
= ⟨S⃗i · S⃗j⟩

(Sandvik, PRL 2007)The “J-Q” model with two projectors is

H = �J
�

�ij⇥

Cij �Q
�

�ijkl⇥

CijCkl

• Has Néel-VBS transition, appears to be continuous 
• Not a realistic microscopic model for materials 
• “Designer Hamiltonian” for VBS physics and AF-VBS transition

2D: Deconfined quantum criticality
Senthil, Vishwanath, Balents, Sachdev, Fisher (Science 2004)
(+ many previous works; Read & Sachdev, Sachdev & Murthy, Motrunich & Vishwanath….)

Continuous AF - VBS transition at T=0

- would be violation of Landau rule

- first-order would normally be expected

- role of topological defects 

Cij = 1
4 � ⇤Si · ⇤Sj

Numerical (QMC) tests using J-Q models

[Shao, Guo, Sandvik (Science 2016)]• Unusual scaling properties

f̃ (dL1/n,L1/n'–1/n,L–w). If f̃ (d = 0) is constantwhen
L → 1, then L1/n'–1/n acts like just another ir-
relevant field, as in the standard scenario for dan-
gerously irrelevant perturbations in classical clock
models (31). Our proposal is a different large-L
limit of Eq. 2, controlled by y = dL1/n', which leads
to concrete predictions of scaling anomalies. In
the case of the stiffness, the correct thermody-
namic limit is obtained with ñ ¼ n0 and k = zn if
f(x,y,L–w)º yzn for largeL. Then rs(d =0)º L–zn/n',
which we can also obtain with ñ ¼ n and f̃ º
Lz(1–n/n') for d → 0. A function f̃ behaving as a
power ofLwas implicitly suggested in (19), though
with no specific form.
This alternative scaling behavior corresponds

to xº (x') n/n' saturating at xº L n/n' when x'→ L
upon approaching the critical point, in contrast
to the standard scenario in which x grows until it
also reaches L (32). The criticality at distances r <
Ln/n' is conventional, whereas r> Ln/n' is governed
by the unconventional power laws. Different be-
haviors for r ≪ L and r ≈ L were observed in a
recent loop-model study (24), and a dangerously
irrelevant field was proposed as a possible expla-
nation, but with no quantitative predictions of
the kind offered by our approach. The anomalous
scaling law controlled by n/n', which we confirm
numerically below, is an unexpected feature of
DQCphysics andmay also apply to other systems
with two divergent lengths.
The J-Qmodel (15) for spins S = 1/2 is defined

using singlet projectors (Pij = 1/4 – Si · Sj) as

H ¼ −J
X

hiji

Pij − Q
X

hijkli

PijPkl ð3Þ

where hiji denotes nearest-neighbor sites on a
periodic square lattice with L2 sites, and ij and kl
in hijkliform the horizontal and vertical edges of
2 × 2 plaquettes. The Hamiltonian H has all sym-
metries of the square lattice, and the VBS ground
state for g= J/Q< gc (with gc≈ 0.045) is columnar,
breaking the translational and 90° rotational sym-
metries spontaneously. The Néel state for g > gc
breaks the spin rotation symmetry.
Although we have argued that the asymptotic

L→1 behavior when d ≠ 0 in Eq. 2 is controlled
by the second argument of f, the critical finite-
size scaling close to d = 0 (when dL1/n is of order
1) can still be governed by the first argument (32).
Wewill demonstrate that, depending on the quan-
tity, either dL1/n or dL1/n' is the relevant argument,
and, therefore, n and n' can be extracted using
single-parameter scaling. We will first consider
dimensionless quantities, corresponding to k =
0 in Eq. 2, before testing the anomalous powers
of L in other quantities.
If the effective one-parameter scaling holds

close to gc, then Eq. 2 implies thatA(g,L1) =A(g,L2)
at some point g that we denote g*(L1,L2), and a
crossing-point analysis (Fisher’s phenomenolog-
ical renormalization) can be performed (29). For a
k = 0 quantity, if L1 = L and L2 = rL with r >
1 being constant, a Taylor expansion of f shows
that the crossing points g*(L) approach gc as
g*(L) – gcº L–(1/n+w), if n is the relevant exponent
(which we assume here for definiteness). A* =

A(g*) approaches its limit Ac as A*(L) – Ac º
L–w, and it can also be shown that the quantity

1
n$ðLÞ

¼ 1
lnðrÞ

ln
dAðg; rLÞ=dg
dAðg;LÞ=dg

! "

g¼g$
ð4Þ

converges to 1/n at the rate L–w. In practice,
simulation data can be generated on a grid of
points close to the crossing values, with poly-
nomials used for interpolation and derivatives.
We present details and tests of such a scheme for
the Ising model in (32).

In the S = 1 sector, spinon physics can be
studiedwith projector QMC simulations in a basis
of valence bonds (singlet pairs) and two unpaired
spins (33, 34). Previously, the size of the spinon
bound state in the J-Qmodel was extrapolated to
the thermodynamic limit (35), but the results were
inconclusive as to the rate of divergence upon
approaching the critical point. Here we consider
the critical finite-size behavior. We define the size
L of the spinon pair by using the strings connect-
ing theunpaired spins in valence-bond simulations
(Fig. 1) (32–34).
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Fig. 1. Illustration of spinons. Shown is a QMC transition graph (33, 34) representing a sampled overlap
hyleftjyrighti of S = 1 states with two strings (spinons, shown in red and green) in a background of valence-
bond loops. Arches above and below the plane represent the states jyrighti and hyleftj, respectively.
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Fig. 2. (L,2L) crossing-point analysis. The size of the spinon bound state and the Binder ratio were
used to generate the left and right panels, respectively. The monotonic quantities were fitted with
simple power-law corrections; two additional subleading corrections were included in the fits of the non-
monotonic quantities.
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SSE and projector methods can be easily generalized for J-Q

J J Q Q Q Q

FIGURE 81. Examples of vertices in the J-Q model. Only some of the allowed spin states of the
vertex legs (open and solid circles) corresponding to the operators are shown. Open and solid bars
indicate diagonal and off-diagonal bond operators, respectively. The J-vertices are identical to those in the
Heisenberg model. The Q-terms in Eq. (294) are products of two bond operators, which when expanded
out include all combinations of diagonal and off diagonal factors. Allowed loops pass only through one of
the operator factors in the case of Q-vertices, as illustrated here with loop segments at all the permissible
leg pairs. Flipping loops can lead to any combination of allowed operators and spin states.

as well as vertical bond orientations. The scheme is, however, independent on how the
singlet projectors are arranged, and also the generalization to an arbitrary number of
bonds in the Q term is trivial. The only constraint is that we have to avoid sign problems,
which we do if both J > 0 and Q> 0 [with the minus signs in (294), which corresponds
to energetically favoring singlets on the bonds included in both the J and Q terms]. The
absence of sign problems was discussed based on a sublattice rotation in [238], and it
can also be demonstrated using the simple operator counting arguments used for bipartite
Heisenberg models in Sec. 5.2.
We now have J-vertices with four legs as well as Q-vertices with eight legs, as

illustrated in Fig. 81. The Q-vertices can be considered as two J-vertices joined together,
in all possible combinations of diagonal and off-diagonal parts arising from the four
operators in the Q term of (294). It is then clear that we can proceed in the same way as
we did for the Heisenberg model, updating the operator string and a stored state using a
combination of diagonal and loop updates. The key is here again that the matrix elements
are the same for all J- and Q-vertices (the values being J/2 andQ/4), which means that a
loop update in which the type of vertex (J or Q) is not changed can always be accepted.
In the case of the Q-vertices, the loops satisfying this constraint enter and exit at the
same operator factor, as illustrated with loop segments in Fig. 81.
Both J and Q diagonal operators are inserted and removed in the diagonal update. The

simplest way to insert diagonal operators is to choose completely randomly among all
the possible single-bond [b] and double-bond [bc] instances in (294). There are N each
of horizontal and vertical bonds [b] and also N each of horizontal and vertical bond pairs
[bc], for a total of 4N cases to choose from. The spins in the current state have to be
antiparallel on the bond or bonds acted on by the chosen operator, and if that is the case
the acceptance probability is a simple modification of Eq. (265), with either βJ = J/(2T)
or βQ = Q/(4T) replacing β , depending on the type of operator inserted. The number
of bonds Nb is replaced by the total number of bonds and bond pairs, i.e., 4N. The same
modifications apply to the removal probability (265) as well. If the ratio Q/J is much
different from 1, which is the case in the VBS state and at the phase transition, it is better
to take this ratio into account already when generating the bonds or bond pairs (but even
the trivial random operator generation actually works very well). Note that Q is much
larger than J in the parameter regime we are interested in, and it is therefore best to
define the temperature in units of Q, i.e., setting Q= 1 in the program.
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J- and Q-vertices through which loops enter and exit at

the individual 2-spin diagonal and off-diagonal parts

The 1D J-Q model has critical-dimerized transition of exactly

the same kind as in the J1-J2 Heisenberg chain

FIGURE 88. In the J-Q3 model studied here, three singlet projectors are arranged in a staggered pattern.
All distinct orientations (as shown) and translations of the projector products are included.

using analytical many-body techniques, even ones that can rather accurately locate the
Néel–VBS transition in the 2D frustrated J1-J2 Heisenberg model. A mean-field treat-
ment starting from a columnar dimer state gives a critical J/Q very far from the QMC
result [256]. This approach can be improved to better take into account some of the local
fluctuations on plaquettes, which improves the value of the critical point but seems to
results in a strongly first-order transition [256]. Cluster mean-field calculations converge
very poorely with the cluster size [257]. These results point to unusually strong non-local
quantum fluctuations [256], which cannot be easily captured with local approaches start-
ing from small clusters or conventional fluctuations around a fixed dimer pattern. The
reason for these difficulties to capture the VBS state may be the emergent U(1) sym-
metry, which makes it difficult to obtain both the correct long-distance behavior (likely
columnar order) as well as the strong fluctuations between columnar and plaquette order
on shorter length scales.

