
Case with more significant corrections 
- common at quantum critical points
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We study the Néel–paramagnetic quantum phase transition in two-dimensional dimerized S = 1/2
Heisenberg antiferromagnets using finite-size scaling of quantum Monte Carlo data. We resolve the
long standing issue of the role of cubic interactions arising in the bond-operator representation when
the dimer pattern lacks a certain symmetry. We find non-monotonic (monotonic) size dependence
in the staggered (columnar) dimerized model, where cubic interactions are (are not) present. We
conclude that there is an irrelevant field in the staggered model that is not present in the columnar
case, but, at variance with previous claims, it is not the leading irrelevant field. The new exponent
is ω2 ≈ 1.25 and the prefactor of the correction L−ω2 is large and comes with a different sign from
that of the formally leading conventional correction with exponent ω1 ≈ 0.78. Our study highlights
the possibility of competing scaling corrections at quantum critical points.

One of the best understood quantum phase transi-
tions is that between Néel antiferromagnetic (AFM) and
quantum paramagnetic ground states in bipartite two-
and three-dimensional (2D and 3D) dimerized Heisenberg
models with inter- and intra-dimer couplings J1 and J2
[1–6]. The ground state of such a system hosts AFM or-
der when the coupling ratio g = J2/J1 is close to g = 1,
and there is a critical point at some model dependent
gc > 1. The 3D version of this transition for the most
important case of S = 1/2 spins has an experimental re-
alization in TlCuCl3 under high pressure [7, 8]. While no
2D realization exists as of yet (though the magnetic field
driven transition out of the QPM does have realizations
[9]), this case has been very important for developing a
generic framework for 2D quantum phase transitions of
the Néel AFM state [10]. The field theory of the AFM–
paramagnetic transition is now well developed, and effi-
cient quantum Monte Carlo (QMC) methods can be used
to study ground states of microscopic models with tens
of thousands of spins [6]. Many non-trivial predictions
for scaling in temperature, frequency, system size, etc.,
have been tested this way [11–16].

Despite many successes, there are still remaining ques-
tions surrounding the 2D AFM–paramagnetic transition.
A long-standing unresolved issue is differences observed
in QMC calculations between two classes of dimer pat-
terns in S = 1/2 systems [17–21], exemplified by the often
studied columnar dimer model (CDM) and the initially
less studied staggered dimer model (SDM), both illus-
trated in Fig. 1. Indications from finite-size scaling of
a universality class different from the expected 3D O(3)
class in the SDM [17] led to several follow-up studies [19–
21]. The consensus now is that there is no new universal-
ity class, as defined by the standard critical exponents.
However, because of the lack of a certain local reflection

SDM CDM

FIG. 1. The CDM and SDM Heisenberg models studied in
this work. Black and red (thicker) bonds represent intra- and
inter-dimer exchange Si · Sj , of strength (prefactor) J1 and
J2, respectively, between S = 1/2 spins.

symmetry of the dimer pattern, cubic interactions arise in
the bond-operator description of the SDM, which in the
renormalization group corresponds to an irrelevant field
that is present neither in the CDM nor in the classical
O(3) model [20]. Thus, the SDM contains an interesting
quantum effect worthy of further investigations.

In this Letter we report large-scale detailed compar-
isons of the finite size (L) scaling corrections of type
L−ω in the CDM and SDM. While previous works on
judiciously chosen observables [19] and lattices with opti-
mized aspect ratios [21] have convincingly demonstrated
that there is no new universality class, the reasons for the
unusual scaling behaviors of the SDM have never been
adequately explained. In Ref. 20, QMC calculations in-
dicated that the exponent of the leading correction is
smaller than in the CDM, but the values, the observed
ω ≈ 0.6 in the SDM [20, 21] versus the conventional value
ω ≈ 0.78 [22, 23] in the standard O(3) model and the
CDM, are not very different. The only slightly smaller
value for the SDM does not fully explain all the observed
anomalous finite-size scaling properties, and, as we will
show here, this scenario is actually incorrect.

S=1/2 Heisenberg model with 
- columnar dimers (CDM) 
- staggered dimers (SDM)
The SDM has been controversial 
- O(3) or new universality class 
- strange scaling behaviors
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We study L×L CDM and SDM systems of size up to
L = 256. Focusing on the scaling corrections, we fix the
leading critical exponents at their known O(3) values in
our finite-size analysis. This enables us to go to higher
order in the irrelevant fields and investigate also sub-
leading corrections. In contrast to the previous studies,
we demonstrate that the SDM actually does not have a
smaller ω1 than the CDM. Instead, the cubic interaction
induces the next correction, which has ω2 = 1.25(3) and
a large prefactor of sign different from that of the first
correction. This causes non-monotonic finite-size behav-
iors that were previously either not observed [19, 20] or
were not analyzed properly [21].
QMC and fitting procedures.—We use the standard

stochastic series expansion QMC method [6, 24] for S =
1/2 spins and set the inverse temperature β at L/2; thus
the ratio L/β is close to the value of the spinwave ve-
locity [21] and the effective imaginary time dimension is
approximately equal to the spatial dimension. At a quan-
tum phase transition with dynamic exponent z = 1 (as
is the case here), as long as β ∝ L the temperature does
not appear as an independent argument in the scaling
function obtained from renormalization group theory. In
the case of a dimensionless quantity we have [25, 26]

O(g, L) = f [(g − gc)L
1/ν ,λ1L

−ω1 ,λ2L
−ω2 , · · · ], (1)

if g is sufficiently close to gc. Here λi denotes the irrele-
vant fields, which we order such that ωi+1 > ωi > 0. Use-
ful dimensionless quantities to study in QMC calculations
include the Binder ratio R = ⟨m4

z⟩/⟨m
2
z⟩

2, where mz is
the component of the staggered magnetization along the
quantization axis, the L-normalized spin stiffness con-
stants Lρx and Lρy (with x and y referring to the lattice
directions), and the uniform susceptibility Lχu. We refer
to Ref. 6 for technical details.
Denoting the deviation g−gc from the critical point by

δ, the standard approach to analyzing the leading critical
behavior with a single correction is to expand Eq. (1) to
linear order in the first irrelevant field,

O(g, L) = f0(δL
1/ν) + L−ω1f1(δL

1/ν), (2)

where f0 and f1 are scaling functions related to the orig-
inal f . Thus, in the absence of corrections, a dimension-
less quantity is completely size independent at gc, and
by expanding f0 we see that O(g, L) for different L cross
each other at gc. With the scaling correction, the cross-
ing points only drift toward gc as L → ∞, and for two
different sizes L and L′ = rL (where we will use r = 2)
one can derive simple expressions for the crossing value
g∗(L) and the observable O∗(L) at this point [27];

g∗(L) = gc + aL−ω1−1/ν , (3a)

O∗(L) = Oc + bL−ω1, (3b)

with constants a and b.

2.516 2.518 2.520 2.522 2.524
1/L
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L=16
L=32
L=64
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FIG. 2. Binder ratio of the SDM for several system sizes in
the neighborhood of gc. The curves are polynomial fits giving
crossing points between (L, 2L) data.

We extract the crossing points using polynomial fits
(typically of third order) to several points (of the order
10) in the neighborhood of gc = g∗(∞). The window
[g1, g2] of points used in these fits is reduced as the system
size is increased, so that we are always in the regime
where a low-order expansion around gc is expected to be
valid. Since we interpolate, as opposed to extrapolate,
this is a very reliable way of extracting the crossing points
and their statistical errors (using bootstrapping for the
latter). Examples of raw data along with fits are shown
in Fig. 2 in the case of the Binder ratio of the SDM.
In the following we analyze crossing points between

curves for system sizes L and 2L. When fitting the so de-
fined g∗(L) and O∗(L) to appropriate forms from finite-
size scaling theory, it should be noted that the same sys-
tem size L can appear in two pairs, (L, 2L) as well as
(L/2, L). There are therefore some covariance effects,
which we take into account by using the full covariance
matrix (computed using bootstrap analysis) in the defini-
tion of the goodness of the fit χ2 (normalized per degree
of freedom henceforth). When jointly fitting to two dif-
ferent but correlated quantities, we also account for the
associated covariance. For the functional forms, we will
go beyond the first-order expansion leading to Eqs. (3),
and this will be the key to our findings and conclusions.
Finite-size scaling.—The size dependence of R cross-

ing points is shown in Fig. 3 for both models. A striking
feature is the non-monotonic behaviors apparent for the
SDM but not present for the CDM. Note here that 1/L
on the horizontal axis refers to the smaller of the two
system sizes (L, 2L) used for the crossing points, and the
maximums are located at 2L ≈ 80. In the original discov-
ery of the anomalous behaviors for the SDM [17], all the
systems were smaller, and no non-monotonic behaviors
were therefore observed. It is clear that extrapolations
only based on the smaller system sizes cannot reproduce
the correct asymptotic behaviors.
We will first assume that only one irrelevant field is

important but treat the corrections beyond the first-order

Analyze critical behavior with two scaling 
corrections taken into account

Taylor expand, analyze crossing points 
for different dimensionless quantities

Compare CDM and SDM behaviors
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One of the best understood quantum phase transitions is
that between Néel antiferromagnetic (AFM) and quantum
paramagnetic ground states in bipartite two- and three-
dimensional dimerized Heisenberg models with inter- and
intradimer couplings J1 and J2 [1–6]. The ground state
hosts AFM order when g ¼ J2=J1 ≈ 1, and there is a
critical point at some model-dependent gc > 1. The 3D
version of this transition for S ¼ 1=2 spins has an exper-
imental realization in TlCuCl3 under high pressure [7,8].
While no 2D realization exists as of yet (though the
magnetic field driven transition has been realized [9]), this
case has been very important for developing the framework
for 2D quantum phase transitions of the Néel AFM state
[10]. The field theory of the AFM-paramagnetic transition
is now well developed, and efficient quantum Monte Carlo
(QMC) methods can be used to study ground states of
microscopic models with tens of thousands of spins [6].
Many nontrivial predictions for scaling in temperature,
frequency, system size, etc., have been tested [11–16].
Despite many successes, there are still questions sur-

rounding the 2D AFM-paramagnetic transition. A long-
standing unresolved issue is differences observed in QMC
calculations between two classes of dimer patterns [17–21],
exemplified by the often-studied columnar dimer model
(CDM) and the initially less-studied staggered dimer model
(SDM), both illustrated in Fig. 1. Indications from finite-
size scaling of a universality class different from the
expected 3D O(3) class in the SDM [17] led to several
follow-up studies [18–21]. The consensus now is that there

is no new universality class, as defined by the standard
critical exponents. However, because of the lack of a certain
local symmetry, cubic interactions arise in the bond-
operator description of the SDM, which in the renormal-
ization group corresponds to an irrelevant field that is
present neither in the CDM nor in the classical O(3) model
[20]. Thus, the SDM contains an interesting quantum effect
worthy of further investigations.
In this Letter we report detailed comparisons of the

finite-size (L) scaling corrections of type L−ω in the CDM
and SDM. While previous works on judiciously chosen
observables [19] and lattices with optimized aspect ratios
[21] have convincingly demonstrated O(3) universality,
the reasons for the unusual scaling behaviors of the SDM
have never been adequately explained. In Ref. [20], QMC
calculations indicated that the exponent of the leading

FIG. 1. The Heisenberg SDM and CDM studied in this work.
Black (thinner) and red (thicker) bonds represent intra- and
interdimer exchange Si · Sj, of strength (prefactor) J1 and J2,
respectively, between S ¼ 1=2 spins.
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We study the Néel-paramagnetic quantum phase transition in two-dimensional dimerized S ¼ 1=2
Heisenberg antiferromagnets using finite-size scaling of quantum Monte Carlo data. We resolve the long-
standing issue of the role of cubic interactions arising in the bond-operator representation when the dimer
pattern lacks a certain symmetry. We find nonmonotonic (monotonic) size dependence in the staggered
(columnar) dimerized model, where cubic interactions are (are not) present. We conclude that there is a new
irrelevant field in the staggered model, but, at variance with previous claims, it is not the leading irrelevant
field. The new exponent is ω2 ≈ 1.25 and the prefactor of the correction L−ω2 is large and comes with a
different sign from that of the conventional correction with ω1 ≈ 0.78. Our study highlights competing
scaling corrections at quantum critical points.

DOI: 10.1103/PhysRevLett.121.117202

One of the best understood quantum phase transitions is
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FIG. 4. Joint fits of crossing data for several quantities
where g∗(∞) = gc is fixed to a common value and two scal-
ing corrections are used to first order, with ω1 = 0.78 and
1/ν = 1.406. For the SDM (a), the fit has χ2

≈ 1.0 and deliv-
ers gc(∞) = 2.51945(1) as well as ω2 = 1.30(7), 1.3(1), 1.2(1)
and 1.0(2) from R2, Lχu, Lρx, and Lρy , correspondingly. In
the CDM fits (b), 2ω1 = 1.56 was used in place of ω2 and the
fitted critical point is gc = 1.90956(2), with χ2

≈ 1.2.

actually not unexpected within the scenario of irrelevant
cubic interactions [20], because the standard leading cor-
rection with ω1 ≈ 0.78 should still be present and may
produce various “effective” scaling behaviors over a lim-
ited range of system sizes when combined with the cubic
perturbation. Thus, a reliable analysis of the SDM data
should require at least ω1 and ω2.
We can generalize Eqs. (4) to two correction exponents,

ω1 and ω2, but in that case it is very difficult to determine
both of them with sufficient precision. However, since the
standard leading correction should still be present [20],
we now also can fix ω1 = 0.78 and only treat ω2 as a
free parameter. We find that it is then sufficient to go
only to linear order in the corrections and yet obtain fully
acceptable fits with χ2 ≈ 1. We obtain gc = 2.51945(1)
and ω2 = 1.22(5) for the SDM. The new fitted curve is
shown in the inset of Fig. 3(a). The estimate of gc is
now a bit higher than the previous value from the R∗ fit
(though not much outside one error bar of the difference).
The key result here is clearly that ω2 comes out larger

than the leading O(3) exponent. It is, however, signifi-
cantly smaller than the expected second irrelevant O(3)
exponent with value ≈ 1.8 [32, 33], and it is also less
than 2ω1. The new correction should therefore be due to
the cubic interactions [20] in the low-energy theory of the
SDM. To test the stability of ω2 across different quanti-
ties, we also used a slightly different procedure of fitting
only to g∗ (instead of the joint fit with R∗) and requiring
the same L → ∞ value of gc for all the quantities consid-
ered. We still also fix 1/ν = 1.406 and ω1 = 0.78 but keep
ω2 free for all individual quantities. The SDM data with
fits are displayed in Fig. 4(a), with the resulting gc and
ω2 estimates listed in the caption. All four ω2 estimates
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FIG. 5. Size dependence of the exponent η as defined in
Eq. (6). The known infinite-size value η = 0.0375 is fixed
in the fits (curves). The CDM data are fitted with only the
first correction term in Eq. (7), with ω1 = 0.78 fixed. In
the SDM fit ω1 = 0.78 is also fixed and the second exponent
ω2 = 1.29(5) is the result of the fit.

are statistically consistent with the value obtained above.
In the case of the CDM, shown Fig. 4(b), we follow the
same procedures but replace ω2 by 2ω1 and there is no
free exponent. This fit is of marginally good statistical
quality even when starting the fits from L = 16, indicat-
ing some effects still of the higher-order terms that were
included in Fig. 3(b). We therefore keep the value from
R in Tab. I as our best gc estimate for this model.
To further ascertain our conclusions about the SDM,

we also consider the squared order parameter itself. Hav-
ing determined a precise estimate of gc, we study the
scaling of ⟨m2⟩ at this point, where we expect

⟨m2⟩c ∝ L−(1+η)(1 + b1L
−ω1 + b2L

−ω2 + . . .). (5)

