Quantum Magnetism and
Quantum Criticality

- Classical and quantum phase transitions; RG and scaling
- Finite-size scaling of simulation data

- Example: dimerized Heisenberg models

- J-Q models; valence-bond solids without QMC sign problem
- Deconfined quantum criticality




Finite-size scaling - “phenomenological RG”

Energy scale lowered with increasing system size; L is length scale at criticality
Correlation length divergentfor T = Tc £ o< |07, 0=T — T,

Other singular quantity: A(L — c0) o 8] oc £ %/Y

For L-dependence at Tc just let E»L: A(T ~ T.,L) oc L~"/*

Close to critical point: A(L,T) = L™V g(£/L) = L™~V f(§LY")
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1 2D Ising universality class
vy="7/4, v=1

Critical T known
T. = 2/In(1 +v2) ~ 2.2692

When these are not known,

treat as fitting parameters
- or extract in other way
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Rough principles of renormalization
1) Kadanoff: Real-space blocking

" iR EEC
15 IR EER
Effective degrees of freedom of blocks reflect possible order parameters

- interactions between blocks evolve to some fixed point
2) Low-energy effective model ¢

Repeated decimation of E
high-energy space
- interactions renormalize

renormalized
interactions in
] — low-energy subspace

o )

...) many other schemes, practical or mainly conceptual
Essence: an infinite number of effective couplings Ai
- flow as length scale is increased (energy scale is decreased): \; (L) = X} LY

Relevant (yi>0) or irrelevant (yi<0), 4° depends on model parameters
- Very few relevant couplings (“fields”)




Relevant and irrelevant perturbations of a critical point
Critical correlation function of some operator

(O(F)O(7)) = ) air™
i
The scaling dimensions 4; correspond to the spectrum of ‘orthogonal
operators’ (continuum fields) contained in the lattice operator O

- Loosely speaking, we say that the smallest 4 is the scaling dimension of O

Consider a critical Hamiltonian Ho and add some perturbation M
H = Hy+ h>, m; = hM (= hNm = hL%m)
RG description of effects of hM at a critical point. Free energy density:
P e = e sy
- =0 at critical point; e.g., t=T-Tc (relevant field)
h —d — Y — d — A
Taylor expand at t=0: fs' o< hLY
From Hamiltonian: fJ'= h{m) oc hL™2 y = scaling dimension of h

- The effect of the perturbation grows with L (it is relevant) only if y>0
- Irrelevant perturbation if y<O (the critical point stays the same)
- Arelevant perturbation changes the critical point in some way




Symmetric and symmetry-breaking fields

Example: Ising model 1| critical point
- classical model; energy and entropy /

! : @
At h=0, T tunes to the critical point

- the ‘thermal field’ is t=T-T¢
Changing T changes the prefactor of E in
Al
- E is the operators conjugate to T h
W . Ay d

Set t=0, tune the magnetic field; E = E+hM
- h # 0 breaks the Z> symmetry of the model; relevant but not symmetric

<M(T)M(O)>N T_ZAM, AM =d — 1/I/M
The exponent Ay is related to the exponent we call #
(M () men Ly = gl =2

Normally systems have one relevant symmetric field
- multi-critical points have more than one




Gas-liquid transition
Maps to Ising model even though no apparent Ising (Z2) symmetry
Order parameter is density; scalar corresponds to <m> + constant
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Tuning the relevant field corresponds to moving tangentially to

the coexistence curve from the critical point (not so easy)

Tuning the symmetry-breaking field corresponds to moving perpendicularly
to the coexistence curve

Moving along some generic path gives a mix of the two scaling dimensions
in correlation functions; one eventually dominates




Example: O(3) transition in 2+1 dimensions (2D quantum)

Bilayer Heisenberg model

H = lezsaz Sa]_I_JQZSlZ S2'L

a=1,2 (i5) 7
Critical at J2/J1 = 2.5202 7

The J1 and J2 terms are both relevant (no entropy at T=0)
- changing one of them takes us away from the critical point

_3_
24=3.188 — y=1.406
E - consistent with known 1/v
O 107 F

1 This is the only relevant
1 symmetric operator at this
1 transition

| | Corresponds to the
10 2 3 4 5 6 7 8 classical ‘thermal field’




Binder ratios and cumulants order parameter distribution
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Consider the dimensionless ratio 20} =220 1 a0} ]
<m4> 315t — T/J=2.60 ! 230 ]
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We know Rz exactly for N—co 0ol N\ 00l L , e
-1 -0.5 ’91 0.5 1 -1 -0.5 ’% 0.5 1

« for T<Tc: P(m)—6(m-m*)+6(m+m?)

. . -m?2
ek el s for T>Tc: P(m)—exp[-m?/a(N)]

a(N)~N-' R2—3 (Gaussian integrals)
The Binder cumulant is defined as (n-component order parameter; n=1 for Ising)

n + 2 n ol
U e e
2 n+2 ) L 2D Ising model; MC results
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Curves for different
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Systematic crossing-point analysis (2D Ising)
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Use correction with free exponent

Fit with Lmin=12: Tc=2.2691855(5). Correct: Tc=2.2691853...




Correlation-length exponent
Consider some generic critical observable A

A(L,t) = L—m/uf(dLl/V) == A(L,t)LK}/V i f((SLl/V)
Let us take the derivative wrt 6

df (6L/7)
do

The Binder cumulant is dimensionless

Kk/v
i Ll/yf/(éLl/V) y d(AL ) x Ll/l/ (5 2L O)

do
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