machine precision
using bisection. In order to analyze Tc and Uc in the thermodynamic limit, it suffices to consider
a small number of points very close to each crossing point to be analyzed. To obtain ⌫ from the
slopes according to Eq. (17), where the derivative in Eq. (13) is taken of the fitted polynomials,
it is better to have a more extended range of points. However, for a very large range a high order
of the polynomial has to be used in order to obtain a good fit, and it is then better in practice
to adapt the window size so that a relatively low order polynomial can be used. In the tests
reported here, cubic polynomials were used and all fits were statistically sound.

In order to compute error bars of the crossing points T ⇤(L) and the corresponding values
U⇤(L), a bootstrap method is used, i.e., with a large number of random samples of the binned
MC data, with each sample computed using B(L, T ) randomly chosen bins for each system
size and temperature, where B(L, T ) is the total number of data bins available for (L, T ). The
standard deviations of the values computed for these bootstrap samples correspond to the error
bars of the crossing points and values. Note that in the evaluation of the cumulant (19), for
the full data set or a bootstrap sample, the individual expectation values hm2

i i and hm4

i i are
computed first based on all the bins, after which the ratio is evaluated. If one instead uses ratios
computed for each bin separately, a statistically significant systematical error can be introduced
due to the nonlinear contributions to the statistical error propagated from the denominator.
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Drift in (L,2L) crossing points
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Figure 4: (a) Crossing temperature of the Binder cumulant for system-size pairs (L, 2L) versus
the inverse of the smaller size, along with a fit to the form (10) to the data points with L � 12.
(b) The value of the cumulant at the crossing points, along with a fit to the form (11) for L � 14.
In both (a) and (b), error bars are much too small to be visible. The insets shows the data minus
the fitted functions including the error bars.

Clearly this criterion is sensitive to the quality of the data—if the elements of the covariance ma-
trix are very small, even fits including only relatively large system sizes can detect the presence
of higher-order corrections and not pass our test, while with noisy data also small system sizes
can be included. If a fit satisfies the �2 criterion it can still not be completely guaranteed that no
effects of the higher-order corrections are present in the final result, but in general one would
expect any remaining systematical errors to be small relative to the statistical error. In principle
one can estimate the magnitude of the systematical error using the parameters obtained from the
fit and some knowledge or estimate of the nature of the higher-order corrections. We will not
attempt to do that here because in general such knowledge will be very limited. To minimize
any remaining systematical errors one can continue to exclude more system sizes even after
the soundness criterion (23) is satisfied, at the price of increasing the statistical errors of the
parameters extracted from the fits.
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Use correction with free exponent

U = U(�L1/⌫ , L�!1 , L�!2 , . . .)



Correlation-length exponent

! A(L, t)L/⌫ = f(�L1/⌫)A(L, t) = L�/⌫f(�L1/⌫)

Consider some generic critical observable A

df(�L1/⌫)

d�
= L1/⌫f 0(�L1/⌫)

Let us take the derivative wrt 𝜹 
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U = U(�L1/⌫ , L�!1 , L�!2 , . . .)

The Binder cumulant is dimensionless
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Figure S3: Estimates of the inverse of the correlation-length exponent ⌫ of the 2D Ising model
based on the slope expression (S11) applied to the Binder cumulant. The curve is a fit to the
form (S4) including all points (L � 6).

we obtain Tc = 2.2691831(11), two error bars away from the correct value (still a statisti-
cally acceptable match), and Uc = 0.916054(11), also about two error bars from the previous
(Blöte’s) value. From the Tc fit we obtain 1/⌫ + ! = 2.70(4) in this case and from the U fit
! = 1.73(5). These exponents are now correct to within statistical errors, but the error bars are
about 10 times larger than before, while the error bars on Tc and U only doubled. The average
value of h�2i/N

dof

is very close to 1 for both these fits and the deviations from the fitted func-
tion look completely random. Upon excluding even more points, the error bars increase rapidly
but the extracted parameters remain statistically in good agreement with their correct values.

Next, we extract the exponent ⌫ using the log-slope formula (S11). Fig. S3 shows the results
along with a fit including all the system sizes (L � 6). Remarkably, the fit is statistically perfect,
with h�2i/N

dof

⇡ 1.0, already at this small minimum size and the inverse exponent extrapolates
to 1/⌫ = 1.0001(7), in excellent agreement with the exact result 1. The slope data are much
more noisy than the underlying U values and the error bars grow very rapidly with L for the
largest sizes. The fit is therefore dominated by the smaller sizes. Naturally, the large error bars
mask the effects of higher-order corrections, as discussed above. It is nevertheless remarkable
that the extracted exponent 1/⌫ does not show any effects of the neglected corrections at all,
even though, again, the leading correction exponent, which comes out to ! = 1.57(7), is not
very close to the correct value 1.75 and its error bar is large. Again, the flexibility of the leading
finite-size term allows it to mimic the effects of the correction terms without significant effects
in the extrapolation of the fit.
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Test for 2D Ising (𝜈=1)