We can then define a size-dependent exponent as

η∗(L) = ln[⟨m2(L)⟩c/⟨m
2(2L)⟩c]/ ln(2)− 1, (6)

which should scale as

η∗(L) = η + c1L
−ω1 + c2L

−ω2 + . . . . (7)

To test this form and extract ω2, we use the known value
η = 0.0375(5) [23] and fix ω1 = 0.78. As shown in Fig. 5,
the form fits the data very well and gives ω2 = 1.29(5).
Here one can again see how access to only system sizes
less than L = 80 would lead to the wrong conclusion.
A fit with two adjustable exponents give ω1 = 0.77(6)
and ω2 = 1.31(7), perfectly consistent with the fit with
ω1 fixed. In the case of the CDM, also shown in Fig. 5,
we find that the data are well described with a single
correction with the known value of the exponent.
Conclusions.—We have analyzed the SDM under the

scenario [20] of an O(3) quantum phase transition with
an additional irrelevant perturbation that is absent in the
CDM. Our results are consistent with this picture and de-
mand a new scaling correction with exponent ω2 ≈ 1.25
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FIG. 4. Joint fits of crossing data for several quantities
where g∗(∞) = gc is fixed to a common value and two scal-
ing corrections are used to first order, with ω1 = 0.78 and
1/ν = 1.406. For the SDM (a), the fit has χ2

≈ 1.0 and deliv-
ers gc(∞) = 2.51945(1) as well as ω2 = 1.30(7), 1.3(1), 1.2(1)
and 1.0(2) from R2, Lχu, Lρx, and Lρy , correspondingly. In
the CDM fits (b), 2ω1 = 1.56 was used in place of ω2 and the
fitted critical point is gc = 1.90956(2), with χ2

≈ 1.2.

actually not unexpected within the scenario of irrelevant
cubic interactions [20], because the standard leading cor-
rection with ω1 ≈ 0.78 should still be present and may
produce various “effective” scaling behaviors over a lim-
ited range of system sizes when combined with the cubic
perturbation. Thus, a reliable analysis of the SDM data
should require at least ω1 and ω2.
We can generalize Eqs. (4) to two correction exponents,

ω1 and ω2, but in that case it is very difficult to determine
both of them with sufficient precision. However, since the
standard leading correction should still be present [20],
we now also can fix ω1 = 0.78 and only treat ω2 as a
free parameter. We find that it is then sufficient to go
only to linear order in the corrections and yet obtain fully
acceptable fits with χ2 ≈ 1. We obtain gc = 2.51945(1)
and ω2 = 1.22(5) for the SDM. The new fitted curve is
shown in the inset of Fig. 3(a). The estimate of gc is
now a bit higher than the previous value from the R∗ fit
(though not much outside one error bar of the difference).
The key result here is clearly that ω2 comes out larger

than the leading O(3) exponent. It is, however, signifi-
cantly smaller than the expected second irrelevant O(3)
exponent with value ≈ 1.8 [32, 33], and it is also less
than 2ω1. The new correction should therefore be due to
the cubic interactions [20] in the low-energy theory of the
SDM. To test the stability of ω2 across different quanti-
ties, we also used a slightly different procedure of fitting
only to g∗ (instead of the joint fit with R∗) and requiring
the same L → ∞ value of gc for all the quantities consid-
ered. We still also fix 1/ν = 1.406 and ω1 = 0.78 but keep
ω2 free for all individual quantities. The SDM data with
fits are displayed in Fig. 4(a), with the resulting gc and
ω2 estimates listed in the caption. All four ω2 estimates
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Eq. (6). The known infinite-size value η = 0.0375 is fixed
in the fits (curves). The CDM data are fitted with only the
first correction term in Eq. (7), with ω1 = 0.78 fixed. In
the SDM fit ω1 = 0.78 is also fixed and the second exponent
ω2 = 1.29(5) is the result of the fit.

are statistically consistent with the value obtained above.
In the case of the CDM, shown Fig. 4(b), we follow the
same procedures but replace ω2 by 2ω1 and there is no
free exponent. This fit is of marginally good statistical
quality even when starting the fits from L = 16, indicat-
ing some effects still of the higher-order terms that were
included in Fig. 3(b). We therefore keep the value from
R in Tab. I as our best gc estimate for this model.
To further ascertain our conclusions about the SDM,

we also consider the squared order parameter itself. Hav-
ing determined a precise estimate of gc, we study the
scaling of ⟨m2⟩ at this point, where we expect

⟨m2⟩c ∝ L−(1+η)(1 + b1L
−ω1 + b2L

−ω2 + . . .). (5)

We can then define a size-dependent exponent as

η∗(L) = ln[⟨m2(L)⟩c/⟨m
2(2L)⟩c]/ ln(2)− 1, (6)

which should scale as

η∗(L) = η + c1L
−ω1 + c2L

−ω2 + . . . . (7)

To test this form and extract ω2, we use the known value
η = 0.0375(5) [23] and fix ω1 = 0.78. As shown in Fig. 5,
the form fits the data very well and gives ω2 = 1.29(5).
Here one can again see how access to only system sizes
less than L = 80 would lead to the wrong conclusion.
A fit with two adjustable exponents give ω1 = 0.77(6)
and ω2 = 1.31(7), perfectly consistent with the fit with
ω1 fixed. In the case of the CDM, also shown in Fig. 5,
we find that the data are well described with a single
correction with the known value of the exponent.
Conclusions.—We have analyzed the SDM under the

scenario [20] of an O(3) quantum phase transition with
an additional irrelevant perturbation that is absent in the
CDM. Our results are consistent with this picture and de-
mand a new scaling correction with exponent ω2 ≈ 1.25
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FIG. 4. Joint fits of crossing data for several quantities
where g∗(∞) = gc is fixed to a common value and two scal-
ing corrections are used to first order, with ω1 = 0.78 and
1/ν = 1.406. For the SDM (a), the fit has χ2

≈ 1.0 and deliv-
ers gc(∞) = 2.51945(1) as well as ω2 = 1.30(7), 1.3(1), 1.2(1)
and 1.0(2) from R2, Lχu, Lρx, and Lρy , correspondingly. In
the CDM fits (b), 2ω1 = 1.56 was used in place of ω2 and the
fitted critical point is gc = 1.90956(2), with χ2

≈ 1.2.

actually not unexpected within the scenario of irrelevant
cubic interactions [20], because the standard leading cor-
rection with ω1 ≈ 0.78 should still be present and may
produce various “effective” scaling behaviors over a lim-
ited range of system sizes when combined with the cubic
perturbation. Thus, a reliable analysis of the SDM data
should require at least ω1 and ω2.
We can generalize Eqs. (4) to two correction exponents,

ω1 and ω2, but in that case it is very difficult to determine
both of them with sufficient precision. However, since the
standard leading correction should still be present [20],
we now also can fix ω1 = 0.78 and only treat ω2 as a
free parameter. We find that it is then sufficient to go
only to linear order in the corrections and yet obtain fully
acceptable fits with χ2 ≈ 1. We obtain gc = 2.51945(1)
and ω2 = 1.22(5) for the SDM. The new fitted curve is
shown in the inset of Fig. 3(a). The estimate of gc is
now a bit higher than the previous value from the R∗ fit
(though not much outside one error bar of the difference).
The key result here is clearly that ω2 comes out larger

than the leading O(3) exponent. It is, however, signifi-
cantly smaller than the expected second irrelevant O(3)
exponent with value ≈ 1.8 [32, 33], and it is also less
than 2ω1. The new correction should therefore be due to
the cubic interactions [20] in the low-energy theory of the
SDM. To test the stability of ω2 across different quanti-
ties, we also used a slightly different procedure of fitting
only to g∗ (instead of the joint fit with R∗) and requiring
the same L → ∞ value of gc for all the quantities consid-
ered. We still also fix 1/ν = 1.406 and ω1 = 0.78 but keep
ω2 free for all individual quantities. The SDM data with
fits are displayed in Fig. 4(a), with the resulting gc and
ω2 estimates listed in the caption. All four ω2 estimates
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in the fits (curves). The CDM data are fitted with only the
first correction term in Eq. (7), with ω1 = 0.78 fixed. In
the SDM fit ω1 = 0.78 is also fixed and the second exponent
ω2 = 1.29(5) is the result of the fit.

are statistically consistent with the value obtained above.
In the case of the CDM, shown Fig. 4(b), we follow the
same procedures but replace ω2 by 2ω1 and there is no
free exponent. This fit is of marginally good statistical
quality even when starting the fits from L = 16, indicat-
ing some effects still of the higher-order terms that were
included in Fig. 3(b). We therefore keep the value from
R in Tab. I as our best gc estimate for this model.
To further ascertain our conclusions about the SDM,

we also consider the squared order parameter itself. Hav-
ing determined a precise estimate of gc, we study the
scaling of ⟨m2⟩ at this point, where we expect

⟨m2⟩c ∝ L−(1+η)(1 + b1L
−ω1 + b2L

−ω2 + . . .). (5)

We can then define a size-dependent exponent as

η∗(L) = ln[⟨m2(L)⟩c/⟨m
2(2L)⟩c]/ ln(2)− 1, (6)

which should scale as

η∗(L) = η + c1L
−ω1 + c2L

−ω2 + . . . . (7)

To test this form and extract ω2, we use the known value
η = 0.0375(5) [23] and fix ω1 = 0.78. As shown in Fig. 5,
the form fits the data very well and gives ω2 = 1.29(5).
Here one can again see how access to only system sizes
less than L = 80 would lead to the wrong conclusion.
A fit with two adjustable exponents give ω1 = 0.77(6)
and ω2 = 1.31(7), perfectly consistent with the fit with
ω1 fixed. In the case of the CDM, also shown in Fig. 5,
we find that the data are well described with a single
correction with the known value of the exponent.
Conclusions.—We have analyzed the SDM under the

scenario [20] of an O(3) quantum phase transition with
an additional irrelevant perturbation that is absent in the
CDM. Our results are consistent with this picture and de-
mand a new scaling correction with exponent ω2 ≈ 1.25

2

We study L×L CDM and SDM systems of size up to
L = 256. Focusing on the scaling corrections, we fix the
leading critical exponents at their known O(3) values in
our finite-size analysis. This enables us to go to higher
order in the irrelevant fields and investigate also sub-
leading corrections. In contrast to the previous studies,
we demonstrate that the SDM actually does not have a
smaller ω1 than the CDM. Instead, the cubic interaction
induces the next correction, which has ω2 = 1.25(3) and
a large prefactor of sign different from that of the first
correction. This causes non-monotonic finite-size behav-
iors that were previously either not observed [19, 20] or
were not analyzed properly [21].
QMC and fitting procedures.—We use the standard

stochastic series expansion QMC method [6, 24] for S =
1/2 spins and set the inverse temperature β at L/2; thus
the ratio L/β is close to the value of the spinwave ve-
locity [21] and the effective imaginary time dimension is
approximately equal to the spatial dimension. At a quan-
tum phase transition with dynamic exponent z = 1 (as
is the case here), as long as β ∝ L the temperature does
not appear as an independent argument in the scaling
function obtained from renormalization group theory. In
the case of a dimensionless quantity we have [25, 26]

O(g, L) = f [(g − gc)L
1/ν ,λ1L

−ω1 ,λ2L
−ω2 , · · · ], (1)

if g is sufficiently close to gc. Here λi denotes the irrele-
vant fields, which we order such that ωi+1 > ωi > 0. Use-
ful dimensionless quantities to study in QMC calculations
include the Binder ratio R = ⟨m4

z⟩/⟨m
2
z⟩

2, where mz is
the component of the staggered magnetization along the
quantization axis, the L-normalized spin stiffness con-
stants Lρx and Lρy (with x and y referring to the lattice
directions), and the uniform susceptibility Lχu. We refer
to Ref. 6 for technical details.
Denoting the deviation g−gc from the critical point by

δ, the standard approach to analyzing the leading critical
behavior with a single correction is to expand Eq. (1) to
linear order in the first irrelevant field,

O(g, L) = f0(δL
1/ν) + L−ω1f1(δL

1/ν), (2)

where f0 and f1 are scaling functions related to the orig-
inal f . Thus, in the absence of corrections, a dimension-
less quantity is completely size independent at gc, and
by expanding f0 we see that O(g, L) for different L cross
each other at gc. With the scaling correction, the cross-
ing points only drift toward gc as L → ∞, and for two
different sizes L and L′ = rL (where we will use r = 2)
one can derive simple expressions for the crossing value
g∗(L) and the observable O∗(L) at this point [27];

g∗(L) = gc + aL−ω1−1/ν , (3a)

O∗(L) = Oc + bL−ω1, (3b)

with constants a and b.

2.516 2.518 2.520 2.522 2.524
1/L

2.24

2.28

2.32

2.36

2.40

R

L=16
L=32
L=64
L=128
L=256

FIG. 2. Binder ratio of the SDM for several system sizes in
the neighborhood of gc. The curves are polynomial fits giving
crossing points between (L, 2L) data.

We extract the crossing points using polynomial fits
(typically of third order) to several points (of the order
10) in the neighborhood of gc = g∗(∞). The window
[g1, g2] of points used in these fits is reduced as the system
size is increased, so that we are always in the regime
where a low-order expansion around gc is expected to be
valid. Since we interpolate, as opposed to extrapolate,
this is a very reliable way of extracting the crossing points
and their statistical errors (using bootstrapping for the
latter). Examples of raw data along with fits are shown
in Fig. 2 in the case of the Binder ratio of the SDM.
In the following we analyze crossing points between

curves for system sizes L and 2L. When fitting the so de-
fined g∗(L) and O∗(L) to appropriate forms from finite-
size scaling theory, it should be noted that the same sys-
tem size L can appear in two pairs, (L, 2L) as well as
(L/2, L). There are therefore some covariance effects,
which we take into account by using the full covariance
matrix (computed using bootstrap analysis) in the defini-
tion of the goodness of the fit χ2 (normalized per degree
of freedom henceforth). When jointly fitting to two dif-
ferent but correlated quantities, we also account for the
associated covariance. For the functional forms, we will
go beyond the first-order expansion leading to Eqs. (3),
and this will be the key to our findings and conclusions.
Finite-size scaling.—The size dependence of R cross-

ing points is shown in Fig. 3 for both models. A striking
feature is the non-monotonic behaviors apparent for the
SDM but not present for the CDM. Note here that 1/L
on the horizontal axis refers to the smaller of the two
system sizes (L, 2L) used for the crossing points, and the
maximums are located at 2L ≈ 80. In the original discov-
ery of the anomalous behaviors for the SDM [17], all the
systems were smaller, and no non-monotonic behaviors
were therefore observed. It is clear that extrapolations
only based on the smaller system sizes cannot reproduce
the correct asymptotic behaviors.
We will first assume that only one irrelevant field is

important but treat the corrections beyond the first-order

Leading-order cross-point shifts

- Works for CDM, ω1≈0.78 
- Two corrections needed for SDM 
    ω1≈0.78, ω2≈1.25
- Fits within theory where the SDM 

field theory needs a new term 
(Fritz et al, PRB 2012)
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FIG. 4. Joint fits of crossing data for several quantities
where g∗(∞) = gc is fixed to a common value and two scal-
ing corrections are used to first order, with ω1 = 0.78 and
1/ν = 1.406. For the SDM (a), the fit has χ2

≈ 1.0 and deliv-
ers gc(∞) = 2.51945(1) as well as ω2 = 1.30(7), 1.3(1), 1.2(1)
and 1.0(2) from R2, Lχu, Lρx, and Lρy , correspondingly. In
the CDM fits (b), 2ω1 = 1.56 was used in place of ω2 and the
fitted critical point is gc = 1.90956(2), with χ2

≈ 1.2.