First-order transition in a staggered J-Q model. One way to test the link between
emergent U(1) symmetry and a continuous Néel–VBS transition is to construct a model
in which the local fluctuations responsible for rotating the VBS angle are suppressed.
Intuition for how to accomplish this comes from the Rokhsar-Kivelson (RK) quantum
dimer model [258, 259], which can be regarded as an effective model for an extreme
nonmagnetic system dominated by short valence bonds (for which the internal singlet
structure is also neglected—the bond configurations are regarded as orthogonal states).
The RK hamiltonian on the square lattice can be written as HRK = vV − kK, where
V is the diagonal (potential-energy) operator, which counts the number of flippable
plaquettes [parallel bond pairs, exactly as in Fig. 86(b,c)], and K is an off-diagonal
(kinetic) term which flips such a pair. This model has a critical point at k = v which
separates a plaquette VBS state [similar to the one in Fig. 86(d)] for v< k and a staggered
VBS state [with the bond pattern exactly as in Fig. 4(c)]. While the plaquette state is
destroyed continuously by quantum fluctuations as v→ k−, the staggered state (of which
there are four symmetry-related equivalent ones) has no fluctuations, because it has no
flippable plaquettes. The transition upon v→ k+ is therefore first-order.
This simple picture of the RK model suggests that an actual staggered VBS in a spin

model also should have strongly suppressed local fluctuations, and therefore should
not be associated with an emergent U(1) symmetry. Due to the suppression of local
fluctuations (and therefore also of large-scale fluctuations), the transition between it
and the Néel state should be first-order. The picture is not complete, however, because
clearly there must be some fluctuations in the staggered VBS state, considering that
a reasonable spin hamiltonian will be quite far from a dimer model and the valence
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first-order transition

2D J-Q models with first-order and (apparently) continuous

transitions (deconfined quantum criticality) can be constructed
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FIGURE 8. Graphical representation of possible arrangements of products of singlet-projector oper-
ators Si j in the J-Q model and its generalizations. (a) is the Heisenberg exchange, (b) the four-spin
interaction of the original J-Q model, and (c) a six-spin interaction which leads to more robust VBS order.
These operators, and their 90◦-rotated analogues, are summed over all positions on the square lattice.

sonable microscopic hamiltonian. Answering this question requires large-scale compu-
tational studies of models exhibiting Néel-VBS transitions.
Since the QMC sign problem prohibits large-scale studies of the J1-J2 Heisenberg

model and other similar frustrated systems, we have to try something else. In the “J-
Q” class of models [17, 108, 109], the Néel order is destroyed by an interaction (Q)
which is not frustrated, in the standard sense, but still competes with the Heisenberg (J)
interaction. To understand these J-Q models, note first that the Heisenberg interaction is,
up to a constant, equal to a singlet projector operator: Hi j =−Si j + 1

4 , where

Si j = 1
4 −Si ·S j. (21)

The pair-singlet, Eq. (19), is an eigenstate of this operator with eigenvalue 1, whereas a
triplet state is destroyed by it;

Si j|φ si j⟩= |φ si j⟩, Si j|φ t,mi j ⟩= 0, (m= 0,±1). (22)

Thus, when Si j acts on a singlet-triplet superposition, only the singlet component sur-
vives (is “projected out”—note that the property S2i j = Si j required of a projection op-
erator is satisfied). The standard Heisenberg interaction thus favors the formation of
singlets on pairs of nearest-neighbor sites, but, as we discussed in Sec. 2.2, the fluctua-
tions of these singlets among many different pairings of the spins leads to Néel order in
the ground state. The idea behind the J-Q models is to project singlets on two or more
bonds in a correlated fashion, using products of several Si j operators on a suitable set of
different bonds. This favors a higher density of short valence bonds, thereby reducing or
completely destroying the antiferromagnetic order.
The original J-Q hamiltonian [17] on the square lattice can be written as

H =−J∑
⟨i j⟩

Si j−Q ∑
⟨i jkl⟩

Si jSkl, (23)

where both the J and Q terms are illustrated in Fig. 8. The Q interaction involves four
spins on a 2× 2 plaquette. An interaction with three singlet projectors in a columnar
arrangement is also shown, and operators with even more projectors, or with the projec-
tors arranged on the lattice in different (non-columnar) patterns, can also be considered
[109]. With J> 0 andQ> 0 [and the minus signs in front of the interactions in Eq. (23)],
correlated singlets are favored on the lattice units formed by the product of singlet pro-
jectors. It is still not clear just from the hamiltonian whether a VBS state is realized for
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FIGURE 8. Graphical representation of possible arrangements of products of singlet-projector oper-
ators Si j in the J-Q model and its generalizations. (a) is the Heisenberg exchange, (b) the four-spin
interaction of the original J-Q model, and (c) a six-spin interaction which leads to more robust VBS order.
These operators, and their 90◦-rotated analogues, are summed over all positions on the square lattice.

sonable microscopic hamiltonian. Answering this question requires large-scale compu-
tational studies of models exhibiting Néel-VBS transitions.
Since the QMC sign problem prohibits large-scale studies of the J1-J2 Heisenberg

model and other similar frustrated systems, we have to try something else. In the “J-
Q” class of models [17, 108, 109], the Néel order is destroyed by an interaction (Q)
which is not frustrated, in the standard sense, but still competes with the Heisenberg (J)
interaction. To understand these J-Q models, note first that the Heisenberg interaction is,
up to a constant, equal to a singlet projector operator: Hi j =−Si j + 1

4 , where

Si j = 1
4 −Si ·S j. (21)

The pair-singlet, Eq. (19), is an eigenstate of this operator with eigenvalue 1, whereas a
triplet state is destroyed by it;

Si j|φ si j⟩= |φ si j⟩, Si j|φ t,mi j ⟩= 0, (m= 0,±1). (22)

Thus, when Si j acts on a singlet-triplet superposition, only the singlet component sur-
vives (is “projected out”—note that the property S2i j = Si j required of a projection op-
erator is satisfied). The standard Heisenberg interaction thus favors the formation of
singlets on pairs of nearest-neighbor sites, but, as we discussed in Sec. 2.2, the fluctua-
tions of these singlets among many different pairings of the spins leads to Néel order in
the ground state. The idea behind the J-Q models is to project singlets on two or more
bonds in a correlated fashion, using products of several Si j operators on a suitable set of
different bonds. This favors a higher density of short valence bonds, thereby reducing or
completely destroying the antiferromagnetic order.
The original J-Q hamiltonian [17] on the square lattice can be written as

H =−J∑
⟨i j⟩

Si j−Q ∑
⟨i jkl⟩

Si jSkl, (23)

where both the J and Q terms are illustrated in Fig. 8. The Q interaction involves four
spins on a 2× 2 plaquette. An interaction with three singlet projectors in a columnar
arrangement is also shown, and operators with even more projectors, or with the projec-
tors arranged on the lattice in different (non-columnar) patterns, can also be considered
[109]. With J> 0 andQ> 0 [and the minus signs in front of the interactions in Eq. (23)],
correlated singlets are favored on the lattice units formed by the product of singlet pro-
jectors. It is still not clear just from the hamiltonian whether a VBS state is realized for
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J Operator (<J> = J/2)

JQ3 Model
H = �J

X

<ij>

Cij �Q
X

<ijklmn>

CijCklCmn

1 0 0 0

Q Operator (<Q> = Q/8)

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0 0 0 0 0 0 0 1

(�H)m =
X

{↵,a}

mY

l=1

Ôa
i↵l j↵l

=
X

{↵}

P{↵}

Slide by Ying Tang, Trieste School 2012Operator coding for J-Q models

Linked vertex list and loop update: 

- direct generaization of data structure and procedure for Heisenberg



Q/J
VBScritical

(Q/J)c0

J Q3

i j i j k l m n

J Q2

i j i j k l

Related 1D system: 
VBS state in J-Q chains

Y. Tang and AWS, PRL (2011)

S. Sanyal, A. Banerjee, and K. Damle, PRB (2011)

Evolution of VBS state

during projector QMC

(J=0)

Exactly the same physics

(quantum phases and

phase transition) as in

J1-J2 Heisenberg chain

S=1/2 Heisenberg chain with frustrated interactions (J1-J2 chain)

= J2

= J1

• Antiferromagnetic “quasi order” (critical state) for g<0.2411...
    - exact solution - Bethe Ansatz - for J2=0
   - bosonization (continuum field theory) approach gives further insights
   - spin-spin correlations decay as 1/r

  
    - gapless spin excitations (“spinons”, not spin waves!) 

C(r) = ⌅⇧Si · ⇧Si+r⇧ ⇤ (�1)r ln1/2(r/r0)
r

Different types of ground states, depending on the ratio g=J2/J1 (both >0)

• VBS order for g>0.2411... the ground state is doubly-degenerate state
   - gap to spin excitations; exponentially decaying spin correlations

   - singlet-product state is exact for g=1/2 (Majumdar-Gosh point)
C(r) = ⌅⌅Si · ⌅Si+r⇧ ⇤ (�1)re�r/�

g
VBScritical

0.241...0VBS phase - always with fluctuations



= J2

= J1

Heisenberg chain with frustrated interactions

For the special point J2/J1=0.5, this model has an exact solution

H =
N⇤

i=1

�
J1Si · Si+1 + J2Si · Si+2

⇥

 Singlet-product states

|�A⇥ = |(1, 2)(3, 4)(5, 6) · · · ⇥
|�B⇥ = |(1, N)(3, 2)(5, 4) · · · ⇥

(a, b) = (⇥a⇤b � ⇤a⇥b)/
⌅

2It is not hard to show that these are
eigenstates of H
The system has this kind of order (with fluctuations, no exact solution)
for all J2/J1>0.2411..... This is a quantum phase transition between
• a critical state
• a valence-bond-solid (VBS) state
The symmetry is not broken for finite N

• the ground state is a superposition of the two ordered states

|�0⇤ ⇥ |�A⇤+ |�B⇤, |�1⇤ ⇥ |�A⇤ � |�B⇤



J/Q = 0.5 J/Q = (J/Q)c ⇡ 6

J-Q chains: VBS with more fluctuations and critical state



Extended valence-bond basis for S>0 states

- transition graph has 2S open strings

S = 0

S = 1/2

S = 1

model [18]). We have also studied the J-Q2 model, i.e.,
using two singlet projectors in the Q term in (1), for which
gc ! 0:848 31. We focus here on the J-Q3 model because
it is more strongly VBS ordered at J ¼ 0.

We also wish to study an ordered Néel state, which in an
SU(2) invariant 1D system can only be achieved with long-
range interactions. The Hamiltonian

H ¼
XN

i¼1

XN=2

r¼1

ð$1Þr$1JrSi & Siþr; Jr > 0 (2)

was studied in [19]. With Jr ¼ 1=r!, a quantum phase
transition from the critical state for !> !c to a Néel state
for !< !c was observed, with !c ! 2:2. Here we use
a slightly different model, with Jr ¼ 1=r! for odd r but
Jr ¼ 0 for even r, to make the system amenable to QMC
simulations in the valence-bond basis [13]. We choose
! ¼ 3=2, for which the system is Néel ordered.

To demonstrate the ground states of interest—VBS,
critical, and Néel—in Fig. 1 we plot the spin and dimer
correlation functions, defined by

CðrÞ ¼ hSi & Siþri; (3)

DðrÞ ¼ hðSi & Siþ1ÞðSiþr & Siþ1þrÞi; (4)

and computed using the QMC method discussed below.
We multiply CðrÞ by ð$1Þr to cancel the signs of the

correlations and graph ð$1Þr½DðrÞ $Dðrþ 1Þ), which
for large r can be regarded as the VBS order parameter.
QMC method.—The valence-bond QMC algorithm and

its generalizations to S > 0 states have been discussed in
several papers [13–15,20]. Here we review key aspects of
the basis and the form of the generated ground states.
Acting with a high power of the Hamiltonian Hm on a

trial state j!ti, with H written as a sum of singlet projec-
tors (individual ones and products of three, for J and Q
interactions, respectively), the ground-state normalization
h!0j!0i is sampled (for m large enough for Hmj!ti to be
completely dominated by j!0i). In an S ¼ 0 state for even
N, the states are expressed as superpositions of bipartite
valence-bond states jV!i, i.e., products of N=2 singlets

ða; bÞ ¼ ð"a#b $ #b"aÞ=
ffiffiffi
2

p
, where a and b are sites on sub-

lattice A and B, respectively. We use trial states of the
amplitude-product form [21].
The valence-bond basis is nonorthogonal, and the nor-

malization of the projected ground state is therefore of the
form h!0j!0i ¼

P
!"f"f!hV"jV!i, where f"; f! are not

known explicitly. Implicitly, the probability of generating a
pair of states is PðV!; V"Þ ¼ f"f!hV"jV!i. The overlap

hV"jV!i ¼ 2N0$N=2, whereN0 is the number of loops in the
transition graph of the two states. Figure 2(a) shows a case
with N0 ¼ 1. Matrix elements of the form hV"jAjV!i for
many observables A of interest depend on the loop struc-
ture of the transition graph [21,22].
For S > 0 and magnetizationmz ¼ S the states have 2mz

unpaired " spins and ðN $ 2mzÞ=2 singlet bonds (as dis-
cussed, e.g., in [14,15]). For odd N, which we use for S ¼
1=2, the system is in principle frustrated by periodic
boundaries. This is a finite-size effect, however, which
vanishes when N ! 1 (at least for observables probing
distances r * N). The QMC loop updates [20] automati-
cally exclude frustrated negative-sign configurations,
and this should, thus, be the most rapid way to approach
N ¼ 1. Configurations for S ¼ 1=2 and S ¼ 1 states are
illustrated in Figs. 2(b) and 2(c). We note that the valence-
bond basis with two unpaired spins was used in a pioneer-
ing variational study on spinon deconfinement in a VBS
state of a 1D frustrated model [1].
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FIG. 1 (color online). Spin (a) and dimer (b) correlations of
systems with N ¼ 1024 spins. Results for the J-Q3 model in the
VBS phase (J ¼ 0, g ¼ 4; 1) and at criticality (gc) are shown
along with the behavior in the Néel state of the long-range model
with ! ¼ 3=2. The curves in (a) are fits to the form / e$r=#

(with # ! 4 at J ¼ 0). The straight lines at the gc data show the
expected +1=r critical behavior [27].