actually not unexpected within the scenario of irrelevant
cubic interactions [20], because the standard leading cor-
rection with ω1 ≈ 0.78 should still be present and may
produce various “effective” scaling behaviors over a lim-
ited range of system sizes when combined with the cubic
perturbation. Thus, a reliable analysis of the SDM data
should require at least ω1 and ω2.
We can generalize Eqs. (4) to two correction exponents,

ω1 and ω2, but in that case it is very difficult to determine
both of them with sufficient precision. However, since the
standard leading correction should still be present [20],
we now also can fix ω1 = 0.78 and only treat ω2 as a
free parameter. We find that it is then sufficient to go
only to linear order in the corrections and yet obtain fully
acceptable fits with χ2 ≈ 1. We obtain gc = 2.51945(1)
and ω2 = 1.22(5) for the SDM. The new fitted curve is
shown in the inset of Fig. 3(a). The estimate of gc is
now a bit higher than the previous value from the R∗ fit
(though not much outside one error bar of the difference).
The key result here is clearly that ω2 comes out larger

than the leading O(3) exponent. It is, however, signifi-
cantly smaller than the expected second irrelevant O(3)
exponent with value ≈ 1.8 [32, 33], and it is also less
than 2ω1. The new correction should therefore be due to
the cubic interactions [20] in the low-energy theory of the
SDM. To test the stability of ω2 across different quanti-
ties, we also used a slightly different procedure of fitting
only to g∗ (instead of the joint fit with R∗) and requiring
the same L → ∞ value of gc for all the quantities consid-
ered. We still also fix 1/ν = 1.406 and ω1 = 0.78 but keep
ω2 free for all individual quantities. The SDM data with
fits are displayed in Fig. 4(a), with the resulting gc and
ω2 estimates listed in the caption. All four ω2 estimates
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FIG. 5. Size dependence of the exponent η as defined in
Eq. (6). The known infinite-size value η = 0.0375 is fixed
in the fits (curves). The CDM data are fitted with only the
first correction term in Eq. (7), with ω1 = 0.78 fixed. In
the SDM fit ω1 = 0.78 is also fixed and the second exponent
ω2 = 1.29(5) is the result of the fit.

are statistically consistent with the value obtained above.
In the case of the CDM, shown Fig. 4(b), we follow the
same procedures but replace ω2 by 2ω1 and there is no
free exponent. This fit is of marginally good statistical
quality even when starting the fits from L = 16, indicat-
ing some effects still of the higher-order terms that were
included in Fig. 3(b). We therefore keep the value from
R in Tab. I as our best gc estimate for this model.
To further ascertain our conclusions about the SDM,

we also consider the squared order parameter itself. Hav-
ing determined a precise estimate of gc, we study the
scaling of ⟨m2⟩ at this point, where we expect

⟨m2⟩c ∝ L−(1+η)(1 + b1L
−ω1 + b2L

−ω2 + . . .). (5)

We can then define a size-dependent exponent as

η∗(L) = ln[⟨m2(L)⟩c/⟨m
2(2L)⟩c]/ ln(2)− 1, (6)

which should scale as

η∗(L) = η + c1L
−ω1 + c2L

−ω2 + . . . . (7)

To test this form and extract ω2, we use the known value
η = 0.0375(5) [23] and fix ω1 = 0.78. As shown in Fig. 5,
the form fits the data very well and gives ω2 = 1.29(5).
Here one can again see how access to only system sizes
less than L = 80 would lead to the wrong conclusion.
A fit with two adjustable exponents give ω1 = 0.77(6)
and ω2 = 1.31(7), perfectly consistent with the fit with
ω1 fixed. In the case of the CDM, also shown in Fig. 5,
we find that the data are well described with a single
correction with the known value of the exponent.
Conclusions.—We have analyzed the SDM under the

scenario [20] of an O(3) quantum phase transition with
an additional irrelevant perturbation that is absent in the
CDM. Our results are consistent with this picture and de-
mand a new scaling correction with exponent ω2 ≈ 1.25

Order parameter at the critical point

3

2.46

2.48

2.50

2.52

g*

1.80

1.83

1.86

1.89

0.00 0.03 0.06 0.09
1/L

2.28

2.30

2.32

2.34

R 2*

0 0.02 0.04 0.06 0.08
1/L

2.12

2.16

2.20

2.24

0 0.01 0.02 0.032.
51

94
2.

51
96

2.
51

98

 ω=0.60
 ω1=0.78,   ω2=1.22

0 0.01 0.02 0.031.
90

7
1.

90
8

1.
90

9

 ω=0.80
(a)

(b)

(c)

(d)

FIG. 3. Inverse system size dependence of (L, 2L) crossing
data for the SDM (a,b) and the CDM (c,d) along with joint
fits (green curves) of the form Eq. (4). The exponent ω is
adjusted for optimal fits, giving ω = 0.60(4) for the SDM and
ω = 0.80(2) for the CDM. The insets show the large system
data on more detailed scales. The red curve in the inset of
(a) shows a fit with only the leading terms arising from the
first and second irrelevant fields, with ω1 = 0.78 fixed and
ω2 = 1.22(5) resulting from the fit; the fitting curve in (b)
barely changes and is not shown.

expansion, Eq. (2), in L−ω1 . Later we will argue that
one has to include also the next exponent ω2 in the case
of the SDM, while for the CDM this exponent is much
larger and does not have to be considered. Even with
only one irrelevant field, if the associated exponent ω =
ω1 is small, the higher order terms such as L−2ω will
clearly also be important. As a guide to how far to go,
we here compare the previous estimates ω1 ≈ 0.5 − 0.6
[20, 21] in the SDM with the second correction exponent
of the O(3) model, ω2 ≈ 1.8 [32], and also note that
several additional corrections with exponents close to 2
are expected [33]. It would then be pointless to go to
higher order than 3ω in the first irrelevant field, and with
1/ν ≈ 1.4 we also do not include mixed corrections with
ω and 1/ν. Thus, for the SDM we use

g∗(L) =gc + L−1/ν(a1L
−ω + a2L

−2ω + a3L
−3ω), (4a)

R∗(L) =Rc + b1L
−ω + b2L

−2ω + b3L
−3ω, (4b)

and exclude small systems until good fits are obtained.
For the CDM, with ω1 = 0.78, by the above arguments
we do not include the 3ω corrections.
The fitting coefficients ai and bi in Eq. (4) are not fully

independent of each other but are related because they
originate from the same scaling function, Eq. (1). We do
not write down the rather complicated relationships here
but fully take them into account in joint fits of the g∗ and
O∗ data. These nonlinear fits are quite demanding and
we make use of a slow but reliable stochastic approach

similar to the one discussed in Ref. 28. The stability of
the fits is greatly aided by fixing 1/ν to its known 3D
O(3) value 1.406 [23]. The resulting curves are shown in
Fig. 3. Here, as in all cases below, all data points shown
in the figure were included in the fits (with smaller sizes
excluded until the fits become acceptable).
For the CDM, our result for the critical coupling is gc =

1.90951(1), where the number within parathesis here and
henceforth denotes the statistical error (one standard de-
viation of the mean) in the preceding digit. This is con-
sistent with the best previous result, gc = 1.90948(4) [6]
and gc = 1.90947(3) [21], but with reduced statistical er-
ror. For the correction, we obtain ω = 0.80(2), which
agrees with the O(3) value ω1 = 0.782(13) [23].
For the SDM we obtain gc = 2.51943(1), which is con-

sistent with 2.5196(2) obtained previously using L × L
lattices [17], but with a much smaller error bar. It
should be noted that the previous analysis was differ-
ent from our approach here. Using rectangular lattices
with optimized aspect ratio, the critical point was esti-
mated at 2.51941(2) in Ref. [21], which agrees with our
result within error bars. For the correction we obtain
ω = 0.60(4), which is clearly smaller than the known
O(3) value cited above but in good agreement with the
values presented in both Refs. [20] and [21].
Although Rc is universal in the sense that it does

not depend on the micro structure of lattice and details
of the interactions, its value does depend on boundary
conditions [29, 30], including aspect ratios. The CDM
and SDM have different critical spin wave velocities and,
therefore, effectively different time-space aspect ratios
even though β/L is the same. This explains the different
Rc values in Fig. 3; see also Supplemental Material [31].
By analyzing also the spin stiffness and the uniform

susceptibility in the manner described above, we obtain
the results summarized in Tab. I. The results for the
CDM consistently reproduce the known O(3) value of ω1,
while in the case of the SDM the different quantities pro-
duce a wide range of results. This behavior makes us sus-
pect that in this case the extracted ω may not be the true
smallest correction exponent, but, as also pointed out in
Ref. [20], should be regarded as an “effective exponent”,
i.e., one influenced by neglected further corrections. The
inability of a single irrelevant field to describe the data is

TABLE I. Results for the critical point and correction expo-
nent obtained from the fits of various dimensionless quantities
to scaling forms analogous to Eq. (4), keeping corrections up
to 3ω for the SDM and 2ω for the CDM.

CDM SDM
ω gc ω gc

Lρx 0.77(3) 1.90953(2) 0.88(2) 2.51946(2)
Lρy 0.77(4) 1.90957(2) 0.39(5) 2.51942(3)
Lχu 0.78(3) 1.90956(3) 0.68(6) 2.51945(2)
R2 0.80(2) 1.90951(1) 0.60(4) 2.51943(1)

SDM CDM
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fixed point is unstable toward the Wilson-Fisher fixed point,
with a renormalized interaction u ∼ O(ϵ).

We start by determining the scaling dimension of the cubic
operator’s (2) coupling constant at the Gaussian fixed point.
After rescaling the lengths such that the gradient terms are
isotropic, the action in D = d + 1 dimensions reads6

S = 1
2

∫
dDr

[
m0ϕα

2 + (∇⃗ϕα)2] + u0

4!

∫
dDr

(
ϕ2

α

)2

+ iγ0

∫
dDr ϕ⃗ · (∂x ϕ⃗ × ∂y ϕ⃗). (25)

At tree level, we obtain the well-known scaling dimensions

[ϕ⃗]G = (D − 2)/2,

[u0]G = D − 4[ϕ⃗]G = 4 − D, (26)

[γ0]G = D − 2 − 3[ϕ⃗]G = (2 − D)/2,

with the subscript G referring to the Gaussian fixed point.
Substituting D = 3, the cubic term is found to be irrelevant
with a scaling dimension of [γ0] = − 1

2 –the same conclusion
appeared already in Sec. III A.

At the Wilson-Fisher fixed point, both fields and vertices
receive perturbative corrections leading to anomalous dimen-
sions. A simple (but incomplete) estimate of the scaling
dimension of γ0 at the Wilson-Fisher fixed point consists
of taking into account the field renormalization only. This
amounts to using [γ0] = D − 2 − 3[ϕ⃗] with [ϕ⃗] = (D − 2 +
η)/2 leading to

[γ0] ≈ 2 − D

2
− 3η

2
≈ −0.556 25, (27)

where η = 0.0375(5) in D = 3 (Ref. 35) was used. Although
indicative, we cannot expect this estimate to be reliable, as it
ignores vertex corrections: it is known that composite operators
may have large anomalous dimensions (see, e.g., Ref. 36).

A more complete treatment requires a perturbative RG
analysis of the full theory S24 + S3. This expansion is done
about the Gaussian theory, with two dimensionless nonlinear
couplings u = u0'

D−4 and γ = γ0'
(D−2)/2, where ' is

an ultraviolet cutoff. To one-loop order, the calculation is
conveniently performed in the momentum-shell scheme. It
turns out that, due to the antisymmetry of the γ vertex, no
diagrams mixing u and γ exist to one-loop order. Furthermore,
γ does not introduce field renormalizations. Hence the flow
equation for u is not modified by γ , and the flow of γ does not
involve u. To one-loop order we simply have

du

dl
= (4 − D)u − Kd

N + 8
6

u2, (28)

dγ

dl
= 2 − D

2
γ , (29)

where dl = d'/', N = 3 is the number of field components,
and Kd = [2d−1πd/2)(d/2)]−1. Thus, the tree-level result
[γ0] = (2 − D)/2 does not receive one-loop corrections. If
renormalizations of the γ vertex due to u remained absent at
higher loop orders, only field renormalizations would influence
the flow of γ , and the estimate (27) would be correct. However,
we see no fundamental reason for a general cancellation
of such vertex renormalizations. Instead of going to higher

loop orders, we will improve on the estimate (27) using a
non-perturbative numerical approach.

B. Monte Carlo analysis in D = 3

We shall now numerically determine the scaling dimension
of the cubic term S3 directly in (2 + 1) dimensions at the
Wilson-Fisher fixed point. Note that this task is simpler than
solving the full quantum model including S3: in particular, it
boils down to the simulation of a classical problem in D =
(d + z) dimensions, with z = 1, as the O(3) critical field theory
described by S24 follows a quantum-to-classical mapping.

We define the composite operator

O(r⃗) = ϕ⃗(r⃗) · (∂x ϕ⃗(r⃗) × ∂y ϕ⃗(r⃗)). (30)

Its scaling dimension [O] = *O can be obtained from the
long-distance decay of its correlation function:

C(r⃗) = ⟨O(r⃗)O(0)⟩ ∝ 1
|r⃗|2*O

. (31)

From this, the scaling dimension of the coupling constant
(more correctly, the associated vertex function) is obtained
through

[γ0] = D − *O. (32)

In the following, we determine the scaling dimension
*O of the composite operator O by a lattice Monte Carlo
simulation of a classical Heisenberg ferromagnet in D = 3
dimensions, where we shall measure the correlator Eq. (31)
at criticality. This approach exploits that the model is in the
same universality class as the O(3) Landau-Ginzburg theory
and hence realizes the Wilson-Fisher fixed point in D = 3, but
gives us access to correlation functions in a nonperturbative
manner. Specifically, we simulate the classical Heisenberg
model

H = −J
∑

⟨ij⟩
S⃗i · S⃗j (33)

with ferromagnetic interactions between nearest neighbors
on a simple cubic lattice. The S⃗i are classical (commuting)
three-component vectors of unit length (S⃗2

i = 1). We employ
the Wolff cluster algorithm,37 which allows an efficient
Monte Carlo simulation and provides high-accuracy critical
exponents for the O(3) universality class.38 The critical point
of this model is known to be located at Kc = J/(kBTc) =
0.693 035(37).38

In the lattice simulation, the operator O needs to be
discretized. Guided by the derivation of the field theory from
the discrete lattice model, Sec. II, we know that the derivatives
in Eq. (30) should be discretized using a linear function of the
spins (in contrast to Ref. 33). The standard two-point forward
formula leads to

Oi,lattice = S⃗i ·
(
S⃗i+ex

× S⃗i+ey

)
, (34)

where ex(ey) denotes a unit step in the x (y) direction. We
have checked that other (linear) discretization schemes give
qualitatively similar results.

Before we turn to the results for the correlator C(r⃗), we
make a brief detour to discuss the quantity O itself. As men-
tioned above, its layer integral Q(z) =

∑
xy O(x,y,z)/(4π )
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S = 1
2

∫
dDr

[
m0ϕα

2 + (∇⃗ϕα)2] + u0

4!

∫
dDr

(
ϕ2

α

)2

+ iγ0

∫
dDr ϕ⃗ · (∂x ϕ⃗ × ∂y ϕ⃗). (25)

At tree level, we obtain the well-known scaling dimensions

[ϕ⃗]G = (D − 2)/2,

[u0]G = D − 4[ϕ⃗]G = 4 − D, (26)

[γ0]G = D − 2 − 3[ϕ⃗]G = (2 − D)/2,

with the subscript G referring to the Gaussian fixed point.
Substituting D = 3, the cubic term is found to be irrelevant
with a scaling dimension of [γ0] = − 1

2 –the same conclusion
appeared already in Sec. III A.

At the Wilson-Fisher fixed point, both fields and vertices
receive perturbative corrections leading to anomalous dimen-
sions. A simple (but incomplete) estimate of the scaling
dimension of γ0 at the Wilson-Fisher fixed point consists
of taking into account the field renormalization only. This
amounts to using [γ0] = D − 2 − 3[ϕ⃗] with [ϕ⃗] = (D − 2 +
η)/2 leading to

[γ0] ≈ 2 − D
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2
≈ −0.556 25, (27)

where η = 0.0375(5) in D = 3 (Ref. 35) was used. Although
indicative, we cannot expect this estimate to be reliable, as it
ignores vertex corrections: it is known that composite operators
may have large anomalous dimensions (see, e.g., Ref. 36).

A more complete treatment requires a perturbative RG
analysis of the full theory S24 + S3. This expansion is done
about the Gaussian theory, with two dimensionless nonlinear
couplings u = u0'

D−4 and γ = γ0'
(D−2)/2, where ' is

an ultraviolet cutoff. To one-loop order, the calculation is
conveniently performed in the momentum-shell scheme. It
turns out that, due to the antisymmetry of the γ vertex, no
diagrams mixing u and γ exist to one-loop order. Furthermore,
γ does not introduce field renormalizations. Hence the flow
equation for u is not modified by γ , and the flow of γ does not
involve u. To one-loop order we simply have
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where dl = d'/', N = 3 is the number of field components,
and Kd = [2d−1πd/2)(d/2)]−1. Thus, the tree-level result
[γ0] = (2 − D)/2 does not receive one-loop corrections. If
renormalizations of the γ vertex due to u remained absent at
higher loop orders, only field renormalizations would influence
the flow of γ , and the estimate (27) would be correct. However,
we see no fundamental reason for a general cancellation
of such vertex renormalizations. Instead of going to higher

loop orders, we will improve on the estimate (27) using a
non-perturbative numerical approach.

B. Monte Carlo analysis in D = 3

We shall now numerically determine the scaling dimension
of the cubic term S3 directly in (2 + 1) dimensions at the
Wilson-Fisher fixed point. Note that this task is simpler than
solving the full quantum model including S3: in particular, it
boils down to the simulation of a classical problem in D =
(d + z) dimensions, with z = 1, as the O(3) critical field theory
described by S24 follows a quantum-to-classical mapping.

We define the composite operator
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(more correctly, the associated vertex function) is obtained
through
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In the following, we determine the scaling dimension
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and hence realizes the Wilson-Fisher fixed point in D = 3, but
gives us access to correlation functions in a nonperturbative
manner. Specifically, we simulate the classical Heisenberg
model

H = −J
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with ferromagnetic interactions between nearest neighbors
on a simple cubic lattice. The S⃗i are classical (commuting)
three-component vectors of unit length (S⃗2
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the Wolff cluster algorithm,37 which allows an efficient
Monte Carlo simulation and provides high-accuracy critical
exponents for the O(3) universality class.38 The critical point
of this model is known to be located at Kc = J/(kBTc) =
0.693 035(37).38
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discretized. Guided by the derivation of the field theory from
the discrete lattice model, Sec. II, we know that the derivatives
in Eq. (30) should be discretized using a linear function of the
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fixed point is unstable toward the Wilson-Fisher fixed point,
with a renormalized interaction u ∼ O(ϵ).

We start by determining the scaling dimension of the cubic
operator’s (2) coupling constant at the Gaussian fixed point.
After rescaling the lengths such that the gradient terms are
isotropic, the action in D = d + 1 dimensions reads6

S = 1
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∫
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At tree level, we obtain the well-known scaling dimensions
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[u0]G = D − 4[ϕ⃗]G = 4 − D, (26)

[γ0]G = D − 2 − 3[ϕ⃗]G = (2 − D)/2,

with the subscript G referring to the Gaussian fixed point.
Substituting D = 3, the cubic term is found to be irrelevant
with a scaling dimension of [γ0] = − 1

2 –the same conclusion
appeared already in Sec. III A.

At the Wilson-Fisher fixed point, both fields and vertices
receive perturbative corrections leading to anomalous dimen-
sions. A simple (but incomplete) estimate of the scaling
dimension of γ0 at the Wilson-Fisher fixed point consists
of taking into account the field renormalization only. This
amounts to using [γ0] = D − 2 − 3[ϕ⃗] with [ϕ⃗] = (D − 2 +
η)/2 leading to

[γ0] ≈ 2 − D
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2
≈ −0.556 25, (27)

where η = 0.0375(5) in D = 3 (Ref. 35) was used. Although
indicative, we cannot expect this estimate to be reliable, as it
ignores vertex corrections: it is known that composite operators
may have large anomalous dimensions (see, e.g., Ref. 36).

A more complete treatment requires a perturbative RG
analysis of the full theory S24 + S3. This expansion is done
about the Gaussian theory, with two dimensionless nonlinear
couplings u = u0'

D−4 and γ = γ0'
(D−2)/2, where ' is

an ultraviolet cutoff. To one-loop order, the calculation is
conveniently performed in the momentum-shell scheme. It
turns out that, due to the antisymmetry of the γ vertex, no
diagrams mixing u and γ exist to one-loop order. Furthermore,
γ does not introduce field renormalizations. Hence the flow
equation for u is not modified by γ , and the flow of γ does not
involve u. To one-loop order we simply have
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= (4 − D)u − Kd
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6

u2, (28)
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2
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where dl = d'/', N = 3 is the number of field components,
and Kd = [2d−1πd/2)(d/2)]−1. Thus, the tree-level result
[γ0] = (2 − D)/2 does not receive one-loop corrections. If
renormalizations of the γ vertex due to u remained absent at
higher loop orders, only field renormalizations would influence
the flow of γ , and the estimate (27) would be correct. However,
we see no fundamental reason for a general cancellation
of such vertex renormalizations. Instead of going to higher

loop orders, we will improve on the estimate (27) using a
non-perturbative numerical approach.

B. Monte Carlo analysis in D = 3

We shall now numerically determine the scaling dimension
of the cubic term S3 directly in (2 + 1) dimensions at the
Wilson-Fisher fixed point. Note that this task is simpler than
solving the full quantum model including S3: in particular, it
boils down to the simulation of a classical problem in D =
(d + z) dimensions, with z = 1, as the O(3) critical field theory
described by S24 follows a quantum-to-classical mapping.
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gives us access to correlation functions in a nonperturbative
manner. Specifically, we simulate the classical Heisenberg
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with ferromagnetic interactions between nearest neighbors
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i = 1). We employ
the Wolff cluster algorithm,37 which allows an efficient
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In the lattice simulation, the operator O needs to be
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with a renormalized interaction u ∼ O(ϵ).
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where η = 0.0375(5) in D = 3 (Ref. 35) was used. Although
indicative, we cannot expect this estimate to be reliable, as it
ignores vertex corrections: it is known that composite operators
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D−4 and γ = γ0'
(D−2)/2, where ' is

an ultraviolet cutoff. To one-loop order, the calculation is
conveniently performed in the momentum-shell scheme. It
turns out that, due to the antisymmetry of the γ vertex, no
diagrams mixing u and γ exist to one-loop order. Furthermore,
γ does not introduce field renormalizations. Hence the flow
equation for u is not modified by γ , and the flow of γ does not
involve u. To one-loop order we simply have
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where dl = d'/', N = 3 is the number of field components,
and Kd = [2d−1πd/2)(d/2)]−1. Thus, the tree-level result
[γ0] = (2 − D)/2 does not receive one-loop corrections. If
renormalizations of the γ vertex due to u remained absent at
higher loop orders, only field renormalizations would influence
the flow of γ , and the estimate (27) would be correct. However,
we see no fundamental reason for a general cancellation
of such vertex renormalizations. Instead of going to higher

loop orders, we will improve on the estimate (27) using a
non-perturbative numerical approach.

B. Monte Carlo analysis in D = 3

We shall now numerically determine the scaling dimension
of the cubic term S3 directly in (2 + 1) dimensions at the
Wilson-Fisher fixed point. Note that this task is simpler than
solving the full quantum model including S3: in particular, it
boils down to the simulation of a classical problem in D =
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through

[γ0] = D − *O. (32)

In the following, we determine the scaling dimension
*O of the composite operator O by a lattice Monte Carlo
simulation of a classical Heisenberg ferromagnet in D = 3
dimensions, where we shall measure the correlator Eq. (31)
at criticality. This approach exploits that the model is in the
same universality class as the O(3) Landau-Ginzburg theory
and hence realizes the Wilson-Fisher fixed point in D = 3, but
gives us access to correlation functions in a nonperturbative
manner. Specifically, we simulate the classical Heisenberg
model

H = −J
∑

⟨ij⟩
S⃗i · S⃗j (33)

with ferromagnetic interactions between nearest neighbors
on a simple cubic lattice. The S⃗i are classical (commuting)
three-component vectors of unit length (S⃗2

i = 1). We employ
the Wolff cluster algorithm,37 which allows an efficient
Monte Carlo simulation and provides high-accuracy critical
exponents for the O(3) universality class.38 The critical point
of this model is known to be located at Kc = J/(kBTc) =
0.693 035(37).38

In the lattice simulation, the operator O needs to be
discretized. Guided by the derivation of the field theory from
the discrete lattice model, Sec. II, we know that the derivatives
in Eq. (30) should be discretized using a linear function of the
spins (in contrast to Ref. 33). The standard two-point forward
formula leads to

Oi,lattice = S⃗i ·
(
S⃗i+ex

× S⃗i+ey

)
, (34)

where ex(ey) denotes a unit step in the x (y) direction. We
have checked that other (linear) discretization schemes give
qualitatively similar results.

Before we turn to the results for the correlator C(r⃗), we
make a brief detour to discuss the quantity O itself. As men-
tioned above, its layer integral Q(z) =

∑
xy O(x,y,z)/(4π )
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FIG. 3. (Color online) Histograms of the intralayer “skyrmion
number” Q(z) (see text), obtained from a Monte Carlo simulation of
the classical Heisenberg model (33) at its critical temperature. The
curves have been obtained from 108 measurements on systems of
size L3 with L = 4,6,8; each measurement gave Q(z) for a single
layer with fixed z. Note that Q is not quantized, as it does not involve
unit-length fields in the continuum limit. The distributions are found
to be Gaussian, with a width scaling linearly with L.

may suggest an interpretation in terms of a topological charge.
However, the numerical Monte Carlo simulations show that
Q(z) is not quantized at criticality; see Fig. 3. Instead, Q(z)
displays a single peak at Q = 0, with a width scaling as L in
a system of size L3. Since the number of spins in each layer
is L2, this width simply reflects the standard thermodynamic
scaling of fluctuations of a noncritical extensive observable.
Therefore Fig. 3 supports the conclusion of Sec. III B thatO(r⃗)
is a conventional non-critical density.

The correlator of O is measured along the two inequivalent
directions, i.e., within the xy plane and along the z axis:

Cxy(r) = ⟨O(r,0,0)O(0⃗)⟩ = ⟨O(0,r,0)O(0⃗)⟩,
(35)

Cz(r) = ⟨O(0,0,r)O(0⃗)⟩,

where r now denotes discrete lattice coordinates. We find that
both correlation functions drop quickly with the separation
r , and a large number of Monte Carlo sweeps are required
to reduce the statistical uncertainty in the correlator. The most
efficient way to estimate the decay exponents of C(r) in a finite-
size system is to measure the correlation functions at half the
linear system size, Cxy(L/2) and Cz(L/2), for different lattice
sizes, as to minimize finite-size effects. We employed up to
1012 Wolff cluster updates for system sizes L = 6,8,10,12,14
to obtain the data shown in Fig. 4.

Despite the relatively small system sizes, Cxy(L/2) and
Cz(L/2) show an algebraic decay with L/2, consistent with
critical behavior. For both correlators, the decay appears to
be faster than 1/r6. However, a reliable determination of the
decay exponent is difficult, because the data display a slight
curvature at the largest system sizes. A direct fit of all data
points yields !O ≈ 4, while the large-system data are more
consistent with !O ≈ 3.2 . . . 3.5. With Eq. (32) this suggests
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FIG. 4. (Color online) The correlators Cxy(L/2),Cz(L/2) as
functions of L/2 for different system sizes L from Monte Carlo
simulations of the ferromagnetic Heisenberg model (33) at its critical
temperature. The dashed line corresponds to a decay proportional to
(L/2)−6. Note that the uncertainty of the Cz(7) data point is of the
same order as the value itself.

that the scaling dimension [γ0]WF is in the range −0.2 . . . −
0.5, consistent with weak irrelevancy of the cubic operator at
the Wilson-Fisher fixed point. However, from the present data
we cannot rule out that γ0 is instead weakly relevant.

C. Scenario: Large corrections to O(3) scaling

Let us summarize the state of affairs concerning the critical
behavior of class-B dimer models: (i) We have found that
the combination of low symmetry and vanishing ordering
wave vector leads to the presence of a cubic term in the
low-energy field theory—this cubic term represents the most
relevant difference to a standard O(3) field theory. (ii) The
cubic term is strongly irrelevant in (3 − ϵ) space dimensions,
while the Monte Carlo results of Sec. IV B suggest that it has
a small scaling dimension in d = 2, most likely being weakly
irrelevant. (iii) The published QMC results for the staggered
dimer model indicate either critical exponents slightly different
from those of the O(3) universality class9 or, if the fitting
is restricted to large systems only, exponents consistent with
their O(3) values.11,12 Note that a conventional value for the
critical exponent ν was obtained also using an unconventional
finite-size scaling analysis of the spin stiffness13 whose validity
remains to be verified.

Points (i) and (ii) strongly suggest that the cubic term
is responsible for the unusual behavior seen in the QMC
calculations. Point (iii) then implies that the cubic term is
irrelevant (instead of relevant) in the RG sense, as otherwise
the deviations from O(3) universality would grow (instead of
shrink) with system size.

This leads us to propose the following scenario for the
quantum phase transition in class-B coupled-dimer models:
The cubic term is weakly irrelevant in d = 2 and therefore
constitutes the leading irrelevant operator at the Wilson-Fisher
fixed point. Hence the asymptotic critical behavior is that of
the standard O(3) universality class, but the corrections to
scaling are different from standard O(3) universality. In the
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fixed point is unstable toward the Wilson-Fisher fixed point,
with a renormalized interaction u ∼ O(ϵ).

We start by determining the scaling dimension of the cubic
operator’s (2) coupling constant at the Gaussian fixed point.
After rescaling the lengths such that the gradient terms are
isotropic, the action in D = d + 1 dimensions reads6

S = 1
2

∫
dDr

[
m0ϕα

2 + (∇⃗ϕα)2] + u0

4!

∫
dDr

(
ϕ2

α

)2

+ iγ0

∫
dDr ϕ⃗ · (∂x ϕ⃗ × ∂y ϕ⃗). (25)

At tree level, we obtain the well-known scaling dimensions

[ϕ⃗]G = (D − 2)/2,

[u0]G = D − 4[ϕ⃗]G = 4 − D, (26)

[γ0]G = D − 2 − 3[ϕ⃗]G = (2 − D)/2,

with the subscript G referring to the Gaussian fixed point.
Substituting D = 3, the cubic term is found to be irrelevant
with a scaling dimension of [γ0] = − 1

2 –the same conclusion
appeared already in Sec. III A.

At the Wilson-Fisher fixed point, both fields and vertices
receive perturbative corrections leading to anomalous dimen-
sions. A simple (but incomplete) estimate of the scaling
dimension of γ0 at the Wilson-Fisher fixed point consists
of taking into account the field renormalization only. This
amounts to using [γ0] = D − 2 − 3[ϕ⃗] with [ϕ⃗] = (D − 2 +
η)/2 leading to

[γ0] ≈ 2 − D

2
− 3η

2
≈ −0.556 25, (27)

where η = 0.0375(5) in D = 3 (Ref. 35) was used. Although
indicative, we cannot expect this estimate to be reliable, as it
ignores vertex corrections: it is known that composite operators
may have large anomalous dimensions (see, e.g., Ref. 36).