FIG. 2 (color online). Illustration of the basis for states with
(a) S ¼ 0 (even N), (b) S ¼ 1=2 (odd N), and (c) S ¼ 1 (even
N). The bonds and unpaired spins of the bra and ket states are
shown below and above the line of sites, respectively.

PRL 107, 157201 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
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157201-2

Overlaps and matrix elements involve loops and strings

- very simple generalizations of the S=0 case

- loops have 2 states, strings have 1 state 

Consider Sz=S

- for even N spins: N/2-S bonds, 2S unpaired “up” spins 

- for odd: (N-2S)/2 bonds, 2S unpaired spins



Spinons in 1D: a single spinon in odd-N J-Q3 model 
- one spin (spinon) doesn’t belong to any bond 
- bra and ket spinons at different locations; non-orthogonality

The distance 
between the 
bra and ket 
spins can be 
used to define 
the size of a 
spinon 
- the spinon 
   is not just the 
   unpaired spin



Two spinons in 1D VBS are deconfined (no confining potential) 
- 2 separated (deconfined) sets of bra/ket spinons
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Phase transition in the 2D J-Q model AFM VBS
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Binder cumulants:

Us → 1, Ud → 0 in AFM phase
Us → 0, Ud → 1 in VBS phase

Behaviors of crossing points → exponents

[Shao, Guo, Sandvik (Science 2016)]
Phenomenological two-length scaling

Competing scenario:  
- weak first-order transition 

- non-unitary conformal field theory



Exponent ν: crossing-point analysis
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Figure 2: Crossing-point analysis of (L, 2L) pairs for the size of the spinon bound state (left) and
the Binder ratio (right). The monotonic quantities are fitted with simple power law corrections,
while two subleading corrections were included in the fits of the non-monotonic quantities.

netization msz as R
1

= hm2

szi/h|msz|i2, which has smaller subleading scaling corrections than

R
2

= hm4

szi/hm2

szi2. Here we use T > 0 QMC simulations at � = 1/T = L as in Ref. (18).

Results are shown in the right column of Fig. 2. The non-monotonic behaviors mentioned above

are clearly visible in the crossing points. Unless only the largest sizes are used, the data must

be fitted with several corrections and precise values of the critical point and the critical R
1

are

difficult to extract. The behavior is nevertheless consistent with gc obtained above from ⇤/L.

The crossing value R⇤
1

for L ! 1 has an uncertainty of over 1% because of an apparently

small value of the subleading exponent; ! ⇡ 0.5. Interestingly, the slope estimator (4) of the

exponent 1/⌫ is monotonic and requires only a single L�! correction, also with ! ⇡ 0.5, even

for systems as small as L = 6 (the fit shown includes L � 8 but accommodates well also the

L = 6 point). The extrapolated exponent ⌫ = 0.446(8) is significantly smaller than ⌫ 0 extracted

above and close to the value obtained recently for the loop model (24). Note that the exponent

8

- Crossing of R1(g,L), R1(g,rL), g=J/Q,

   g*(L), analyze size dependence (using r=2)

- Small correction exponent; ω ≈ 0.5

- ν = 0.45 +/- 0.01

H. Shao, W. Guo, A. W. Sandvik (Science 2016)

g⇤(L) = gc + aL�(1/⌫+!) + . . .

R⇤
1(L) = R1c + aL�! + . . .

s(g, L) = dR1(g, L)/dg

1

⌫⇤
= ln[s(g⇤, rL)/s(g⇤, L)] =

1

⌫
ln(r) + aL�! + . . .

(slope)

Binder ratio of the AF order parameter

R1 =
hm2

szi
h|msz|i2



Improved results
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We can also calculate correlations
of the relevant J and Q terms in H

CHIN. PHYS. LETT. Vol. 37, No. 5 (2020) 057502 Express Letter
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Fig. 3. Correlation function, Eq. (9), of the Q terms in
the critical J–Q model (g = 0.0451). In (a) results at
r = (x, 0) and (x, x) are shown for L = 48. In (b) results
at r = (x, 0) are shown only for odd values of x, with blue
points at x = L/2 � 1 for different system sizes L and
red points for fixed L = 256. The lines in (b) have slope
�2�Q = �1.60.

We here examine the correlation function of the
Q-terms in the Hamiltonian (5),

C
Q

(r
ij

) = hQ
i

Q
j

i � hQ
i

i2, (9)

which is less noisy than the J-energy correlator. As
shown in Fig. 3(a), the correlations exhibit strong
even-odd oscillations, with amplitude decaying with
the distance. The reason for the oscillating behav-
ior is that the columnar VBS correlations are also
detected by the plaquette correlation function C

Q

(r)
(for a detailed general discussion of this, see Ref. [35]).
In a columnar state with x-oriented dimers, C

Q

(0, y)
will be small while C

Q

(x, 0) will have signs (�1)

x

due to the dimerization. In an ergodic QMC simula-
tion, C

Q

(x, y) will reflect averaging over states with
x- and y-oriented dimers. The contributions from
the VBS order parameter then cancel in C

Q

(x, 0)
for odd x, while C

Q

(x, x) retains the VBS contribu-
tions with (�1)

x signs. These behaviors are seen in
Fig. 3(a), where the amplitude decay is due to the
system being a critical VBS. Since the system has
emergent U(1) symmetry of the order parameter,[14,16]
we should consider C

Q

(r) as averaged over an angle
� 2 [0, 2⇡) corresponding to a circular-symmetric dis-
tribution P (d

x

, d
y

). The above-mentioned behaviors
of C

Q

(r) along the lines r = (x, 0) and r = (x, x) will
also hold in this case.

In addition to the large contributions to C
Q

(r)
from the VBS order parameter, there should be a uni-
form component reflecting the scaling dimension of the
full Q operator. Since the VBS contributions are ab-

sent at (x, 0) with odd x, examining the correlations
at these distances is a good way to access the uni-
form component. In Fig. 3(a), small rapidly decaying
values are indeed seen, and in Fig. 3(b) the functional
form is analyzed on a log–log plot. We use a large
system, L = 256, with x ⌧ L, as well as x = L/2� 1

for smaller sizes. In both cases we observe the same
algebraic asymptotic decay, and a power-law fit to the
x = L/2 � 1 data for x > 12 gives �

Q

= 0.800(4).
This scaling dimension corresponds to 1/⌫ = 2.200(4),
in good agreement with the previous (less precise) re-
sults for the J–Q[26] and loop[32] models.

Next we consider the cumulant slopes S
x

⌘
dU

x

/dQ, x = d, z, computed with direct SSE estima-
tors as previously carried out for S

z

with L  160

in Ref. [26]. Here we present the results for L up
to L = 448 (our L = 512 results are too noisy).
The slopes should scale asymptotically as L1/⌫ . In
order to account for the leading correction we also
include a second power-law term with smaller expo-
nent, and exclude small systems until good fits are
obtained. The results are shown in Fig. 4. The in-
set shows the same data sets and fits converted into
1/⌫⇤ ⌘ ln[S(L)/S(L/2)] ln�1

(2), which flows to 1/⌫
as L ! 1. We note that: (i) 1/⌫ = 2.23(2) is
fully consistent with the previous result from smaller
systems,[26] and (ii) the value also agrees with the
above result from the scaling dimension of the Q terms
(with a difference less than 1.5 standard deviations).
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Fig. 4. Critical cumulant slopes vs the system size.
The curves are fits of the L � 64 data to the form
aL1/⌫(1 + bL�!), with 1/⌫ = 2.23(2) (constrained to be
the same for both data sets) and ! = 1.1(1) (for both data
sets, not constrained to be the same). The inset shows
1/⌫⇤ ⌘ ln[S(L)/S(L/2)] ln�1(2) vs 1/L. The purple circle
indicates the extrapolated exponent 1/⌫ = 2.23(2) and the
dashed lines show the values 1/⌫ = 3��Q = 2.200±0.004
determined in Fig. 3.

While the finite-size corrections in 1/⌫ obtained
from the cumulant slopes in Fig. 4 are substantial,
the corrections to the r�2�

Q form of the correlation
function in Fig. 3 are very small. The good agree-
ment of the extracted exponents with the relationship
1/⌫ = 3 � �

Q

should alleviate any concerns of 1/⌫
eventually flowing to the value 3 (= d) expected at a
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Q-Q correlations:
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Mutual consistency between two ways of calculating 1/𝜈

[Sandvik & Zhao, Chin. Phys. Lett. 2020]

g = J/Q
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x
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C
2
(x

)

1/T = 8L

1/T = L/2

3

Fig. 1. Dimer correlation function, Eq. (4), in the crit-
ical Heisenberg bilayer at separation r = (x, 0) with
x = L/2� 1. Results are shown for two different values of
LT . The lines have slope �2�2 = �3.188, corresponding
to the O(3) value of ⌫.

Fig. 1, because of the rapid decay we can access only
rather modest distances, but the results still show a
remarkably good agreement with the expected form
C

2

(r) / r�2�2 starting from r = 4 (L = 10). In
the SSE simulations we have used T = c/L (in units
with J

1

= 1), reflecting the emergent Lorentz invari-
ance of the system (i.e., the dynamic exponent z = 1),
with two different proportionality factors; c = 2 and
1/8. Apart from the different amplitudes of the cor-
relations, both data sets exhibit the same decay.