A more complete treatment requires a perturbative RG
analysis of the full theory S24 + S3. This expansion is done
about the Gaussian theory, with two dimensionless nonlinear
couplings u = u0'

D−4 and γ = γ0'
(D−2)/2, where ' is

an ultraviolet cutoff. To one-loop order, the calculation is
conveniently performed in the momentum-shell scheme. It
turns out that, due to the antisymmetry of the γ vertex, no
diagrams mixing u and γ exist to one-loop order. Furthermore,
γ does not introduce field renormalizations. Hence the flow
equation for u is not modified by γ , and the flow of γ does not
involve u. To one-loop order we simply have

du

dl
= (4 − D)u − Kd

N + 8
6

u2, (28)

dγ

dl
= 2 − D

2
γ , (29)

where dl = d'/', N = 3 is the number of field components,
and Kd = [2d−1πd/2)(d/2)]−1. Thus, the tree-level result
[γ0] = (2 − D)/2 does not receive one-loop corrections. If
renormalizations of the γ vertex due to u remained absent at
higher loop orders, only field renormalizations would influence
the flow of γ , and the estimate (27) would be correct. However,
we see no fundamental reason for a general cancellation
of such vertex renormalizations. Instead of going to higher

loop orders, we will improve on the estimate (27) using a
non-perturbative numerical approach.

B. Monte Carlo analysis in D = 3

We shall now numerically determine the scaling dimension
of the cubic term S3 directly in (2 + 1) dimensions at the
Wilson-Fisher fixed point. Note that this task is simpler than
solving the full quantum model including S3: in particular, it
boils down to the simulation of a classical problem in D =
(d + z) dimensions, with z = 1, as the O(3) critical field theory
described by S24 follows a quantum-to-classical mapping.

We define the composite operator

O(r⃗) = ϕ⃗(r⃗) · (∂x ϕ⃗(r⃗) × ∂y ϕ⃗(r⃗)). (30)

Its scaling dimension [O] = *O can be obtained from the
long-distance decay of its correlation function:

C(r⃗) = ⟨O(r⃗)O(0)⟩ ∝ 1
|r⃗|2*O

. (31)

From this, the scaling dimension of the coupling constant
(more correctly, the associated vertex function) is obtained
through

[γ0] = D − *O. (32)

In the following, we determine the scaling dimension
*O of the composite operator O by a lattice Monte Carlo
simulation of a classical Heisenberg ferromagnet in D = 3
dimensions, where we shall measure the correlator Eq. (31)
at criticality. This approach exploits that the model is in the
same universality class as the O(3) Landau-Ginzburg theory
and hence realizes the Wilson-Fisher fixed point in D = 3, but
gives us access to correlation functions in a nonperturbative
manner. Specifically, we simulate the classical Heisenberg
model

H = −J
∑

⟨ij⟩
S⃗i · S⃗j (33)

with ferromagnetic interactions between nearest neighbors
on a simple cubic lattice. The S⃗i are classical (commuting)
three-component vectors of unit length (S⃗2

i = 1). We employ
the Wolff cluster algorithm,37 which allows an efficient
Monte Carlo simulation and provides high-accuracy critical
exponents for the O(3) universality class.38 The critical point
of this model is known to be located at Kc = J/(kBTc) =
0.693 035(37).38

In the lattice simulation, the operator O needs to be
discretized. Guided by the derivation of the field theory from
the discrete lattice model, Sec. II, we know that the derivatives
in Eq. (30) should be discretized using a linear function of the
spins (in contrast to Ref. 33). The standard two-point forward
formula leads to

Oi,lattice = S⃗i ·
(
S⃗i+ex

× S⃗i+ey

)
, (34)

where ex(ey) denotes a unit step in the x (y) direction. We
have checked that other (linear) discretization schemes give
qualitatively similar results.

Before we turn to the results for the correlator C(r⃗), we
make a brief detour to discuss the quantity O itself. As men-
tioned above, its layer integral Q(z) =

∑
xy O(x,y,z)/(4π )
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fixed point is unstable toward the Wilson-Fisher fixed point,
with a renormalized interaction u ∼ O(ϵ).

We start by determining the scaling dimension of the cubic
operator’s (2) coupling constant at the Gaussian fixed point.
After rescaling the lengths such that the gradient terms are
isotropic, the action in D = d + 1 dimensions reads6

S = 1
2

∫
dDr

[
m0ϕα

2 + (∇⃗ϕα)2] + u0

4!

∫
dDr

(
ϕ2

α

)2

+ iγ0

∫
dDr ϕ⃗ · (∂x ϕ⃗ × ∂y ϕ⃗). (25)

At tree level, we obtain the well-known scaling dimensions

[ϕ⃗]G = (D − 2)/2,

[u0]G = D − 4[ϕ⃗]G = 4 − D, (26)

[γ0]G = D − 2 − 3[ϕ⃗]G = (2 − D)/2,

with the subscript G referring to the Gaussian fixed point.
Substituting D = 3, the cubic term is found to be irrelevant
with a scaling dimension of [γ0] = − 1

2 –the same conclusion
appeared already in Sec. III A.

At the Wilson-Fisher fixed point, both fields and vertices
receive perturbative corrections leading to anomalous dimen-
sions. A simple (but incomplete) estimate of the scaling
dimension of γ0 at the Wilson-Fisher fixed point consists
of taking into account the field renormalization only. This
amounts to using [γ0] = D − 2 − 3[ϕ⃗] with [ϕ⃗] = (D − 2 +
η)/2 leading to

[γ0] ≈ 2 − D

2
− 3η

2
≈ −0.556 25, (27)

where η = 0.0375(5) in D = 3 (Ref. 35) was used. Although
indicative, we cannot expect this estimate to be reliable, as it
ignores vertex corrections: it is known that composite operators
may have large anomalous dimensions (see, e.g., Ref. 36).

A more complete treatment requires a perturbative RG
analysis of the full theory S24 + S3. This expansion is done
about the Gaussian theory, with two dimensionless nonlinear
couplings u = u0'

D−4 and γ = γ0'
(D−2)/2, where ' is

an ultraviolet cutoff. To one-loop order, the calculation is
conveniently performed in the momentum-shell scheme. It
turns out that, due to the antisymmetry of the γ vertex, no
diagrams mixing u and γ exist to one-loop order. Furthermore,
γ does not introduce field renormalizations. Hence the flow
equation for u is not modified by γ , and the flow of γ does not
involve u. To one-loop order we simply have

du

dl
= (4 − D)u − Kd

N + 8
6

u2, (28)

dγ

dl
= 2 − D

2
γ , (29)

where dl = d'/', N = 3 is the number of field components,
and Kd = [2d−1πd/2)(d/2)]−1. Thus, the tree-level result
[γ0] = (2 − D)/2 does not receive one-loop corrections. If
renormalizations of the γ vertex due to u remained absent at
higher loop orders, only field renormalizations would influence
the flow of γ , and the estimate (27) would be correct. However,
we see no fundamental reason for a general cancellation
of such vertex renormalizations. Instead of going to higher

loop orders, we will improve on the estimate (27) using a
non-perturbative numerical approach.

B. Monte Carlo analysis in D = 3

We shall now numerically determine the scaling dimension
of the cubic term S3 directly in (2 + 1) dimensions at the
Wilson-Fisher fixed point. Note that this task is simpler than
solving the full quantum model including S3: in particular, it
boils down to the simulation of a classical problem in D =
(d + z) dimensions, with z = 1, as the O(3) critical field theory
described by S24 follows a quantum-to-classical mapping.

We define the composite operator

O(r⃗) = ϕ⃗(r⃗) · (∂x ϕ⃗(r⃗) × ∂y ϕ⃗(r⃗)). (30)

Its scaling dimension [O] = *O can be obtained from the
long-distance decay of its correlation function:

C(r⃗) = ⟨O(r⃗)O(0)⟩ ∝ 1
|r⃗|2*O

. (31)

From this, the scaling dimension of the coupling constant
(more correctly, the associated vertex function) is obtained
through

[γ0] = D − *O. (32)

In the following, we determine the scaling dimension
*O of the composite operator O by a lattice Monte Carlo
simulation of a classical Heisenberg ferromagnet in D = 3
dimensions, where we shall measure the correlator Eq. (31)
at criticality. This approach exploits that the model is in the
same universality class as the O(3) Landau-Ginzburg theory
and hence realizes the Wilson-Fisher fixed point in D = 3, but
gives us access to correlation functions in a nonperturbative
manner. Specifically, we simulate the classical Heisenberg
model

H = −J
∑

⟨ij⟩
S⃗i · S⃗j (33)

with ferromagnetic interactions between nearest neighbors
on a simple cubic lattice. The S⃗i are classical (commuting)
three-component vectors of unit length (S⃗2

i = 1). We employ
the Wolff cluster algorithm,37 which allows an efficient
Monte Carlo simulation and provides high-accuracy critical
exponents for the O(3) universality class.38 The critical point
of this model is known to be located at Kc = J/(kBTc) =
0.693 035(37).38

In the lattice simulation, the operator O needs to be
discretized. Guided by the derivation of the field theory from
the discrete lattice model, Sec. II, we know that the derivatives
in Eq. (30) should be discretized using a linear function of the
spins (in contrast to Ref. 33). The standard two-point forward
formula leads to

Oi,lattice = S⃗i ·
(
S⃗i+ex

× S⃗i+ey

)
, (34)

where ex(ey) denotes a unit step in the x (y) direction. We
have checked that other (linear) discretization schemes give
qualitatively similar results.

Before we turn to the results for the correlator C(r⃗), we
make a brief detour to discuss the quantity O itself. As men-
tioned above, its layer integral Q(z) =

∑
xy O(x,y,z)/(4π )
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Thallium copper chloride is a quantum spin liquid of S!1/2 Cu2" dimers. Interdimer superexchange
interactions give a three-dimensional magnon dispersion and a spin gap significantly smaller than the dimer
coupling. This gap is closed by an applied hydrostatic pressure of approximately 2 kbar or by a magnetic field
of 5.6 T, offering a unique opportunity to explore both types of quantum phase transition and their associated
critical phenomena. We use a bond-operator formulation to obtain a continuous description of all disordered
and ordered phases, and thus of the transitions separating these. Both pressure- and field-induced transitions
may be considered as the Bose–Einstein condensation of triplet magnon excitations, and the respective phases
of staggered magnetic order as linear combinations of dimer-singlet and dimer-triplet modes. We focus on the
evolution with applied pressure and field of the magnetic excitations in each phase, and in particular on the
gapless !Goldstone" modes in the ordered regimes which correspond to phase fluctuations of the ordered
moment. The bond-operator description yields a good account of the magnetization curves and of magnon
dispersion relations observed by inelastic neutron scattering under applied fields, and a variety of experimental
predictions for pressure-dependent measurements.
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I. INTRODUCTION

Thallium copper chloride1–3 presents an insulating, quan-
tum magnetic system of dimerized S!1/2 Cu2" ions. Inelas-
tic neutron scattering !INS" measurements of the elementary
magnon excitations4,5 reveal a strong dispersion in all three
spatial dimensions indicative of significant interdimer inter-
actions. The dispersion minimum gives a spin gap #0
!0.7 meV, which is significantly smaller than the antiferro-
magnetic !AF" dimer superexchange parameter J$5 meV.
The corresponding critical field, Hc!5.6 T, makes TlCuCl3
one of the few known inorganic systems in which the gap
may be closed by application of laboratory magnetic fields.2
Neutron-diffraction measurements at fields H#Hc revealed
that a field-induced AF order in the plane normal to the ap-
plied field appears simultaneously with the uniform
moment.6 Recent INS measurements of the magnon spectra
in finite fields,7 including those exceeding Hc ,8 have pro-
vided dynamical information concerning the elementary ex-
citations, in particular the linear Goldstone mode,9 in the
phase of field-induced magnetic order.
TlCuCl3 !Fig. 1" is one member of a group of related

compounds. The potassium analog KCuCl3 !Refs. 1,2,10–
13,7" is similarly dimerized, but has significantly weaker in-
terdimer couplings,14 resulting in a large spin gap of 2.6
meV. A further material in the same class, NH4CuCl3, has no
spin gap and exhibits magnetic order with a very small mo-
ment, but also shows a complicated low-temperature struc-
ture which gives rise to magnetization plateaus only at 1/4
and 3/4 of the saturation value.15 While the apparent increase
of interdimer couplings with anion size may suggest a con-
tribution of the anion to superexchange processes, it should
be noted that the physical origin of the properties of
NH4CuCl3 may be rather different from the other
members.16 Turning from chemical to physical pressure,

Tanaka et al.17 found by magnetization measurements under
hydrostatic pressure that TlCuCl3 has a pressure-induced
magnetically ordered phase, with a very small critical pres-
sure for the onset of magnetic order, Pc%2 kbar. Oosawa
et al.18 have shown very recently by elastic neutron-
scattering measurements under a pressure of 1.48 GPa that
the pressure-induced ordered phase has a strong staggered
moment !60% of the saturation value", again reflecting the
low value of Pc . The magnetic Bragg reflections are found
at reciprocal-lattice points Q!(0,0,2&) !following the nota-
tion of Ref. 4", as in the field-induced ordered phase of
TlCuCl3. The aim of the present work is to compare and
contrast the field- and pressure-induced ordered phases of the
system, and to provide a complete description of the static
magnetization and dynamical excitations at all fields and
pressures.

FIG. 1. Structure of TlCuCl3: small circles represent Cl$ ions,
medium-sized circles Cu2" ions, and large circles Tl" ions.
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Figure 4.1: Crystal structure of TlCuCl
3

: small circles represent Cl� ions, medium-sized

circles Cu2+ ions, and large circles Tl+ ions. Dimers are formed between S = 1

2

Cu2+ pairs,

with superexchange via Cl� [3–9]. This graph is from Ref. [10].

couplings are di↵erent.

A universal aspect of the ordering temperature, from systems close to the quantum-

critical point to deep inside the Néel phase, is uncovered based on an unbiased quantum

Monte Carlo calculation. A scaling procedure of direct relevance to experiments is devel-

oped. The results also provide new insights into the relevant energy scales present in the 3D

Néel state and demonstrate an e↵ective decoupling of thermal and quantum fluctuations.

4.1 TlCuCl3 and Dimer Spin Models

The strong interdimer interaction of TlCuCl
3

is revealed by elementary magnon exitation

with neutron scattering experiment [6, 88]. Quantum phase transitions can be realized in
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Quantum and classical criticality in a dimerized
quantum antiferromagnet
P. Merchant1, B. Normand2, K. W. Krämer3, M. Boehm4, D. F. McMorrow1 and Ch. Rüegg1,5,6*

A quantum critical point (QCP) is a singularity in the phase diagram arising because of quantum mechanical fluctuations.
The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors,
quantum magnets and ultracold atomic condensates, have been related to the importance of critical quantum and thermal
fluctuations near such a point. However, direct and continuous control of these fluctuations has been di�cult to realize, and
complete thermodynamic and spectroscopic information is required to disentangle the e�ects of quantum and classical physics
around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum
dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram,
we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the
unconventional longitudinal (Higgs) mode of the ordered phase by damping it thermally. We demonstrate the development of
two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum
and thermal fluctuations can behave largely independently near a QCP.