Turning now to the J–Q model, we express the
AFM Heisenberg interaction as a singlet projector,
�P

ij

, on S = 1/2 spins; P
ij

= 1/4� S
i

· S
j

. To sim-
plify the notation, we use a bond index b to implicitly
refer to two nearest-neighbor spins hi, ji

b

; P
b

⌘ P
ij

.
We also use an index p to refer to a 2 ⇥ 2 plaque-
tte with sites in the arrangement (

i j

k l

)

p

and define
Q

p

⌘ P
ij

P
kl

+P
ik

P
jl

. With these definitions the J–Q
Hamiltonian is[14]

H = �J
X

b

P
b

�Q
X

p

Q
p

. (5)

We define the coupling ratio g ⌘ J/Q and use the SSE
method to compute the z component of the staggered
magnetization (the AFM order parameter)

m
z

=

1

N

X

r

Sz

r(�1)

r
x

+r
y , (6)

and the two-component dimer (VBS) order parame-
ter, also defined with the z spin components,

d
↵

=

1

N

X

r

Sz

rS
z

r+↵̂

(�1)

r
↵ , (7)

where ↵ stands for the x or y lattice direction. We
scale the temperature in units of Q as T = c/L,
with c = 2.38 being the estimated critical velocity of
excitations[25] (i.e., the system is in the “cubic” scaling
regime,[48,50] as in the case 1/T = L/2 for the bilayer
model in Fig. 1).

Early QMC studies placed the VBS–AFM tran-
sition at g

c

⇡ 0.040,[14�16] while more recent works
show a somewhat larger value, g

c

⇡ 0.045,[18,25,26,30]
as a consequence of significant finite-size corrections.
We now have data for system sizes up to L = 512 and
present the Binder cumulants U

z

and U
d

defined in
the standard way such that U

x

! 1 with increasing
system sizes if there is order of type x and U

x

! 0

otherwise;

U
z

=

5

2

� 5

6

hm4

z

i
hm2

z

i2 , U
d

= 2�
h(d2

x

+ d2
y

)

2i
hd2

x

+ d2
y

i2 . (8)

Results for several system sizes are shown in Fig. 2(a).

(a)

(b)

0.000 0.005 0.010 0.015
1/L

0.042

0.043

0.044

0.045

0.046

0.047

g
*

Uz (L),  Ud(L)

Ud (L/2),  Ud(L)

Uz (L/2),  Uz(L)

0.03 0.04 0.05 0.06
0.0

0.2

0.4

0.6

0.8

1.0

U
z ,
    U

d

g

Fig. 2. (a) Binder cumulants of the AFM (red points) and
VBS (blue points) order parameters vs the coupling ratio
for system sizes L = 64, 128, 256, and 512. The slopes
increase with L and the L = 512 data are shown with
solid symbols. (b) Inverse-size dependence of interpolated
crossing points between the two cumulants for given L and
for the same cumulant on L and L/2 lattices. The curves
show fits to two power laws for each data set with a com-
mon gc = g⇤(L ! 1) value, resulting in the critical point
estimate gc = 0.04510(2).

To improve the g
c

estimate, we analyze crossing
points g = g⇤, where U

z

(g⇤, L) = U
d

(g⇤, L) and also
where (for different g⇤) U

x

(g⇤, L/2) = U
x

(g⇤, L) with
x = z or x = d. As shown in Fig. 2(b), these cross-
ing points flow to g

c

= 0.04510(2) as L ! 1. The
extrapolation is based on a fit to two power laws for
each data set, with a common g

c

. Unconstrained fits
also result in consistent g

c

values. We have excluded
small systems until a statistically sound fit is obtained,
with L � 64 included in the final analysis. From now
on we fix the coupling ratio to g = 0.0451 ⇡ g

c

.
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Binder cumulants give critical point
- slopes used to define 1/𝜈

L ! 1 : gc = 0.04510(2)



The VBS order parameter

7

zation

m =
1

N

NX

i=1

S
i

, (4)

and we evaluate the expectation of its square; hm2i. The
VBS order can form with horizontal or vertical bonds,
and these are captured by the bond order parameters

D
x

=
1

N

X

x,y

(�1)xS
x,y

· S
x+1,y, (5a)

D
y

=
1

N

X

x,y

(�1)yS
x,y

· S
x,y+1, (5b)

where for convenience we have switched to a notation
where the double subscripts on S

x,y

refer to the integer
coordinates on the square lattice. In this case as well
we need the squared order parameter, hD2i = hD2

x

i =
hD2

y

i, which has a reasonably simple direct transition-
graph loop estimator [? ].

With the above order parameters we can also define
the corresponding Binder cumulants. In the case of the
O(3) symmetric AFM order the proper definition of the
cumulant is

U
m

=
3

2

✓
1� 1

3

hm4i
hm2i2

◆
, (6)

where the coe�cients are chosen such that with increas-
ing system size U

m

! 1 in the AFM phase and U
m

! 0
if there is no AFM order. For hm4i rangle as well there is
a simple direct loop expression [? ]. In the case of VBS
order, the coe�cients of the cumulant should be chosen
as those for a 2-component vector order parameter, thus

U
D

= 2� hD4i
hD2i2 . (7)

Here hD4i involves eight-spin correlation functions that
in practice are too di�cult to compute e�ciently [? ]. We
therefore invoke an approximation that does not impact
the scaling properties; we simply evaluate (D

x

, D
y

) using
the loop estimator for the two-point operators (5a) and
(5b), and then use this vector of c-numbers to D2 and
D4. While the expectation values entering (7) are then
not strictly the correct quantum-mechanical expectation
values, they still reflect perfectly the absence or presence
of VBS order in the system.

In addition to the squared order parameters hm2i and
hD2i evaluated on the full lattice, we will also consider
the distance dependent spin and dimer correlation func-
tions,

C
s

(r) = hS
x,y

· S
x+r

x

,y+r

y

i, (8a)

C
d

(r) = h(S
x,y

· S
x+1,y)(Sx+r

x

,y+r

y

· S
x+1+r

x

,y+r

y

)i
� hS

x,y

· S
x+1,yi2 (8b)

where we spaitially average over the reference coordinates
x, y for each disorder sample. The spin correlations have
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FIG. 5. Sublattice magnetization versus inverse system size
for di↵erent values of the coupling ratio of the random-Q
model. The curves show fits to the expected forms; low-order
polynomials (here third-order) including linear terms in the
AFM phase and excluding linear terms in the RS phase.

a staggered sign (�1)rx+r

y , while the sign of the dimer
correlator with x oriented bond as above is (�1)rx (and
we take the proper average with the y-oriented ones).

B. Site Diluted J1-J2 static-dimer model

C. Site Diluted J-Q model

In the site-diluted model spins are removed (vacancies
are introduced) at random locations at some fixed con-
centration p. Any J or Q term in Eq. (1) that acting on
one or more vanacies are excluded from the sums. In the
AFM phase, as long as p is below the percolation thresh-
old p

c

above which the system (in the thermodynamic
limit) breaks up into finite decoupled clusters, the va-
cancies do not destroy the long-range AFM order, only
weaken it. If Q = 0 (the pure Heisenberg model), the
percolation point is the standard percolation point of the
square lattice, p

c

⇡ 0.407, while with Q > 0 the perco-
lation point will clearly increase further. Here we will
be interested in low concentrations, far below the perco-
lation point. In the gapped VBS host, when Q > Q

c

,
wth Q

c

/J ⇡ 0.667, the vacancies are expected to lo-
calize magnetic spin-1/2 moments around them. These
moments interact weakly with each other through the
gapped host, and since these interactions are, by sim-
ple arguments for a bipartite lattice, not frustrated, they
will develop a subsystem with AFM long-range-order at
T = 0. Thus, one would expect the sharp AFM–VBS
transition to be ruined.

Dimer order parameter

Dx

Dy

Collect histograms P(Dx,Dy) with
valence-bond basis QMC

= +

Two possible types of order patterns
distinguished by histograms

columnar

plaquette

Finite-size fluctuations
- amplitude
- angular



Analogy with classical 3D clock model

q = 6

H = �J
X

hiji

cos(⇥i �⇥j) q clock angles (hard clock model)

m
x

=

1

N

NX

i=1

cos(⇥

i

)

my =
1

N

NX

i=1

sin(⇥i)

Standard order parameter (mx,my)

Probability distribution P(mx,my) shows cross-over from U(1) to Zq for T<Tc

very significantly below Tc, whereas there are 8 prominent
peaks for L ! 32. Thus, in this case the U(1) length scale
4<!< 32. For the Z4 system T is much closer to Tc but
still some anisotropy is seen for L ! 4; it becomes much
more pronounced for L ! 32.

It is instructive to examine a spin configuration with
mx " my, i.e., ! " "=4. Figure 2 shows one layer of a Z4

system with L ! 10 below Tc. The spins align predomi-
nantly along ! ! 0 and ! ! "=2, with only a few spins in
the other two directions. Clearly there is some clustering of
spins pointing in the same direction—the system consists
of two interpenetrating clusters. Essentially, the configura-
tion corresponds to a size-limited domain wall between
! ! 0 and ! ! "=4 magnetized states.

Hove and Sudbø studied the q-state critical clock model
[13]. Upon course graining, they found that the structure in
the angular distribution diminished with the size of the
block spins for q # 5, as is expected for an irrelevant
anisotropy. Here we want to quantify the length scale !
at which the anisotropy becomes relevant for T < Tc.
Consider first what would happen in a course-graining
procedure for a single-spin configuration of an infinite
system in the ordered state very close to Tc. With individ-
ual spins having q preferred directions, as seen clearly in
Fig. 2, there would be q peaks in the probability distribu-
tion of angles !i. Averaging over blocks of l3 spins, we

would expect the angular dependence to become less pro-
nounced because of the averaging over spins pointing in
different directions (again, as is seen in Fig. 2). Sufficiently
close to Tc we would expect the distribution to approach
flatness. However, since we are in an ordered state, at some
l " ! one of the q preferred angles will become predomi-
nant and one peak in the histogram will start to grow. We
cannot simulate the infinite system and instead carry out an
analogous procedure versus the lattice size L, sampling a
large number of configurations. We calculate the order
parameters hmi and hmqi, defined in Eqs. (3) and (4), and
analyze them using

 hmi ! L$#f%tL1=$&; (5)

 hmqi ! L$#g%tL1=$q&: (6)

Here (5) is the standard finite-size ansatz with # ! %=$,
and the XY exponents are % " 0:348 and $ " 0:672 [16].
Equation (6) is an intuitive generalization of (5), which was
proposed and used also in Ref. [9], but we can actually also
derive the scaling function g%X& exactly.

Consider the scaling behavior of the order-parameter
distribution P% ~m&. It depends on the system size L and
the size of scaling operators perturbing the critical theory,
the temperature deviation t ! Tc $ T, and the presumed
irrelevant q-fold anisotropy strength h. By conventional
scaling arguments, we expect

 P% ~m;L; t; h& ! L#=2P̂%L# ~m; tL1=$; H ! hL3$"q&; (7)

where "q > 3 is the scaling dimension of the irrelevant
anisotropy. The prefactor above is determined from nor-
malization of the probability distribution. In the scaling
regime, jtj' 1, L( 1, so H is small. When the first two
arguments are O%1&, P̂ can be well approximated by taking
H ! 0 [with ‘‘corrections to scaling’’ of O%H&, i.e., sup-
pressed by L3$"q for a large system]. At H ! 0, the
distribution is fully XY symmetric, and the integral in
Eq. (4) vanishes. Thus, in this regime hmqi is small,
O%H&, and should be considered as arising from corrections

FIG. 2 (color online). Spins in one layer of the Z4 model with
L ! 10 at h=J ! 1, T=J ! 1:9< Tc. Here mx " my, corre-
sponding to ! " "=4 in P%r; !&. Arrows are color-coded accord-
ing to the closest Z4 angle; n"=2, n ! 0, 1, 2, 3.