In classical isotropic antiferromagnets, the excitations of
the ordered phase are gapless spin waves emerging on the
spontaneous breaking of a continuous symmetry1. The classical

phase transition, occurring at the critical (Néel) temperature TN,
is driven by thermal fluctuations. In quantum antiferromagnets,
quantum fluctuations suppress long-range order, and can destroy it
completely even at zero temperature2. The ordered and disordered
phases are separated by a QCP, where quantum fluctuations restore
the broken symmetry and all excitations become gapped, giving
them characteristics fundamentally di�erent from the Goldstone
modes on the other side of the QCP (Fig. 1). At finite temperatures
around a QCP, the combined e�ects of quantum and thermal
fluctuations bring about a regime where the characteristic energy
scale of spin excitations is the temperature itself, and this quantum
critical regime has many special properties3.

Physical systems do not often allow the free tuning of a
quantum fluctuation parameter through a QCP. The quantum
critical regime has been studied in some detail in heavy-fermion
metals with di�erent dopings, where the quantum phase transition
(QPT) is from itinerant magnetic phases to unusual metallic or
superconducting ones4–6, in organic materials where a host of
insulating magnetic phases become (super)conducting7,8, and in
cold atomic gases tuned from superfluid toMott-insulating states9,10.
However, the dimerized quantum spin system TlCuCl3 occupies
a very special position in the experimental study of QPTs. The
quantum disordered phase at ambient pressure and zero field has
a small gap to spin excitations. An applied magnetic field closes
this gap, driving a QPT to an ordered phase, a magnon condensate
in the Bose–Einstein universality class, with a single, nearly
massless excitation11,12.

Far more remarkably, an applied pressure also drives a QPT
to an ordered phase13, occurring at the very low critical pressure

pc = 1.07 kbar (ref. 14) and sparking detailed studies15,16. This
ordered phase is a di�erent type of condensate, whose defining
feature is a massive excitation, a Higgs boson or longitudinal
fluctuationmode of theweakly orderedmoment17,18. This excitation,
which exists alongside the two transverse (Goldstone) modes
of a conventional well-ordered magnet, has been characterized
in detail by neutron spectroscopy with continuous pressure
control through the QPT (ref. 19) and subsequently by di�erent
theoretical approaches20,21. TlCuCl3 is therefore an excellent system
for answering fundamental questions about the development of
criticality, the nature of the quantum critical regime, and the
interplay of quantum and thermal fluctuations by controlling both
the pressure and the temperature.

Here we present inelastic neutron scattering (INS) results that
map the evolution of the spin dynamics of TlCuCl3 throughout the
quantum critical phase diagram in pressure and temperature. The
spin excitations we measure exhibit di�erent forms of dynamical
scaling behaviour arising from the combined e�ects of quantum
and thermal fluctuations, particularly on crossing the quantum
critical regime and at the line of phase transitions to magnetic
order (Fig. 1). To probe these regions, we collected spectra up to
1.8 meV for temperatures between T =1.8 K and 12.7 K, and over
a range of applied hydrostatic pressures. Our measurements were
performed primarily at p = 1.05 kbar (' pc at the lowest
temperatures), 1.75 kbar and 3.6 kbar, and also for all pressures at
T = 5.8 K. Most measurements were made at the ordering
wavevector, Q0 = (0 4 0) reciprocal lattice units (r.l.u.), and so
concern triplet mode gaps. From the INS selection rules, only one
transverse mode of the ordered phase is observable at Q = Q0,
and it is gapped (�T2 = 0.38 meV) owing to a 1% exchange
anisotropy19. These features allow an unambiguous separation of
the intensity contributions from modes of each transverse or
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on the calculated quantities, but no detectable qualitative ones (for
example, on exponents). From our measurements, the best fits to
the pressure exponents for ms and TN lie close to the classical value
of 0.35 (ref. 14), although the quantum value of 0.5 is not beyond
the error bars very close to the QCP. From experiment, the two
quantities scale well together near the QCP, as shown in Fig. 4d,e,
but depart from universal scaling16 around an ordered moment of
0.4µB/Cu (Fig. 4e).

We have shown that the e�ects on the spectrum of quantum
and thermal melting are qualitatively very similar. Both result
in the systematic evolution of excitations whose gap increases
away from the classical phase transition line, rather than simply
a loss of coherence due to thermal fluctuations. Microscopically,
quantum fluctuations in a dimer-based system cause enhanced
singlet formation and loss of interdimer magnetic correlations,

whereas thermal fluctuations act to suppress the spin correlation
function hSi · Sji on both the dimer and interdimer bonds. These
correlation functions may be estimated from neutron-scattering
intensities23 and also measured in dimerized optical lattices of
ultracold fermions29. In TlCuCl3, both methods of destroying
interdimer coherence cause the triplet modes to evolve in the same
way. A key question in the understanding of quantum criticality is
whether quantum and thermal fluctuations can be considered as
truly independent, andwhether this independencemay be taken as a
definition of the quantumcritical regime16. Our experimental results
suggest that weak departures from universality become detectable at
(p,T ) values away from the quantum critical and classical critical
regimes, and particularly as we increase the excitation energy,
presumably as microscopic details of the fluctuation redistribution
cause a mixing of quantum and thermal e�ects.
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FIG. 1. (Color online) Dimerized 3D lattices: (a) columnar
dimers, (b) staggered dimers, and (c) double cube. For a system of
length L, the number of spins is N = L3 in (a) and (b), and N = 2L3

in (c). The two different coupling strengths J1 and J2 are indicated
by thin (black dashed and solid) and thick (red) lines, respectively.

not just close to the quantum-critical point but extending to
strongly ordered systems. Our results give a parameter-free
scaling function that can be compared with experiments.

Quantum Monte Carlo calculations. We have used the
stochastic series expansion (SSE) QMC method with very
efficient loop updates5–7 to calculate the squares ⟨m2

z⟩ and
⟨m2

sz⟩ of the z components of the uniform and staggered
magnetizations,

mz = 1
N

N∑

i=1

Sz
i , msz = 1

N

N∑

i=1

φiS
z
i , (2)

where the phases φi = ±1 correspond to the sublattices of the
bipartite systems in Fig. 1. The uniform susceptibility is χ =
⟨m2

z⟩/(NT ). We also study the Binder ratio R2 = ⟨m4
sz⟩/⟨m2

sz⟩2

and the spin stiffness constants ρα
s in all lattice directions (α =

x,y,z), ρα
s = d2E(θα)/dθ2

α , where E is the internal energy per
spin and θα a uniform twist angle imposed between spins in
planes perpendicular to the α axis. The stiffness constants can
be related to winding number fluctuations in the simulations.7

We use standard finite-size scaling7 to extract TN . At TN , the
stiffness constants scale with the system length as ρα

s ∝ L2−d ,
where the dimensionality d = 3. Thus, ρα

s L should be size
independent at TN , while this quantity vanishes (diverges) for
T > TN (T < TN ). In practice, this means that curves versus
T (at fixed g) for two different system sizes L cross each other
at a point which drifts (due to scaling corrections) toward TN

with increasing L. The dimensionless Binder ratio also has this
kind of behavior and provides us with a different TN estimate
to check for consistency. Figures 2(a) and 2(b) show examples
of these crossing behaviors for ρx

s L and R2. The crossing
points drift in different directions and bracket TN . Figure 2(c)
shows the L dependence of crossing points extracted from data
for (L,L + 2) system pairs, for R2 and two different stiffness
constants. Power-law fits are used to extrapolate to infinite
size. The mutual consistency of the TN value so obtained using
different quantities gives us confidence in the accuracy of this
procedure.

To extract the T = 0 sublattice magnetization, we carry out
simulations at temperature T = J1/L. Note that, in a Néel
phase with TN > 0, any T (L) such that T (L → ∞) → 0 can
be used for extrapolations to the thermodynamic limit and
T = 0. Our choice is a natural way to to scale the temperature
since the lowest spin waves have energy ∝1/L. We also did
some calculations with T = 1/2L and obtained consistent
extrapolated results. Examples of the L dependence are shown
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FIG. 2. (Color online) Procedures used to extract the critical
temperature TN . (a) and (b) show ρx

s L and R2, respectively, for
the columnar dimer model at coupling ratio g = 3.444. The error
bars are smaller than the symbols. Using polynomial fits to data for
two lattice sizes, L and L + 2, crossing points between the curves
are extracted. Results are shown in (c), along with fits of the form
TN (L) = TN (∞) + a/Lw (to the large-L data for which this form
obtains). Extrapolations of the three quantities give TN = 0.7996(3),
0.7996(6), and 0.7999(5) for L → ∞, all consistent with each other
within errors bars.

in Fig. 3 for the double-cube model at several different
coupling ratios. Taking into account rotational averaging in
spin space, the final result for the sublattice magnetization is
given by the L → ∞ extrapolated ⟨m2

sz⟩ (for which we use a
polynomial fit, as shown in Fig. 3), ms =

√
3⟨m2

sz⟩.
Universality of TN versus ms . Following the above pro-

cedures, we have calculated TN and ms accurately for all
three dimer models at several coupling ratios g, from close
to gc to deep inside the Néel phase. We graph TN versus
ms in Fig. 4. TN is scaled by three different energy units:
the interdimer coupling J1 in Fig. 4(a), the sum of couplings
Js connected to each spin in Fig. 4(b), and the temperature
T ∗ at which the susceptibility exhibits a peak in Fig. 4(c).
Before discussing these normalizations of TN in detail, let us
examine the reason for the linear behavior, TN ∝ ms , seen in
the QMC results for small [and in Figs. 4(b) and 4(c) even quite
large] ms .

020409-2

g = J2/J1

Determine the Neel 

ordering temperature

TN and the T=0 

ordered moment 

ms for 3 different 

dimerization 

patterns 

RAPID COMMUNICATIONS

SONGBO JIN AND ANDERS W. SANDVIK PHYSICAL REVIEW B 85, 020409(R) (2012)

J1

J2

(a) (b) (c)

FIG. 1. (Color online) Dimerized 3D lattices: (a) columnar
dimers, (b) staggered dimers, and (c) double cube. For a system of
length L, the number of spins is N = L3 in (a) and (b), and N = 2L3

in (c). The two different coupling strengths J1 and J2 are indicated
by thin (black dashed and solid) and thick (red) lines, respectively.

not just close to the quantum-critical point but extending to
strongly ordered systems. Our results give a parameter-free
scaling function that can be compared with experiments.

Quantum Monte Carlo calculations. We have used the
stochastic series expansion (SSE) QMC method with very
efficient loop updates5–7 to calculate the squares ⟨m2

z⟩ and
⟨m2

sz⟩ of the z components of the uniform and staggered
magnetizations,

mz = 1
N

N∑

i=1

Sz
i , msz = 1
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N∑
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φiS
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i , (2)

where the phases φi = ±1 correspond to the sublattices of the
bipartite systems in Fig. 1. The uniform susceptibility is χ =
⟨m2

z⟩/(NT ). We also study the Binder ratio R2 = ⟨m4
sz⟩/⟨m2

sz⟩2

and the spin stiffness constants ρα
s in all lattice directions (α =

x,y,z), ρα
s = d2E(θα)/dθ2

α , where E is the internal energy per
spin and θα a uniform twist angle imposed between spins in
planes perpendicular to the α axis. The stiffness constants can
be related to winding number fluctuations in the simulations.7

We use standard finite-size scaling7 to extract TN . At TN , the
stiffness constants scale with the system length as ρα

s ∝ L2−d ,
where the dimensionality d = 3. Thus, ρα

s L should be size
independent at TN , while this quantity vanishes (diverges) for
T > TN (T < TN ). In practice, this means that curves versus
T (at fixed g) for two different system sizes L cross each other
at a point which drifts (due to scaling corrections) toward TN

with increasing L. The dimensionless Binder ratio also has this
kind of behavior and provides us with a different TN estimate
to check for consistency. Figures 2(a) and 2(b) show examples
of these crossing behaviors for ρx

s L and R2. The crossing
points drift in different directions and bracket TN . Figure 2(c)
shows the L dependence of crossing points extracted from data
for (L,L + 2) system pairs, for R2 and two different stiffness
constants. Power-law fits are used to extrapolate to infinite
size. The mutual consistency of the TN value so obtained using
different quantities gives us confidence in the accuracy of this
procedure.

To extract the T = 0 sublattice magnetization, we carry out
simulations at temperature T = J1/L. Note that, in a Néel
phase with TN > 0, any T (L) such that T (L → ∞) → 0 can
be used for extrapolations to the thermodynamic limit and
T = 0. Our choice is a natural way to to scale the temperature
since the lowest spin waves have energy ∝1/L. We also did
some calculations with T = 1/2L and obtained consistent
extrapolated results. Examples of the L dependence are shown
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FIG. 2. (Color online) Procedures used to extract the critical
temperature TN . (a) and (b) show ρx

s L and R2, respectively, for
the columnar dimer model at coupling ratio g = 3.444. The error
bars are smaller than the symbols. Using polynomial fits to data for
two lattice sizes, L and L + 2, crossing points between the curves
are extracted. Results are shown in (c), along with fits of the form
TN (L) = TN (∞) + a/Lw (to the large-L data for which this form
obtains). Extrapolations of the three quantities give TN = 0.7996(3),
0.7996(6), and 0.7999(5) for L → ∞, all consistent with each other
within errors bars.

in Fig. 3 for the double-cube model at several different
coupling ratios. Taking into account rotational averaging in
spin space, the final result for the sublattice magnetization is
given by the L → ∞ extrapolated ⟨m2

sz⟩ (for which we use a
polynomial fit, as shown in Fig. 3), ms =

√
3⟨m2

sz⟩.
Universality of TN versus ms . Following the above pro-

cedures, we have calculated TN and ms accurately for all
three dimer models at several coupling ratios g, from close
to gc to deep inside the Néel phase. We graph TN versus
ms in Fig. 4. TN is scaled by three different energy units:
the interdimer coupling J1 in Fig. 4(a), the sum of couplings
Js connected to each spin in Fig. 4(b), and the temperature
T ∗ at which the susceptibility exhibits a peak in Fig. 4(c).
Before discussing these normalizations of TN in detail, let us
examine the reason for the linear behavior, TN ∝ ms , seen in
the QMC results for small [and in Figs. 4(b) and 4(c) even quite
large] ms .
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FIG. 4. (Color online) The Néel temperature TN vs the sublattice
magnetization for the three different dimerized models and with
TN normalized in three different ways. TN is measured in units of
(a) the interdimer coupling J1, (b) the total coupling Js per spin, and
(c) the peak temperature T ∗ of the susceptibility. A linear dependence
obtains in all cases for small to moderate ms , as indicate by fitted lines.
Note that ms ! 1/2 for S = 1/2.

A semiclassical mean-field argument (inspired by
the “renormalized classical” picture developed in two
dimensions1) leading to TN ∝ ms is the following: To compute
TN in a classical system of spins of length S, one replaces the
coupling of a spin S0 to the total spin of its neighbors δ,
J

∑
δ Sδ , by the thermal average J

∑
δ⟨Sδ⟩. In the presence of

quantum fluctuations, this mean field seen by S0 is reduced,
which is taken into account by a renormalization, ⟨Sδ⟩ →
(ms/S)⟨Sδ⟩. The thermal fluctuations are, thus, added on top of
the quantum fluctuations at T = 0, under the assumption that
the quantum effects will not change appreciably for T > 0 (i.e.,
the thermal fluctuations are assumed to be solely responsible
for further reducing the order). Note that S0 should not be
renormalized here, but is computed as a thermal expectation
value and should satisfy the self-consistency condition ⟨Sδ⟩ =
⟨S0⟩. The final magnetization curve is given by (ms/S)⟨S0⟩.
In this procedure of decoupling the classical and quantum
fluctuations, one clearly effectively has J → (ms/S)J and,
thus, TN ∝ ms .

The assumption that the quantum renormalization factor
ms/S is T independent up to TN can be valid only if TN is
small. The energy scale in which to measure TN when stating
this condition should be dictated by the spin-wave velocity,
which stays nonzero at the quantum-critical point17 [i.e., not
by the long-distance energy scale ρs(T = 0), which vanishes
as g → gc and is unrelated to the density of thermally excited
spin waves]. A linear dependence is seen in Fig. 4 up to rather
large values of ms (where TN ∼ J1). A linear dependence was
also recently found in the columnar dimer model based on
high-T expansions18 (with much larger error bars).