FIG. 1 (color online). P%mx;my& at h=J ! 1 for q ! 4, 8, L !
4, 32. The temperature T=J ! 2:17 for Z4 and 1.15 for Z8, both
less than Tc=J " 2:20. The size of the histograms corresponds to
mx;y 2 )$1; 1*. Angular distributions P%!& with ! 2 )0; 2"* are
shown above each histogram.
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Can be quantified with
“angular order parameter”:

𝝋q > 0 only if q-fold anisotropy

Finite-size scaling of 𝝋q can be
used to extract length scale 𝜉’ > 𝜉
and associated scaling dimension yq
[Lecture by Hui Shao]
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Emergent U(1) symmetry of columnar VBS order

ANDERS W. SANDVIK PHYSICAL REVIEW B 85, 134407 (2012)

L = 64 L = 128

0

max

FIG. 27. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q2 model on periodic L × L lattices with L = 64
(left) and L = 128 (right). The size of both squares corresponds to
10% of the maximum value Dmax/10 of the components, Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

“instanton” events between the peaks (i.e., the simulations “get
stuck” in one quarter of the configuration space). It should be
noted that this very slow simulation dynamics of the VBS order
parameter does not affect the estimate of the total squared order
parameter ⟨D2⟩ and most other physical quantities of interest.

The degree of Z4 symmetry of the order parameter can be
quantified by the function

W4 =
∑

Dx

∑

Dy

P (Dx,Dy) cos(4φxy), (A1)

where φxy is the angle corresponding to the point (Dx,Dy).
While this function (and the underlying probability distri-
bution) is not a physical observable, in the sense that it
is not a bona fide quantum mechanical expectation value,
it, nevertheless, reflects the fluctuations of the VBS order
parameter and can be used to characterize the the U(1)-Z4
crossover.

Results as a function of L for the Q3 model are shown
in Fig. 26. Here, the convergence W4 → 1 when L → ∞ is
apparent, as would be expected for a columnar VBS in the
thermodynamic limit. In principle, the curve W4(L) could be
used to define the length ", e.g., using W4(") = 1/2, but there
is clearly an arbitrariness in choosing the particular number.
For studying the scaling of " when some parameter of the
Hamiltonian is changed (e.g., J/Q3) this ambiguity does not
matter. In Ref. 40, curves W4(L) for different coupling rations
were analyzed using standard finite-size scaling techniques,
with the results that " grows slightly faster than the correlation
length " ∼ ξ 1+a with a ≈ 0.2.

Comparing with the behavior of the squared order parame-
ters in Fig. 4, it can be noted that ⟨D2

x⟩ approaches 0 (and ⟨D2
y⟩

tends to a nonzero value) very quickly above L ≈ 20, which
is approximately where W4(L) = 1/2 in Fig. 26. On the other
hand, the decay of the edge-induced y component of the order
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FIG. 28. (Color online) Angular distribution of the VBS order
parameter of the Q2 model for system sizes L = 32, 64, and 128. To
improve the statistics, these results were obtained by symmetrizing
the distributions using the expected 90◦ rotational symmetry. The
jaggedness of the curves (especially for L = 32) is due to the
discreteness of the allowed (Dx,Dy) values (with N possible values
for each component).

parameter in Figs. 17 and 18 (where the system far from
theedge has only x order) gives a length ≈6.5, which could also
be taken as a practical definition of ". This length corresponds
to W4 ≈ 0.1 in Fig. 26.

In contrast to the Q3 model, in the Q2 model no clear
Z4 symmetry is visible in P (Dx,Dy) up to systems as large
as L = 64 and 128, as shown in Fig. 27. These histograms
are ring-shaped, although for L = 128 the weight is not
evenly distributed because of lack of sufficient QMC statistics.
The VBS angle fluctuates very slowly in simulations of
large systems and very long runs are required in order to
obtain symmetric distributions. The data shown are based
on ≈3.5 × 108 Monte Carlo sweeps for L = 64 and 8 × 107

for L = 128 (which required more than 104 CPU hours in
both cases). By symmetrizing the distributions using 90◦

rotations, one can still detect small deviations from perfect
U(1) symmetry, as shown in Fig. 28. The peak positions again
correspond to a columnar state.

Note that in Fig. 27 the ring for L = 128 is considerably
thinner than for L = 64, with the radius (the location of the
maximum or average weight) remaining almost unchanged.
This reflects an expected reduction of the fluctuations of the
magnitude of the VBS order parameter with increasing system
size. Based on these results, the crossover length scale " for the
Q2 model should be ≫128, which explains why both order-
parameter components are essentially equal for the largest
systems in Fig. 8.
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may work, but some interaction similar to the multispin Q
terms discussed here could be even better suited for inducing
the desired type of VBS.

Spin liquid states have recently also been claimed to exist
in electronic Hubbard models and frustrated spin models on
the honeycomb lattice.105–107 For the Hubbard model, 2D
lattices with up to hundreds of sites were used.105 The VBS
correlations in this case decay very rapidly with distance, and
the system does not seem to exhibit the kind of problematic
scaling issues pointed out in this paper. On the other hand, work
on effective spin models constructed to capture the putative
spin-liquid state have not so far been conclusive.62,107–109 Also
here it would be useful to extend the models in such a way that
a VBS phase transition can be studied. The VBS should then
be the one to which the “bare” honeycomb model is the most
susceptible (which may in itself not be easy to determine in
this case).

D. Bench-mark challenge

Finally, as a challenge to DMRG, tensor-product, and
MERA techniques, it would be very interesting and useful to
see these methods applied to J -Q models as well. Comparing
with the known phase diagram and critical behavior extracted
on the basis of unbiased QMC simulations would be a very
good test of the capabilities of these methods to capture
nontrivial ground states and quantum phase transitions. If the
outcome is positive, it may be very useful to systematically
investigate the behavior when frustration is added to this
model, as was recently done in an exact diagonalization study
of a 2D model combining the Q2 interaction with the frustrated
J1-J2 Heisenberg model.110
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APPENDIX: U(1)-Z4 CROSSOVER OF THE VBS
SYMMETRY IN PERIODIC SYSTEMS

The emergent U(1) symmetry of a columnar VBS in the
neighborhood of a critical point can be characterized by
the probability distribution P (Dx,Dy) generated in QMC
simulations on periodic L × L lattices. A systematic study
aimed at extracting the scaling of the U(1)-Z4 crossover length
! was presented in Ref. 40. Here, additional results for the
pure Q2 and Q3 models will be presented in order to facilitate
comparisons with the boundary effects discussed in the main
text. Specifically, it will be shown that the lack of Dx-Dy

symmetry on 2L × L lattices, as seen in Fig. 4 for the Q3 model
for all system sizes, is matched by a clear Z4 symmetric order
parameter on all L × L lattices. Conversely, the symmetry
seen for the Q2 model on large lattices in Fig. 4 is consistent

L = 12 L = 24

0

max

FIG. 25. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q3 model on periodic L × L lattices with L = 12
(left) and L = 24 (right). The size of both squares corresponds
to the full space of possible values of the components Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

with only very small deviations (barely detectable) from U(1)
symmetry on L × L lattices with L as large as 128.

In the projector QMC simulations, each generated config-
uration is associated with a pair of order parameters (Dx,Dy),
which are matrix elements of the corresponding operators
defined in Eqs. (12) and (13) computed in the valence bond
basis. These matrix elements are of the form 3n/4N , where
n is an integer in the range [−N/2,N/2], with the extremal
values corresponding to both the bra and ket state (making up
the transition graph) having the same perfect columnar pattern
of valence bonds of length one lattice constant. The histogram
P (Dx,Dy) is constructed based on these matrix elements.

Figure 25 shows results for the Q3 model for L = 12
and 24. In this model, the histogram P (Dx,Dy) exhibits a
distinct fourfold symmetry even for the smallest systems (also
smaller than L = 12, not shown here, where the discreteness
of the distribution function also becomes apparent). The four
peaks sharpen with increasing lattice size, and above some
size the suppression of the weight between the peaks severely
impedes QMC fluctuations between the peaks. In Fig. 25, the
visibly different weight in the four peaks (with the right peak
having the smallest weight) is a consequence of this rarity of
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FIG. 26. (Color online) Size dependence of the columnar
anisotropy weight, defined in Eq. (A1), of the VBS order parameter
distribution in the Q3 model.
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FIG. 27. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q2 model on periodic L × L lattices with L = 64
(left) and L = 128 (right). The size of both squares corresponds to
10% of the maximum value Dmax/10 of the components, Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

“instanton” events between the peaks (i.e., the simulations “get
stuck” in one quarter of the configuration space). It should be
noted that this very slow simulation dynamics of the VBS order
parameter does not affect the estimate of the total squared order
parameter ⟨D2⟩ and most other physical quantities of interest.

The degree of Z4 symmetry of the order parameter can be
quantified by the function

W4 =
∑

Dx

∑

Dy

P (Dx,Dy) cos(4φxy), (A1)

where φxy is the angle corresponding to the point (Dx,Dy).
While this function (and the underlying probability distri-
bution) is not a physical observable, in the sense that it
is not a bona fide quantum mechanical expectation value,
it, nevertheless, reflects the fluctuations of the VBS order
parameter and can be used to characterize the the U(1)-Z4
crossover.

Results as a function of L for the Q3 model are shown
in Fig. 26. Here, the convergence W4 → 1 when L → ∞ is
apparent, as would be expected for a columnar VBS in the
thermodynamic limit. In principle, the curve W4(L) could be
used to define the length ", e.g., using W4(") = 1/2, but there
is clearly an arbitrariness in choosing the particular number.
For studying the scaling of " when some parameter of the
Hamiltonian is changed (e.g., J/Q3) this ambiguity does not
matter. In Ref. 40, curves W4(L) for different coupling rations
were analyzed using standard finite-size scaling techniques,
with the results that " grows slightly faster than the correlation
length " ∼ ξ 1+a with a ≈ 0.2.

Comparing with the behavior of the squared order parame-
ters in Fig. 4, it can be noted that ⟨D2

x⟩ approaches 0 (and ⟨D2
y⟩

tends to a nonzero value) very quickly above L ≈ 20, which
is approximately where W4(L) = 1/2 in Fig. 26. On the other
hand, the decay of the edge-induced y component of the order
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FIG. 28. (Color online) Angular distribution of the VBS order
parameter of the Q2 model for system sizes L = 32, 64, and 128. To
improve the statistics, these results were obtained by symmetrizing
the distributions using the expected 90◦ rotational symmetry. The
jaggedness of the curves (especially for L = 32) is due to the
discreteness of the allowed (Dx,Dy) values (with N possible values
for each component).

parameter in Figs. 17 and 18 (where the system far from
theedge has only x order) gives a length ≈6.5, which could also
be taken as a practical definition of ". This length corresponds
to W4 ≈ 0.1 in Fig. 26.

In contrast to the Q3 model, in the Q2 model no clear
Z4 symmetry is visible in P (Dx,Dy) up to systems as large
as L = 64 and 128, as shown in Fig. 27. These histograms
are ring-shaped, although for L = 128 the weight is not
evenly distributed because of lack of sufficient QMC statistics.
The VBS angle fluctuates very slowly in simulations of
large systems and very long runs are required in order to
obtain symmetric distributions. The data shown are based
on ≈3.5 × 108 Monte Carlo sweeps for L = 64 and 8 × 107

for L = 128 (which required more than 104 CPU hours in
both cases). By symmetrizing the distributions using 90◦

rotations, one can still detect small deviations from perfect
U(1) symmetry, as shown in Fig. 28. The peak positions again
correspond to a columnar state.

Note that in Fig. 27 the ring for L = 128 is considerably
thinner than for L = 64, with the radius (the location of the
maximum or average weight) remaining almost unchanged.
This reflects an expected reduction of the fluctuations of the
magnitude of the VBS order parameter with increasing system
size. Based on these results, the crossover length scale " for the
Q2 model should be ≫128, which explains why both order-
parameter components are essentially equal for the largest
systems in Fig. 8.
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FIG. 1. Illustration of the terms of the J-Q model used in
this work. The circles are sites on the square lattice, labeled
in accordance with the Hamiltonian, Eq. (1). The red bars
connecting two sites are the singlet projectors, with connected
bars in the Q terms indicating products.

associated with an IRFP fixed point.

B. Random singlet state in the 2D J-Q model

In this paper we report an unambiguous identifica-
tion and characterization of a 2D RS state with finite
dynamic exponent in a system without geometric frus-
tration. We study a square-lattice Heisenberg antifer-
romagnet with nearest-neighbor exchange J augmented
with certain multi-spin interactions of strength Q (the
J-Q model). The unadulterated translationally invari-
ant model is defined by the Hamiltonian [41, 42]

H = �J
X

hiji

P
ij

�Q
X

hijklmni

P
ij

P
kl

P
mn

, (1)

where P
ij

is the singlet projector for two S = 1/2 spins,

P
ij

=
1

4
� S

i

· S
j

, (2)

hiji indicates nearest-neighbor sites, and the index pairs
ij, kl, and mn in hijklmni are neighbors forming a
horizontal or vertical column, as illustrated in Fig. 1.
The summations are over all pairs and and columns,
and the Hamiltonian respects all the symmetries of the
square lattice, including the 90� rotation symmetry when
J
x

= J
y

= J and Q
x

= Q
y

= Q as we have assumed in
Eq. (1). We will introduce various forms of disorder in
the model, including site dilution and random J and Q
couplings drawn from suitable distributions; detailed def-
initions of the di↵erent cases are presented in Sec. IV.

In the uniform system the Q interactions compete
against the exchange terms J , disfavoring the strong an-
tiferromagnetic (AFM) order present for Q = 0 (the stan-
dard 2D Heisenberg model [46]) by producing correlated
local singlets. The interactions are not frustrated in the
standard (geometric) sense, however, and the model is
amenable to large-scale QMC simulations for all positive
values of the ratio g = Q/J (with J � 0, Q � 0 being
of primary interest) [45]. The ground state has AFM or-
der for g < g

c

, with g
c

⇡ 0.666, and is a spontaneously
dimerized valence-bond solid (VBS) for g > g

c

. In the
VBS phase the Z4 symmetry of four degenerate columnar
dimer patterns is broken.

A columnar VBS state and an AFM–VBS transition is
also realized if the Q-interaction in Eq. (1) is replaced by

a simpler one with only two singlet projectors [43]. How-
ever, the critical coupling ratio g

c

is then much larger,
g ⇡ 22, and the VBS order is much weaker throughout
the phase. Disorder e↵ects on the VBS state are easier to
study with the more extended Q term in Eq. (1), and we
will here demonstrate RS behavior for a significant range
of coupling mean coupling ratios g when either the J or
the Q interactions are random. We expect these disorder
e↵ects to be generic for VBS phases on bipartite lattices.

Before the advent of the J-Q model, VBS physics was
normally associated with geometric frustration, in mod-
els such as the J-J 0 Heisenberg model with nearest- (J)
and next-nearest-neighbor (J 0) couplings. These systems
are not amenable to large-scale QMC studies because of
mixed-sign sampling weigths (the sign problem), except
at the variational level in sampling and optimizing wave
functions [49, 50]. While great progress has been made
in the last several years on density matrix renormaliza-
tion group (DMRG) and Tensor Product State (TNS)
techniques for studying frustrated models (see e.g., the
recent papers [51–53] for applications to the J-J 0 Heisen-
berg model), various convergence issues or limited system
sizes still make it impossible to carry out calculations as
reliable as QMC simulations of sign-problem free models.

The J-Q models exhibit many of the phenomena of
long-standing interest in the context of frustrated quan-
tum magnetism, in particular the AFM-VBS transi-
tion [48], which appears to realize the exotic deconfined
quantum-critical point (DQC) scenario [47]. While it is
presently not clear whether exactly this transition is also
realized in the J-J 0 Heisenberg model [51–53], the phe-
nomenon has attracted a great deal of interest as it is
a prominent example of a quantum phase transition be-
yond the standard Landau-Ginzburg-Wilson framework.
The J-Q models o↵er opportunities to study the emer-
gent degrees of freedom—spinons and gauge fields—that
are the ingredients of the field-theory description of the
DQC point. A very interesting question is how these de-
grees of freedom respond to to quenched disorder, and
this is the topic of the present paper.

By the Imry-Ma argument [57], in the presence of even
an infinitesimal degree of randomness in the local interac-
tions, the VBS can no longer exist as a long-range ordered
state, due to di↵erent columnar dimerization patterns be-
ing energetically favored in di↵erent parts of the lattice.
Thus, the uniform VBS breaks up into domains of dif-
ferent VBS patterns. One such disordered dimer state
has been termed a valence-bond glass (VBG) [58]. It
essentially consists of a random arrangement of short va-
lence bonds and it has been discussed in the experimental
context of the kagome-lattice material herbertshmithites
[8, 9], and also in 3D frustrated spin systems [59, 60]. The
kagome spin S = 1/2 lattice of the herbertshmithites is to
some degree diluted with non-magnetic impurities, and
these also liberate spinons from the singlet ground state
[12]. It was argued that these spinons interact and form a
gapless critical RS state. In this case the spinons can be
regarded as a byproduct of the dilution, and in the orig-
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FIG. 27. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q2 model on periodic L × L lattices with L = 64
(left) and L = 128 (right). The size of both squares corresponds to
10% of the maximum value Dmax/10 of the components, Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

“instanton” events between the peaks (i.e., the simulations “get
stuck” in one quarter of the configuration space). It should be
noted that this very slow simulation dynamics of the VBS order
parameter does not affect the estimate of the total squared order
parameter ⟨D2⟩ and most other physical quantities of interest.

The degree of Z4 symmetry of the order parameter can be
quantified by the function

W4 =
∑

Dx

∑

Dy

P (Dx,Dy) cos(4φxy), (A1)

where φxy is the angle corresponding to the point (Dx,Dy).
While this function (and the underlying probability distri-
bution) is not a physical observable, in the sense that it
is not a bona fide quantum mechanical expectation value,
it, nevertheless, reflects the fluctuations of the VBS order
parameter and can be used to characterize the the U(1)-Z4
crossover.

Results as a function of L for the Q3 model are shown
in Fig. 26. Here, the convergence W4 → 1 when L → ∞ is
apparent, as would be expected for a columnar VBS in the
thermodynamic limit. In principle, the curve W4(L) could be
used to define the length ", e.g., using W4(") = 1/2, but there
is clearly an arbitrariness in choosing the particular number.
For studying the scaling of " when some parameter of the
Hamiltonian is changed (e.g., J/Q3) this ambiguity does not
matter. In Ref. 40, curves W4(L) for different coupling rations
were analyzed using standard finite-size scaling techniques,
with the results that " grows slightly faster than the correlation
length " ∼ ξ 1+a with a ≈ 0.2.

Comparing with the behavior of the squared order parame-
ters in Fig. 4, it can be noted that ⟨D2

x⟩ approaches 0 (and ⟨D2
y⟩

tends to a nonzero value) very quickly above L ≈ 20, which
is approximately where W4(L) = 1/2 in Fig. 26. On the other
hand, the decay of the edge-induced y component of the order
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FIG. 28. (Color online) Angular distribution of the VBS order
parameter of the Q2 model for system sizes L = 32, 64, and 128. To
improve the statistics, these results were obtained by symmetrizing
the distributions using the expected 90◦ rotational symmetry. The
jaggedness of the curves (especially for L = 32) is due to the
discreteness of the allowed (Dx,Dy) values (with N possible values
for each component).

parameter in Figs. 17 and 18 (where the system far from
theedge has only x order) gives a length ≈6.5, which could also
be taken as a practical definition of ". This length corresponds
to W4 ≈ 0.1 in Fig. 26.

In contrast to the Q3 model, in the Q2 model no clear
Z4 symmetry is visible in P (Dx,Dy) up to systems as large
as L = 64 and 128, as shown in Fig. 27. These histograms
are ring-shaped, although for L = 128 the weight is not
evenly distributed because of lack of sufficient QMC statistics.
The VBS angle fluctuates very slowly in simulations of
large systems and very long runs are required in order to
obtain symmetric distributions. The data shown are based
on ≈3.5 × 108 Monte Carlo sweeps for L = 64 and 8 × 107

for L = 128 (which required more than 104 CPU hours in
both cases). By symmetrizing the distributions using 90◦

rotations, one can still detect small deviations from perfect
U(1) symmetry, as shown in Fig. 28. The peak positions again
correspond to a columnar state.

Note that in Fig. 27 the ring for L = 128 is considerably
thinner than for L = 64, with the radius (the location of the
maximum or average weight) remaining almost unchanged.
This reflects an expected reduction of the fluctuations of the
magnitude of the VBS order parameter with increasing system
size. Based on these results, the crossover length scale " for the
Q2 model should be ≫128, which explains why both order-
parameter components are essentially equal for the largest
systems in Fig. 8.
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may work, but some interaction similar to the multispin Q
terms discussed here could be even better suited for inducing
the desired type of VBS.

Spin liquid states have recently also been claimed to exist
in electronic Hubbard models and frustrated spin models on
the honeycomb lattice.105–107 For the Hubbard model, 2D
lattices with up to hundreds of sites were used.105 The VBS
correlations in this case decay very rapidly with distance, and
the system does not seem to exhibit the kind of problematic
scaling issues pointed out in this paper. On the other hand, work
on effective spin models constructed to capture the putative
spin-liquid state have not so far been conclusive.62,107–109 Also
here it would be useful to extend the models in such a way that
a VBS phase transition can be studied. The VBS should then
be the one to which the “bare” honeycomb model is the most
susceptible (which may in itself not be easy to determine in
this case).

D. Bench-mark challenge

Finally, as a challenge to DMRG, tensor-product, and
MERA techniques, it would be very interesting and useful to
see these methods applied to J -Q models as well. Comparing
with the known phase diagram and critical behavior extracted
on the basis of unbiased QMC simulations would be a very
good test of the capabilities of these methods to capture
nontrivial ground states and quantum phase transitions. If the
outcome is positive, it may be very useful to systematically
investigate the behavior when frustration is added to this
model, as was recently done in an exact diagonalization study
of a 2D model combining the Q2 interaction with the frustrated
J1-J2 Heisenberg model.110
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APPENDIX: U(1)-Z4 CROSSOVER OF THE VBS
SYMMETRY IN PERIODIC SYSTEMS

The emergent U(1) symmetry of a columnar VBS in the
neighborhood of a critical point can be characterized by
the probability distribution P (Dx,Dy) generated in QMC
simulations on periodic L × L lattices. A systematic study
aimed at extracting the scaling of the U(1)-Z4 crossover length
! was presented in Ref. 40. Here, additional results for the
pure Q2 and Q3 models will be presented in order to facilitate
comparisons with the boundary effects discussed in the main
text. Specifically, it will be shown that the lack of Dx-Dy

symmetry on 2L × L lattices, as seen in Fig. 4 for the Q3 model
for all system sizes, is matched by a clear Z4 symmetric order
parameter on all L × L lattices. Conversely, the symmetry
seen for the Q2 model on large lattices in Fig. 4 is consistent
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FIG. 25. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q3 model on periodic L × L lattices with L = 12
(left) and L = 24 (right). The size of both squares corresponds
to the full space of possible values of the components Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

with only very small deviations (barely detectable) from U(1)
symmetry on L × L lattices with L as large as 128.