Returning now to the issue of how to best normalize TN ,
we note that in Fig. 4(a), where the interdimer coupling J1
is used, the curve for the double-cube model is significantly
above the other two. This is clearly because the constant J1
does not account for the different average couplings in the
models. Using instead the sum Js of couplings connected to
each spin, i.e., Js = 5 + g for the columnar and staggered
dimers and 6 + g for the double cube (setting J1 = 1), the
curves, shown in Fig. 4(b), collapse almost on top of each
other. Note that also the curves for the columnar and staggered
dimers are closer to each other than in Fig. 4(a), although they
have the same definition of Js . This can be the case because Js

rescales the curves nonuniformly, since ms(g) and, therefore,
Js(ms), is different for the two models. The linearity of TN/Js

versus ms is also much clearer than before and extends all the
way up to ms ≈ 0.3.

Although the data collapse is already quite good in TN/Js ,
we can do even better when normalizing with a physical
quantity that measures the effective lattice-scale energy. One
such energy scale in antiferromagnets is the temperature at
which the uniform magnetic susceptibility χ exhibits a peak.
This peak is due to the crossover from the high-T Curie form
to the low-T weakly temperature-dependent form typical of
antiferromagnets. The peak temperature T ∗, thus, reflects the
short-distance energy scale at which antiferromagnetic corre-
lations become significant. T ∗ is often used experimentally
to extract the value of the exchange constant, using, e.g.,
the “Bonner-Fisher” curve in one dimension.19 In spatially
anisotropic systems such as the dimerized models we consider
here, a natural assumption is that T ∗ reflects an effective
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Note that ms ! 1/2 for S = 1/2.
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the “renormalized classical” picture developed in two
dimensions1) leading to TN ∝ ms is the following: To compute
TN in a classical system of spins of length S, one replaces the
coupling of a spin S0 to the total spin of its neighbors δ,
J

∑
δ Sδ , by the thermal average J
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δ⟨Sδ⟩. In the presence of

quantum fluctuations, this mean field seen by S0 is reduced,
which is taken into account by a renormalization, ⟨Sδ⟩ →
(ms/S)⟨Sδ⟩. The thermal fluctuations are, thus, added on top of
the quantum fluctuations at T = 0, under the assumption that
the quantum effects will not change appreciably for T > 0 (i.e.,
the thermal fluctuations are assumed to be solely responsible
for further reducing the order). Note that S0 should not be
renormalized here, but is computed as a thermal expectation
value and should satisfy the self-consistency condition ⟨Sδ⟩ =
⟨S0⟩. The final magnetization curve is given by (ms/S)⟨S0⟩.
In this procedure of decoupling the classical and quantum
fluctuations, one clearly effectively has J → (ms/S)J and,
thus, TN ∝ ms .

The assumption that the quantum renormalization factor
ms/S is T independent up to TN can be valid only if TN is
small. The energy scale in which to measure TN when stating
this condition should be dictated by the spin-wave velocity,
which stays nonzero at the quantum-critical point17 [i.e., not
by the long-distance energy scale ρs(T = 0), which vanishes
as g → gc and is unrelated to the density of thermally excited
spin waves]. A linear dependence is seen in Fig. 4 up to rather
large values of ms (where TN ∼ J1). A linear dependence was
also recently found in the columnar dimer model based on
high-T expansions18 (with much larger error bars).

Returning now to the issue of how to best normalize TN ,
we note that in Fig. 4(a), where the interdimer coupling J1
is used, the curve for the double-cube model is significantly
above the other two. This is clearly because the constant J1
does not account for the different average couplings in the
models. Using instead the sum Js of couplings connected to
each spin, i.e., Js = 5 + g for the columnar and staggered
dimers and 6 + g for the double cube (setting J1 = 1), the
curves, shown in Fig. 4(b), collapse almost on top of each
other. Note that also the curves for the columnar and staggered
dimers are closer to each other than in Fig. 4(a), although they
have the same definition of Js . This can be the case because Js

rescales the curves nonuniformly, since ms(g) and, therefore,
Js(ms), is different for the two models. The linearity of TN/Js

versus ms is also much clearer than before and extends all the
way up to ms ≈ 0.3.

Although the data collapse is already quite good in TN/Js ,
we can do even better when normalizing with a physical
quantity that measures the effective lattice-scale energy. One
such energy scale in antiferromagnets is the temperature at
which the uniform magnetic susceptibility χ exhibits a peak.
This peak is due to the crossover from the high-T Curie form
to the low-T weakly temperature-dependent form typical of
antiferromagnets. The peak temperature T ∗, thus, reflects the
short-distance energy scale at which antiferromagnetic corre-
lations become significant. T ∗ is often used experimentally
to extract the value of the exchange constant, using, e.g.,
the “Bonner-Fisher” curve in one dimension.19 In spatially
anisotropic systems such as the dimerized models we consider
here, a natural assumption is that T ∗ reflects an effective
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FIG. 5. (Color online) (a) Susceptibility vs temperature of the
staggered dimer model at different coupling ratios. The system size is
L = 12, for which the peak height and location are already L → ∞
converged. (b) The peak temperature vs the coupling ratio for the
three different models.

average coupling. In Fig. 5(a) we show examples of the
susceptibility close to its peak, and in Fig. 5(b) we show the
dependence of T ∗ on g for all three models. Normalizing TN

with T ∗ leads to remarkably good data collapse, as shown
in Fig. 4(c). Deviations from a common curve are barely
detectable. Although we cannot prove that this function is
really universal for all 3D networks of dimers, the results are
very suggestive of this.

Discussion. The universal behavior implies that the T > 0
disordering mechanism in the 3D Néel state is completely
governed by a single lattice-scale energy (which, as we have
shown here, can be taken as the peak temperature T ∗ of the
susceptibility) and the T = 0 sublattice magnetization ms . The
extended linear behavior seen in Figs. 4(b) and 4(c) shows
that the quantum and classical fluctuations at T < TN are
completely decoupled all the way from g = gc (excluding gc

itself, where TN = 0) to quite far away from the quantum-
critical point. Depending on a lattice-scale energy instead of
the quantum-critical spin stiffness, the linear behavior is not
fundamentally a quantum-critical effect. We have discussed
the linearity and decoupling of the fluctuations in terms of a
semiclassical mean-field theory, the validity of which implies
that the quantum-critical regime2 commences only above TN .
Deviations from linearity at larger ms show that the quantum
fluctuations are affected (become T dependent) here, due to
the high density of excited spin waves as T → TN because
TN is high. It is remarkable that this coupling of quantum
and classical fluctuations also takes place in an, apparently,
universal fashion for different systems. It would be interesting
to explain this more quantitatively, by deriving the full function
TN versus ms analytically. Progress in the linear regime has
been made recently in work parallel to ours.20

From a practical point of view, the data collapse of
TN/T ∗ versus ms is very useful, because all the quantities
involved can be measured experimentally and do not rely on
microscopic details. The universal curve can be used to test
the 3D Heisenberg scenario without adjustable parameters.
The universality likely applies not only to dimer networks, but
also to systems where the quantum fluctuations are regulated
in other ways.
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Couplings vs pressure not known experimentally 
- plot TN vs ms to avoid  this issue and study universality

- but how to normalize TN? Three normalizations 

- weaker copling J1

- sum Js of couplings per spin

- peak T* of magnetic susceptibility



T* normalization is accessible experimentally 
- some experimental susc. results available

- neutron data analyzed with this normalization

Same features observed in models and experiment 
- experimental slope about 25% lower if g-factor =2 assumed

   (what exactly is the g-factor?)
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Figure 4 | Quantum and classical criticality. a, Scattered neutron intensity at p=pc as a function of temperature. Points show the energies ✏Q extracted
from the intensity for the modes becoming gapless (L and T1, yellow) and gapped (T2, black) as T !0. b, �Q as a function of T at p=pc. Error bars in a and
b indicate uncertainties in the resolution deconvolution. c, Complete experimental phase diagram, showing quantum disordered (QD), quantum critical
(QC), classical critical (CC) and renormalized classical (RC-AFM) phases. The dashed lines denote energy scales marking crossovers in behaviour. Grey
symbols denote TN(p) (ref. 14), blue symbols labelled TSL(p) show the limit of classical critical scaling in the data for the staggered magnetization, ms(T),
and the blue bars are taken from �Q/✏Q(T) (see text). d, Linear proportionality of the measured TN(p) and ms(p) (ref. 14). e, Scaling of TN and ms, including
one high-p data point (open circle) taken from ref. 25 for an absolute calibration of ms. Data for ms are normalized by Tmax =35 K, the maximum of the
magnetic susceptibility13,16. Red lines in d and e represent scaling behaviour discussed in the text and error bars are the statistical uncertainties in the
intensity measurements determining ms.

on the calculated quantities, but no detectable qualitative ones (for
example, on exponents). From our measurements, the best fits to
the pressure exponents for ms and TN lie close to the classical value
of 0.35 (ref. 14), although the quantum value of 0.5 is not beyond
the error bars very close to the QCP. From experiment, the two
quantities scale well together near the QCP, as shown in Fig. 4d,e,
but depart from universal scaling16 around an ordered moment of
0.4µB/Cu (Fig. 4e).

We have shown that the e�ects on the spectrum of quantum
and thermal melting are qualitatively very similar. Both result
in the systematic evolution of excitations whose gap increases
away from the classical phase transition line, rather than simply
a loss of coherence due to thermal fluctuations. Microscopically,
quantum fluctuations in a dimer-based system cause enhanced
singlet formation and loss of interdimer magnetic correlations,

whereas thermal fluctuations act to suppress the spin correlation
function hSi · Sji on both the dimer and interdimer bonds. These
correlation functions may be estimated from neutron-scattering
intensities23 and also measured in dimerized optical lattices of
ultracold fermions29. In TlCuCl3, both methods of destroying
interdimer coherence cause the triplet modes to evolve in the same
way. A key question in the understanding of quantum criticality is
whether quantum and thermal fluctuations can be considered as
truly independent, andwhether this independencemay be taken as a
definition of the quantumcritical regime16. Our experimental results
suggest that weak departures from universality become detectable at
(p,T ) values away from the quantum critical and classical critical
regimes, and particularly as we increase the excitation energy,
presumably as microscopic details of the fluctuation redistribution
cause a mixing of quantum and thermal e�ects.
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FIG. 3. (Color online) Extrapolation of the sublattice magneti-
zation obtained in simulations with T = J1/L of the double-cube
Heisenberg model at different coupling ratios g. The error bars are
much smaller than the symbols. The fitting function used for L → ∞
extrapolations is a + b/L2 + c/L3 (where we exclude the linear term
because it comes out very close to zero in fits including it).
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FIG. 4. (Color online) The Néel temperature TN vs the sublattice
magnetization for the three different dimerized models and with
TN normalized in three different ways. TN is measured in units of
(a) the interdimer coupling J1, (b) the total coupling Js per spin, and
(c) the peak temperature T ∗ of the susceptibility. A linear dependence
obtains in all cases for small to moderate ms , as indicate by fitted lines.
Note that ms ! 1/2 for S = 1/2.

A semiclassical mean-field argument (inspired by
the “renormalized classical” picture developed in two
dimensions1) leading to TN ∝ ms is the following: To compute
TN in a classical system of spins of length S, one replaces the
coupling of a spin S0 to the total spin of its neighbors δ,
J

∑
δ Sδ , by the thermal average J

∑
δ⟨Sδ⟩. In the presence of

quantum fluctuations, this mean field seen by S0 is reduced,
which is taken into account by a renormalization, ⟨Sδ⟩ →
(ms/S)⟨Sδ⟩. The thermal fluctuations are, thus, added on top of
the quantum fluctuations at T = 0, under the assumption that
the quantum effects will not change appreciably for T > 0 (i.e.,
the thermal fluctuations are assumed to be solely responsible
for further reducing the order). Note that S0 should not be
renormalized here, but is computed as a thermal expectation
value and should satisfy the self-consistency condition ⟨Sδ⟩ =
⟨S0⟩. The final magnetization curve is given by (ms/S)⟨S0⟩.
In this procedure of decoupling the classical and quantum
fluctuations, one clearly effectively has J → (ms/S)J and,
thus, TN ∝ ms .

The assumption that the quantum renormalization factor
ms/S is T independent up to TN can be valid only if TN is
small. The energy scale in which to measure TN when stating
this condition should be dictated by the spin-wave velocity,
which stays nonzero at the quantum-critical point17 [i.e., not
by the long-distance energy scale ρs(T = 0), which vanishes
as g → gc and is unrelated to the density of thermally excited
spin waves]. A linear dependence is seen in Fig. 4 up to rather
large values of ms (where TN ∼ J1). A linear dependence was
also recently found in the columnar dimer model based on
high-T expansions18 (with much larger error bars).

Returning now to the issue of how to best normalize TN ,
we note that in Fig. 4(a), where the interdimer coupling J1
is used, the curve for the double-cube model is significantly
above the other two. This is clearly because the constant J1
does not account for the different average couplings in the
models. Using instead the sum Js of couplings connected to
each spin, i.e., Js = 5 + g for the columnar and staggered
dimers and 6 + g for the double cube (setting J1 = 1), the
curves, shown in Fig. 4(b), collapse almost on top of each
other. Note that also the curves for the columnar and staggered
dimers are closer to each other than in Fig. 4(a), although they
have the same definition of Js . This can be the case because Js

rescales the curves nonuniformly, since ms(g) and, therefore,
Js(ms), is different for the two models. The linearity of TN/Js

versus ms is also much clearer than before and extends all the
way up to ms ≈ 0.3.

Although the data collapse is already quite good in TN/Js ,
we can do even better when normalizing with a physical
quantity that measures the effective lattice-scale energy. One
such energy scale in antiferromagnets is the temperature at
which the uniform magnetic susceptibility χ exhibits a peak.
This peak is due to the crossover from the high-T Curie form
to the low-T weakly temperature-dependent form typical of
antiferromagnets. The peak temperature T ∗, thus, reflects the
short-distance energy scale at which antiferromagnetic corre-
lations become significant. T ∗ is often used experimentally
to extract the value of the exchange constant, using, e.g.,
the “Bonner-Fisher” curve in one dimension.19 In spatially
anisotropic systems such as the dimerized models we consider
here, a natural assumption is that T ∗ reflects an effective
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Jin and Sandvik (2012)

More recent works to study log corrections, dynamics,…. 
Qin, Normand, Sandvik, Meng, PRB 2015, PRL 2017



Why the linear form TN  = ams (a=constant)?
The ordered state can be qualitatively described by mean field theory:

H0 =

 
X

i

Ji0

!
h~msi · ~S0

H =
X

ij

Jij ~Si · ~Sj

The order parameter ms is reduced 

from its maximum value by two effects

- quantum fluctuations

- thermal fluctuations

Assume that these fluctuations decouple:

hmsi = m0(T = 0)f(T )

In mean-field theory: Tc / Je↵ ! Tc / m0

Je↵ / m0Then we have an effective mean-field coupling 

The violations of the linear form indicate the temperature

where quantum and thermal fluctuations cannot be decoupled 
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FIG. 3. (Color online) Extrapolation of the sublattice magneti-
zation obtained in simulations with T = J1/L of the double-cube
Heisenberg model at different coupling ratios g. The error bars are
much smaller than the symbols. The fitting function used for L → ∞
extrapolations is a + b/L2 + c/L3 (where we exclude the linear term
because it comes out very close to zero in fits including it).
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FIG. 4. (Color online) The Néel temperature TN vs the sublattice
magnetization for the three different dimerized models and with
TN normalized in three different ways. TN is measured in units of
(a) the interdimer coupling J1, (b) the total coupling Js per spin, and
(c) the peak temperature T ∗ of the susceptibility. A linear dependence
obtains in all cases for small to moderate ms , as indicate by fitted lines.
Note that ms ! 1/2 for S = 1/2.