In the projector QMC simulations, each generated config-
uration is associated with a pair of order parameters (Dx,Dy),
which are matrix elements of the corresponding operators
defined in Eqs. (12) and (13) computed in the valence bond
basis. These matrix elements are of the form 3n/4N , where
n is an integer in the range [−N/2,N/2], with the extremal
values corresponding to both the bra and ket state (making up
the transition graph) having the same perfect columnar pattern
of valence bonds of length one lattice constant. The histogram
P (Dx,Dy) is constructed based on these matrix elements.

Figure 25 shows results for the Q3 model for L = 12
and 24. In this model, the histogram P (Dx,Dy) exhibits a
distinct fourfold symmetry even for the smallest systems (also
smaller than L = 12, not shown here, where the discreteness
of the distribution function also becomes apparent). The four
peaks sharpen with increasing lattice size, and above some
size the suppression of the weight between the peaks severely
impedes QMC fluctuations between the peaks. In Fig. 25, the
visibly different weight in the four peaks (with the right peak
having the smallest weight) is a consequence of this rarity of
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FIG. 26. (Color online) Size dependence of the columnar
anisotropy weight, defined in Eq. (A1), of the VBS order parameter
distribution in the Q3 model.
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The simulations take a long time to rotate the VBS angle
L=128: 105 measurements require > 1 day of computation

building 100×105 measurements 105 measurements



Conventional first-order transition
Staircase J-Q3 model [Sen, Sandvik, PRB 2010]

fashion on the square lattice, as illustrated in Fig. 1!a". This
interaction induces a staggered VBS pattern in which reso-
nating valence bonds leading locally to a different !degener-
ate" VBS pattern are not favored. If such fluctuations are
present they can effectively rotate the coarse-grained angle
of the VBS order parameter !as explained further in the cap-
tion of Fig. 1", which has been explicitly observed in the J-Q
models studied previously.9,10,14 In the DQC scenario, they
are directly responsible for the emergent U!1" symmetry of
the VBS order parameter in the neighborhood of the
transition.2 The absence of this feature in the model studied
here brings it clearly outside the framework of DQC points,
and a numerical confirmation of a different type of transition
is then, indirectly, an additional piece of evidence in favor of
a consistent DQC scenario in which emergent U!1" symme-
try and spinon deconfinement should go hand-in-hand with a
continuous transition.

We here use the stochastic series expansion !SSE" QMC
method with operator-loop updates18 to study the nature of
the Néel-VBS transition in the staggered J-Q3 model. We
perform simulations at a fixed aspect ratio of inverse tem-
perature !J=L, as done previously for the standard J-Q2
model in Refs. 13–15. We study the finite-size scaling prop-
erties of various physical quantities and contrast them with
what is observed at the previously studied putative continu-
ous DQCs.

The rest of the paper is organized in the following way: in
Sec II, we define the model more precisely and present the
results for the staggered magnetization, the corresponding
Binder cumulant, the spin stiffness, and the VBS order pa-

rameter. We also consider the probability distribution of the
VBS order parameter and use it to explicitly demonstrate
phase coexistence. In Sec III, we determine the location of
the critical point by using the crossing of the energies of the
Néel and the VBS phases in the metastable region near the
transition. We state our conclusions and discuss future pros-
pects in Sec IV.

II. MODEL AND ORDER PARAMETERS

We consider the following Hamiltonian:

H = J#
$ij%

Si · S j − Q3 #
$ijklmn%

CijCklCmn, !1"

where Si refers to a S=1 /2 spin at site i on the 2D square
lattice and Cij denotes the singlet pair projection operator,

Cij =
1
4

− Si · S j , !2"

between two nearest neighbors i and j. The Q3 term !where,
in the notation of Ref. 10, the subscript on Q refers to the
number of singlet projectors in the product" is chosen in the
particular manner illustrated in Fig. 1!a", to favor the forma-
tion of the kind of staggered VBS illustrated in Fig. 1!b".
Like the columnar and plaquette VBS, the broken symmetry
of the staggered VBS is Z4. However, this type of VBS is
very different from its columnar or plaquette counterparts
since no local ring exchange of singlets on closed loops &e.g.,
as illustrated in Fig. 1!c" for a simple two-bond resonance' is
possible in the ideal staggered VBS. This makes it highly
unlikely for the existing fluctuations of this kind of VBS to
be associated with an emergent U!1" symmetry, which is a
key characteristic of the DQC transition.2 We will confirm
this with simulation results below.

We have also studied an interaction similar to the six-spin
Q3 term but with only two singlet projectors, on two pairs of
sites separated by one lattice spacing and shifted one step
with respect to each other as in Fig. 1!a". This interaction is
not sufficient for destroying the Néel order, however, unlike
the original J-Q model with the two singlet projectors inside
2"2 plaquettes. In the latter case the resulting VBS in the
extreme case of J=0 is also quite weak9 while adding one
more singlet projector !with the sets of three projectors ar-
ranged in columns" gives a much more robust VBS order.10

To study the Néel-VBS phase transition in the staggered
J-Q3 model, Eq. !1", we measure quantities that are sensitive
to the Néel order and the VBS order, respectively. At a con-
tinuous quantum phase transition, these quantities should
scale with the system size L according to nontrivial critical
exponents while at a first-order transition one would expect
very different exponents related to the dimensionality of the
system as well as particular signatures of coexisting phases
at the transition point. These signatures should apply when
the linear dimension of the system L#$, where $ is the finite
correlation length at the transition.

A. Néel order

The magnetically ordered Néel phase breaks the SU!2"
rotational symmetry of the interaction Hamiltonian H and

i j

k l

m n
a)

c) d)

b)

FIG. 1. !Color online" !a" The interaction term Q3 involving
three bond-singlet projection operators !shown with thicker lines"
on the square lattice. All terms related by lattice translations and
rotations of the shown instance of a product of singlet projectors are
included in the Hamiltonian. Examples of VBS patterns: !b" stag-
gered, !c" columnar, and !d" plaquette. The singlets preferentially
form on the thicker !red" bonds. The arrows in !c" indicate how a
local resonance of a pair of bonds between horizontal and vertical
orientations corresponds to a plaquette in !d". Such resonances cor-
respond to fluctuations of the VBS angle, which is %=n& /2 !n
=0,1 ,2 ,3" for the columnar state and %n& /2+& /4 for the
plaquette state. In the DQC scenario !Ref. 2" they lead to an emer-
gent U!1" symmetry, i.e., a continuous circular-symmetric % as the
transition into the Néel state is approached. The Q3 term favors the
staggered-type VBS !b", where such angular fluctuations should al-
ways be small.
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can be characterized by measuring !"ms
z#2$, where ms

z denotes
the z component of staggered magnetization of the system,

ms
z =

1
N%

r
Sz"r#cos"Q · r# "3#

with Q= "! ,!# the wave vector corresponding to the Néel
phase and N=L2. This quantity is diagonal in the Sz basis
used and can be easily measured in the SSE simulations. We
measure the squared quantity !"ms

z#2$, which, due to the spin-
rotational symmetry of the Hamiltonian, is 1/3 of the full
squared staggered magnetization !ms

2$. We show the data for
different system sizes at "J=L near the phase transition in
Fig. 2. As the system size is increased, we observe a jump
developing in !"ms

z#2$ that becomes more abrupt and rapidly
approaches the infinite-volume estimate of the critical point
"Q3 /J#c=1.1933"1# for this model "indicated by the vertical
line in Fig. 2 and other figures#. The value of "Q3 /J#c was
obtained from the crossing of metastable energies of the Néel
and VBS phases of larger systems; see Fig. 7 and later dis-
cussion in Sec. III. This kind of behavior of the Néel order
parameter is already very suggestive of a first-order transi-
tion. Data for systems larger than L=14 are not shown here
because of the extremely long tunneling times between the
coexisting "as we will show below in Sec. II B# Néel and
VBS phases for such sizes in our simulations close to the
phase transition, which makes it very difficult to obtain reli-
able expectation values.

A quantity that is very useful for distinguishing between
first-order and continuous phase transitions is the Binder cu-
mulant U2, defined for an O"3# order parameter as19

U2 =
5
2
&1 −

!"ms
z#4$

3!"ms
z#2$2' . "4#

With the factors used here, U2→1 in the Néel phase and
U2→0 in the magnetically disordered phase "VBS in this
case# when L→#. For a continuous phase transition, the U2

curves for different system sizes intersect at the critical point
"for sufficiently large L# and the value of U2 at the intercept
normally lies in the interval "0,1#.19 This property of the
Binder cumulant is often used to accurately determine the
location of the critical point for continuous phase transitions.
However, for a first-order transition, the Binder cumulant
behaves in a completely different manner that was explained
phenomenologically for classical transitions by Vollmayr et
al.20 For systems exceeding a certain length Lmin($, the
curves show a minimum which becomes more pronounced
as the system size increases. The minimum value of U2→
−# as L→# because of phase coexistence, and the position
of the minimum approaches the transition point in the ther-
modynamic limit. This behavior has been observed in previ-
ous studies of classical first-order phase transitions )for ex-
ample, see Refs. 20 and 21*. Indeed, the Binder cumulant for
the J-Q3 model, graphed in Fig. 3, behaves in a similar man-
ner and strongly points to a first-order phase transition. The
negative minimum is present in the U2 curves for L=6 and
above and becomes deeper and sharper as L increases. Its
location approaches the estimated "Q3 /J#c. The fact that a
minimum in U2 is not at all present for L=4 and is barely
negative for L=6 allows us to estimate that the typical length
scale "the spin-correlation length# at the first-order transition
is approximately in the range $=4–6. We also measure the
second moment spin-correlation length $a defined as

$a =
L

2!+ S"!,!#

S&! +
2!

L
,!' − 1, "5#

where S"q# refers to the spin structure factor at the corre-
sponding wave vector q. We obtain $a(2 close to the critical
point in the magnetically disordered VBS phase. However,
when the spin-correlation length is small, $a can differ from
the true correlation length $ based on the asymptotic decay
of the spin correlations in real space "which is difficult to
extract reliably#.
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FIG. 2. "Color online# The squared staggered magnetization
!"ms

z#2$ shown for different system sizes at inverse temperature "J
=L. The vertical line at "Q3 /J#c=1.1933 is the estimated L→#
transition point from crossings of metastable energy branches "Fig.
7#.
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FIG. 3. "Color online# The Binder cumulant of the staggered
magnetization shown for different system sizes at inverse tempera-
ture "J=L. Note that the minimum of the Binder cumulant is nega-
tive for L%8 and diverges to −# as L→# based on these sizes.
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Binder cumulant of AFM order parameter

Negative Cumulant peak is a sign of
phase coexistence; first-order transition

using the VBS order parameter. Consider the joint probabil-
ity distribution function P!Dx ,Dy". In the Neel phase, this
function is peaked at !0,0". In the VBS phase, P!Dx ,Dy" is
peaked at !0, !D" and !!D ,0", where D is finite, reflecting
the Z4 degeneracy of the VBS state in a finite lattice. Note
that !Dx ,Dy" is here defined as a single point obtained on the
basis of an equal-time simultaneous measurement of Dx and
Dy, i.e., these operators are not averaged over the imaginary-
time dimension in the simulations. The full distribution can
still of course be accumulated over several imaginary times.