A semiclassical mean-field argument (inspired by
the “renormalized classical” picture developed in two
dimensions1) leading to TN ∝ ms is the following: To compute
TN in a classical system of spins of length S, one replaces the
coupling of a spin S0 to the total spin of its neighbors δ,
J

∑
δ Sδ , by the thermal average J

∑
δ⟨Sδ⟩. In the presence of

quantum fluctuations, this mean field seen by S0 is reduced,
which is taken into account by a renormalization, ⟨Sδ⟩ →
(ms/S)⟨Sδ⟩. The thermal fluctuations are, thus, added on top of
the quantum fluctuations at T = 0, under the assumption that
the quantum effects will not change appreciably for T > 0 (i.e.,
the thermal fluctuations are assumed to be solely responsible
for further reducing the order). Note that S0 should not be
renormalized here, but is computed as a thermal expectation
value and should satisfy the self-consistency condition ⟨Sδ⟩ =
⟨S0⟩. The final magnetization curve is given by (ms/S)⟨S0⟩.
In this procedure of decoupling the classical and quantum
fluctuations, one clearly effectively has J → (ms/S)J and,
thus, TN ∝ ms .

The assumption that the quantum renormalization factor
ms/S is T independent up to TN can be valid only if TN is
small. The energy scale in which to measure TN when stating
this condition should be dictated by the spin-wave velocity,
which stays nonzero at the quantum-critical point17 [i.e., not
by the long-distance energy scale ρs(T = 0), which vanishes
as g → gc and is unrelated to the density of thermally excited
spin waves]. A linear dependence is seen in Fig. 4 up to rather
large values of ms (where TN ∼ J1). A linear dependence was
also recently found in the columnar dimer model based on
high-T expansions18 (with much larger error bars).

Returning now to the issue of how to best normalize TN ,
we note that in Fig. 4(a), where the interdimer coupling J1
is used, the curve for the double-cube model is significantly
above the other two. This is clearly because the constant J1
does not account for the different average couplings in the
models. Using instead the sum Js of couplings connected to
each spin, i.e., Js = 5 + g for the columnar and staggered
dimers and 6 + g for the double cube (setting J1 = 1), the
curves, shown in Fig. 4(b), collapse almost on top of each
other. Note that also the curves for the columnar and staggered
dimers are closer to each other than in Fig. 4(a), although they
have the same definition of Js . This can be the case because Js

rescales the curves nonuniformly, since ms(g) and, therefore,
Js(ms), is different for the two models. The linearity of TN/Js

versus ms is also much clearer than before and extends all the
way up to ms ≈ 0.3.

Although the data collapse is already quite good in TN/Js ,
we can do even better when normalizing with a physical
quantity that measures the effective lattice-scale energy. One
such energy scale in antiferromagnets is the temperature at
which the uniform magnetic susceptibility χ exhibits a peak.
This peak is due to the crossover from the high-T Curie form
to the low-T weakly temperature-dependent form typical of
antiferromagnets. The peak temperature T ∗, thus, reflects the
short-distance energy scale at which antiferromagnetic corre-
lations become significant. T ∗ is often used experimentally
to extract the value of the exchange constant, using, e.g.,
the “Bonner-Fisher” curve in one dimension.19 In spatially
anisotropic systems such as the dimerized models we consider
here, a natural assumption is that T ∗ reflects an effective
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Logarithmic correction at the upper critical dimensionality
Mean-field theory is exact above the upper critical dimensionality du 

- trivial critical exponents 
- exactly at d=du there are logarithmic corrections to the power laws

Test of expected log correction in the double-cube model (du=4=3+1) 
[Y.  Q. Qin, B. Normand, A. W. Sandvik, Z.Y. Meng, PRB 2015]
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FIG. 6. (Color online) Extrapolated staggered magnetization ms

at T = 0 as a function of the distance from the QCP, using the value
gc = 4.83704 determined in Sec. III. Error bars on the calculated
data points are similar to or smaller than the symbol size. The closest
point to gc is g = 4.834. Lines show both the best fit by a pure
square-root function [Eq. (23), green] and including the logarithmic
correction factor predicted in Ref. [35] [Eq. (24), blue]. The fitting
parameters of the logarithmic correction curve are a = 0.266(2) and
b = 4.8(3). The yellow shading represents the approximate extent
of the QC regime and is determined by including all data points
described adequately (within a deviation of approximately 4%, see
text) by the functional form of the logarithmic correction curve. The
inset shows ms(g) and the QC regime on linear axes.

the O(N ) φ4 field theory at the upper critical dimension predict
the form

ms(g) = a|g − gc|β | ln(|g − gc|/b)|β̂ , (24)

where β = 1/2 is the mean-field exponent and the exponent
of the multiplicative logarithmic correction is given by β̂ =
3/(N + 8) [35]. A fit to this form, using β̂ = 3/11 for N = 3
(blue curve in Fig. 6), yields excellent agreement with the
data all the way to our smallest values of |g − gc|; the fitting
parameters are a = 0.266 ± 0.002 and b = 4.8 ± 0.3. We note
that the fit is very insensitive to the precise value of b, and for
further analysis we fix this to b = gc.

To test the predicted exponent β̂ = 3/11 in Eq. (24), we
treat it as a free parameter and fit our data using different
numbers of g values, including all points closest to gc and
studying the behavior as points farther away from gc are
added one by one. Figure 7 shows χ2

r and β̂ as functions
of the number of data points fitted. With the exception of
cases including the two points the farthest away from gc,
all the fits appear reasonable, with χ2

r < 2. However, by the
properties of the χ2 distribution, a fit should be considered
statistically acceptable only if a criterion analogous to Eq. (22)
is satisfied; that is, the largest number of data points for which
χ2

r − 1 remains less than three times its standard deviation
(3σ ) marks the boundary between good and poor fits. At this
point we obtain β̂ = 0.268 ± 0.008, which lies well within
one standard deviation of the predicted value 3/11 ≈ 0.2727.
If more points are excluded, the fitted exponent evolves slowly
[Fig. 7(b)] while remaining statistically very compatible with
the predicted value. Because the fitting error increases, less
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FIG. 7. (Color online) Statistical analysis of the exponent of the
logarithmic correction in Eq. (24). (a) Reduced χ 2 value of the fit,
normalized to the standard deviation, and (b) optimal value of the
exponent shown as functions of the number of data points (g values)
used, beginning from the point closest to gc in Fig. 6. The vertical
dashed line indicates the number of points, Ng = 23, for which a
3σ criterion for χ 2

r [see Eq. (22)] is satisfied, as indicated by the
horizontal line in (a). In (b), the error bars were computed by repeating
the fits multiple times with Gaussian noise added to the ms data points.
The horizontal line marks the predicted value β̂ = 3/11.

weight should be placed on results including less data, and
taking an error-weighted average over all the points below the
cutoff line, Ng = 23, in Fig. 7 yields β̂ = 0.279 ± 0.011. We
take this as complete confirmation of the predicted value.

As important as finding clear logarithmic corrections to
scaling is the fact that we have demonstrated their presence
over a significant region around the QCP; indeed, most of
the points we have computed are well described by Eq. (24).
Including the multiplicative logarithmic correction converts an
inadequate description of the data into an excellent one (Fig. 6)
as far inside the Néel phase as |g − gc|/gc ≈ 0.2, where the
order parameter is already at 60% of its maximum possible
value (ms = 1/2, at which point no quantum fluctuation effects
remain). This improvement is clearer still in the inset in Fig. 6,
which shows the results on linear axes. Under the assumption
that data points at large |g − gc| no longer fall on the fitted
curve because they lie outside the region controlled by the
QCP, we can determine the size of the critical region based
on a threshold maximum deviation of the data from the curve.
Although the choice of threshold value is somewhat arbitrary,
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Conclusion: Log corrections can be detected 
if the leading exponent is known/fixed
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at T = 0 as a function of the distance from the QCP, using the value
gc = 4.83704 determined in Sec. III. Error bars on the calculated
data points are similar to or smaller than the symbol size. The closest
point to gc is g = 4.834. Lines show both the best fit by a pure
square-root function [Eq. (23), green] and including the logarithmic
correction factor predicted in Ref. [35] [Eq. (24), blue]. The fitting
parameters of the logarithmic correction curve are a = 0.266(2) and
b = 4.8(3). The yellow shading represents the approximate extent
of the QC regime and is determined by including all data points
described adequately (within a deviation of approximately 4%, see
text) by the functional form of the logarithmic correction curve. The
inset shows ms(g) and the QC regime on linear axes.

the O(N ) φ4 field theory at the upper critical dimension predict
the form

ms(g) = a|g − gc|β | ln(|g − gc|/b)|β̂ , (24)

where β = 1/2 is the mean-field exponent and the exponent
of the multiplicative logarithmic correction is given by β̂ =
3/(N + 8) [35]. A fit to this form, using β̂ = 3/11 for N = 3
(blue curve in Fig. 6), yields excellent agreement with the
data all the way to our smallest values of |g − gc|; the fitting
parameters are a = 0.266 ± 0.002 and b = 4.8 ± 0.3. We note
that the fit is very insensitive to the precise value of b, and for
further analysis we fix this to b = gc.

To test the predicted exponent β̂ = 3/11 in Eq. (24), we
treat it as a free parameter and fit our data using different
numbers of g values, including all points closest to gc and
studying the behavior as points farther away from gc are
added one by one. Figure 7 shows χ2

r and β̂ as functions
of the number of data points fitted. With the exception of
cases including the two points the farthest away from gc,
all the fits appear reasonable, with χ2

r < 2. However, by the
properties of the χ2 distribution, a fit should be considered
statistically acceptable only if a criterion analogous to Eq. (22)
is satisfied; that is, the largest number of data points for which
χ2

r − 1 remains less than three times its standard deviation
(3σ ) marks the boundary between good and poor fits. At this
point we obtain β̂ = 0.268 ± 0.008, which lies well within
one standard deviation of the predicted value 3/11 ≈ 0.2727.
If more points are excluded, the fitted exponent evolves slowly
[Fig. 7(b)] while remaining statistically very compatible with
the predicted value. Because the fitting error increases, less
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FIG. 7. (Color online) Statistical analysis of the exponent of the
logarithmic correction in Eq. (24). (a) Reduced χ 2 value of the fit,
normalized to the standard deviation, and (b) optimal value of the
exponent shown as functions of the number of data points (g values)
used, beginning from the point closest to gc in Fig. 6. The vertical
dashed line indicates the number of points, Ng = 23, for which a
3σ criterion for χ 2

r [see Eq. (22)] is satisfied, as indicated by the
horizontal line in (a). In (b), the error bars were computed by repeating
the fits multiple times with Gaussian noise added to the ms data points.
The horizontal line marks the predicted value β̂ = 3/11.

weight should be placed on results including less data, and
taking an error-weighted average over all the points below the
cutoff line, Ng = 23, in Fig. 7 yields β̂ = 0.279 ± 0.011. We
take this as complete confirmation of the predicted value.

As important as finding clear logarithmic corrections to
scaling is the fact that we have demonstrated their presence
over a significant region around the QCP; indeed, most of
the points we have computed are well described by Eq. (24).
Including the multiplicative logarithmic correction converts an
inadequate description of the data into an excellent one (Fig. 6)
as far inside the Néel phase as |g − gc|/gc ≈ 0.2, where the
order parameter is already at 60% of its maximum possible
value (ms = 1/2, at which point no quantum fluctuation effects
remain). This improvement is clearer still in the inset in Fig. 6,
which shows the results on linear axes. Under the assumption
that data points at large |g − gc| no longer fall on the fitted
curve because they lie outside the region controlled by the
QCP, we can determine the size of the critical region based
on a threshold maximum deviation of the data from the curve.
Although the choice of threshold value is somewhat arbitrary,
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correction factor predicted in Ref. [35] [Eq. (24), blue]. The fitting
parameters of the logarithmic correction curve are a = 0.266(2) and
b = 4.8(3). The yellow shading represents the approximate extent
of the QC regime and is determined by including all data points
described adequately (within a deviation of approximately 4%, see
text) by the functional form of the logarithmic correction curve. The
inset shows ms(g) and the QC regime on linear axes.

the O(N ) φ4 field theory at the upper critical dimension predict
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ms(g) = a|g − gc|β | ln(|g − gc|/b)|β̂ , (24)

where β = 1/2 is the mean-field exponent and the exponent
of the multiplicative logarithmic correction is given by β̂ =
3/(N + 8) [35]. A fit to this form, using β̂ = 3/11 for N = 3
(blue curve in Fig. 6), yields excellent agreement with the
data all the way to our smallest values of |g − gc|; the fitting
parameters are a = 0.266 ± 0.002 and b = 4.8 ± 0.3. We note
that the fit is very insensitive to the precise value of b, and for
further analysis we fix this to b = gc.

To test the predicted exponent β̂ = 3/11 in Eq. (24), we
treat it as a free parameter and fit our data using different
numbers of g values, including all points closest to gc and
studying the behavior as points farther away from gc are
added one by one. Figure 7 shows χ2

r and β̂ as functions
of the number of data points fitted. With the exception of
cases including the two points the farthest away from gc,
all the fits appear reasonable, with χ2

r < 2. However, by the
properties of the χ2 distribution, a fit should be considered
statistically acceptable only if a criterion analogous to Eq. (22)
is satisfied; that is, the largest number of data points for which
χ2

r − 1 remains less than three times its standard deviation
(3σ ) marks the boundary between good and poor fits. At this
point we obtain β̂ = 0.268 ± 0.008, which lies well within
one standard deviation of the predicted value 3/11 ≈ 0.2727.
If more points are excluded, the fitted exponent evolves slowly
[Fig. 7(b)] while remaining statistically very compatible with
the predicted value. Because the fitting error increases, less
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r [see Eq. (22)] is satisfied, as indicated by the
horizontal line in (a). In (b), the error bars were computed by repeating
the fits multiple times with Gaussian noise added to the ms data points.
The horizontal line marks the predicted value β̂ = 3/11.

weight should be placed on results including less data, and
taking an error-weighted average over all the points below the
cutoff line, Ng = 23, in Fig. 7 yields β̂ = 0.279 ± 0.011. We
take this as complete confirmation of the predicted value.

As important as finding clear logarithmic corrections to
scaling is the fact that we have demonstrated their presence
over a significant region around the QCP; indeed, most of
the points we have computed are well described by Eq. (24).
Including the multiplicative logarithmic correction converts an
inadequate description of the data into an excellent one (Fig. 6)
as far inside the Néel phase as |g − gc|/gc ≈ 0.2, where the
order parameter is already at 60% of its maximum possible
value (ms = 1/2, at which point no quantum fluctuation effects
remain). This improvement is clearer still in the inset in Fig. 6,
which shows the results on linear axes. Under the assumption
that data points at large |g − gc| no longer fall on the fitted
curve because they lie outside the region controlled by the
QCP, we can determine the size of the critical region based
on a threshold maximum deviation of the data from the curve.
Although the choice of threshold value is somewhat arbitrary,
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• highly non-trivial non-magnetic ground states are possible, e.g.,

➡ resonating valence-bond (RVB) spin liquid

➡ valence-bond solid (VBS)

H = J
�

�i,j⇥

Si · Sj + g ⇥ · · ·
More complex non-magnetic states; systems with 1 spin per unit cell

Non-magnetic states often have natural descriptions with valence bonds

= (⇥i⇤j � ⇤i⇥j)/
⌅

2
i j

• non-magnetic states dominated by short bonds

�

�

The basis including bonds of all lengths 
is overcomplete in the singlet sector