In Fig. 6, we show P!Dx ,Dy" for L=12 and Q3 /J
=1.22,1.23,1.24 for "J=L. The coexistence of the Neel and
the VBS phase is evident from the presence of peaks at both
!0,0" and !!D ,0" , !0, !D" at Q3 /J=1.23 while at Q3 /J
=1.22 !Q3 /J=1.24", the Néel !VBS" phase dominates. Also
note the absence of any U!1" ringlike feature in the distribu-
tion shown in Fig. 6. This should be contrasted with similar
measures of the distribution function in the J-Q models with
columnar VBS states close to the critical point, where the

enlarged U!1" symmetry is very evident.9,10,14 In the original
J-Q model with two singlet projectors, the VBS does not
seem to get pinned to the four Z4 symmetric angles even at
J=0 for the system sizes accessible.9 In the modified J-Q
model with three singlet projectors forming columns,10 the
change in the shape of the VBS order-parameter distribution
from U!1" close to the transition to Z4 deep in the VBS phase
can be clearly observed, however. The enlarged U!1" sym-
metry arises in DQC theory due to the !dangerously" irrel-
evant Z4 symmetry-breaking term at the critical point.2 Away
from the critical point, the symmetry is only approximate but
large system sizes are needed to observe that !i.e., L has to
exceed the length scale # which is larger than the standard
correlation length and determined by the dangerously irrel-
evant operator".

Within the DQC framework, the approximate U!1" sym-
metry near the critical point can be thought of in the follow-
ing manner:2 the dangerously irrelevant Z4 perturbation only
produces a small energy difference between the columnar
and plaquette VBS, which vanishes at the critical point and
gives rise to a corresponding large length scale slightly away
from it within which the magnitude of the VBS order param-
eter is formed but its angle !which can be defined exactly as
we did above in terms of Dx and Dy" is not pinned in any
particular direction. This feature has also been observed in
U!1" symmetric spin models where either a very weak first-
order transition24 or transition with unusual finite-size
scaling25 takes place. However, when the VBS is staggered,
there is no competing solid that is energetically close be-
cause of the absence of local ring exchange moves of the
singlets !or dimers" in the ideal staggered solid. This does
not allow the emergence of an approximate U!1" symmetry
near the transition, for which local fluctuations of the VBS
order parameter are necessary, and puts it outside the frame-
work of DQC points even though the phases have the same
broken symmetries. Note that the value of D2 in the VBS
phase after the discontinuous jump !Fig. 5" is close !
#74%" to that of an ideal staggered solid !D2=0.015625",
which motivates us to classify it as a strongly first-order
transition.

We should point out here that the order-parameter distri-
bution P!ms

z" of the Néel order parameter does not show a
clear peak structure at coexistence because of the spin-
rotational averaging when measuring just one of the three
components of the staggered magnetization. The distribution
is not sharply peaked in the Néel state. In principle one could
measure deviations from the rotationally averaged distribu-
tion expected26 for a single phase but this signal is not as
clear as the one seen above for the VBS order parameter. In
the Binder cumulant this problem is avoided because only
even powers of ms are used and they can be trivially related
to the corresponding powers of ms

z. In principle one could
also measure the x and y components of the staggered struc-
ture factor, and compute the distribution P!$ms$", but since
these are off-diagonal operators in the basis used there are
ambiguities in how to define ms

x and ms
y for a given configu-

ration in which mz
s is also measured.

III. DETERMINATION OF THE TRANSITION POINT

The location of a phase transition in the thermodynamic
limit may be determined by using finite-size scaling argu-
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FIG. 6. !Color online" The probability density P!Dx ,Dy" shown
for L=12 at Q3 /J=1.22,1.23,1.24 !from top to bottom" and "J
=12. The maxima present both at !0,0" and !!D ,0" , !0, !D" at
Q3 /J=1.23 show phase coexistence of the Neel and VBS orders.
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f̃ (dL1/n,L1/n'–1/n,L–w). If f̃ (d = 0) is constantwhen
L → 1, then L1/n'–1/n acts like just another ir-
relevant field, as in the standard scenario for dan-
gerously irrelevant perturbations in classical clock
models (31). Our proposal is a different large-L
limit of Eq. 2, controlled by y = dL1/n', which leads
to concrete predictions of scaling anomalies. In
the case of the stiffness, the correct thermody-
namic limit is obtained with ñ ¼ n0 and k = zn if
f(x,y,L–w)º yzn for largeL. Then rs(d =0)º L–zn/n',
which we can also obtain with ñ ¼ n and f̃ º
Lz(1–n/n') for d → 0. A function f̃ behaving as a
power ofLwas implicitly suggested in (19), though
with no specific form.
This alternative scaling behavior corresponds

to xº (x') n/n' saturating at xº L n/n' when x'→ L
upon approaching the critical point, in contrast
to the standard scenario in which x grows until it
also reaches L (32). The criticality at distances r <
Ln/n' is conventional, whereas r> Ln/n' is governed
by the unconventional power laws. Different be-
haviors for r ≪ L and r ≈ L were observed in a
recent loop-model study (24), and a dangerously
irrelevant field was proposed as a possible expla-
nation, but with no quantitative predictions of
the kind offered by our approach. The anomalous
scaling law controlled by n/n', which we confirm
numerically below, is an unexpected feature of
DQCphysics andmay also apply to other systems
with two divergent lengths.
The J-Qmodel (15) for spins S = 1/2 is defined

using singlet projectors (Pij = 1/4 – Si · Sj) as

H ¼ −J
X

hiji

Pij − Q
X

hijkli

PijPkl ð3Þ

where hiji denotes nearest-neighbor sites on a
periodic square lattice with L2 sites, and ij and kl
in hijkliform the horizontal and vertical edges of
2 × 2 plaquettes. The Hamiltonian H has all sym-
metries of the square lattice, and the VBS ground
state for g= J/Q< gc (with gc≈ 0.045) is columnar,
breaking the translational and 90° rotational sym-
metries spontaneously. The Néel state for g > gc
breaks the spin rotation symmetry.
Although we have argued that the asymptotic

L→1 behavior when d ≠ 0 in Eq. 2 is controlled
by the second argument of f, the critical finite-
size scaling close to d = 0 (when dL1/n is of order
1) can still be governed by the first argument (32).
Wewill demonstrate that, depending on the quan-
tity, either dL1/n or dL1/n' is the relevant argument,
and, therefore, n and n' can be extracted using
single-parameter scaling. We will first consider
dimensionless quantities, corresponding to k =
0 in Eq. 2, before testing the anomalous powers
of L in other quantities.
If the effective one-parameter scaling holds

close to gc, then Eq. 2 implies thatA(g,L1) =A(g,L2)
at some point g that we denote g*(L1,L2), and a
crossing-point analysis (Fisher’s phenomenolog-
ical renormalization) can be performed (29). For a
k = 0 quantity, if L1 = L and L2 = rL with r >
1 being constant, a Taylor expansion of f shows
that the crossing points g*(L) approach gc as
g*(L) – gcº L–(1/n+w), if n is the relevant exponent
(which we assume here for definiteness). A* =

A(g*) approaches its limit Ac as A*(L) – Ac º
L–w, and it can also be shown that the quantity

1
n$ðLÞ

¼ 1
lnðrÞ

ln
dAðg; rLÞ=dg
dAðg;LÞ=dg

! "

g¼g$
ð4Þ

converges to 1/n at the rate L–w. In practice,
simulation data can be generated on a grid of
points close to the crossing values, with poly-
nomials used for interpolation and derivatives.
We present details and tests of such a scheme for
the Ising model in (32).

In the S = 1 sector, spinon physics can be
studiedwith projector QMC simulations in a basis
of valence bonds (singlet pairs) and two unpaired
spins (33, 34). Previously, the size of the spinon
bound state in the J-Qmodel was extrapolated to
the thermodynamic limit (35), but the results were
inconclusive as to the rate of divergence upon
approaching the critical point. Here we consider
the critical finite-size behavior. We define the size
L of the spinon pair by using the strings connect-
ing theunpaired spins in valence-bond simulations
(Fig. 1) (32–34).
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Fig. 1. Illustration of spinons. Shown is a QMC transition graph (33, 34) representing a sampled overlap
hyleftjyrighti of S = 1 states with two strings (spinons, shown in red and green) in a background of valence-
bond loops. Arches above and below the plane represent the states jyrighti and hyleftj, respectively.
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Fig. 2. (L,2L) crossing-point analysis. The size of the spinon bound state and the Binder ratio were
used to generate the left and right panels, respectively. The monotonic quantities were fitted with
simple power-law corrections; two additional subleading corrections were included in the fits of the non-
monotonic quantities.
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Spinons in the 2D J-Q model [Shao, Guo, Sandvik, Science 2016]

model [18]). We have also studied the J-Q2 model, i.e.,
using two singlet projectors in the Q term in (1), for which
gc ! 0:848 31. We focus here on the J-Q3 model because
it is more strongly VBS ordered at J ¼ 0.

We also wish to study an ordered Néel state, which in an
SU(2) invariant 1D system can only be achieved with long-
range interactions. The Hamiltonian

H ¼
XN

i¼1

XN=2

r¼1

ð$1Þr$1JrSi & Siþr; Jr > 0 (2)

was studied in [19]. With Jr ¼ 1=r!, a quantum phase
transition from the critical state for !> !c to a Néel state
for !< !c was observed, with !c ! 2:2. Here we use
a slightly different model, with Jr ¼ 1=r! for odd r but
Jr ¼ 0 for even r, to make the system amenable to QMC
simulations in the valence-bond basis [13]. We choose
! ¼ 3=2, for which the system is Néel ordered.

To demonstrate the ground states of interest—VBS,
critical, and Néel—in Fig. 1 we plot the spin and dimer
correlation functions, defined by

CðrÞ ¼ hSi & Siþri; (3)

DðrÞ ¼ hðSi & Siþ1ÞðSiþr & Siþ1þrÞi; (4)

and computed using the QMC method discussed below.
We multiply CðrÞ by ð$1Þr to cancel the signs of the

correlations and graph ð$1Þr½DðrÞ $Dðrþ 1Þ), which
for large r can be regarded as the VBS order parameter.
QMC method.—The valence-bond QMC algorithm and

its generalizations to S > 0 states have been discussed in
several papers [13–15,20]. Here we review key aspects of
the basis and the form of the generated ground states.
Acting with a high power of the Hamiltonian Hm on a

trial state j!ti, with H written as a sum of singlet projec-
tors (individual ones and products of three, for J and Q
interactions, respectively), the ground-state normalization
h!0j!0i is sampled (for m large enough for Hmj!ti to be
completely dominated by j!0i). In an S ¼ 0 state for even
N, the states are expressed as superpositions of bipartite
valence-bond states jV!i, i.e., products of N=2 singlets

ða; bÞ ¼ ð"a#b $ #b"aÞ=
ffiffiffi
2

p
, where a and b are sites on sub-

lattice A and B, respectively. We use trial states of the
amplitude-product form [21].
The valence-bond basis is nonorthogonal, and the nor-

malization of the projected ground state is therefore of the
form h!0j!0i ¼

P
!"f"f!hV"jV!i, where f"; f! are not

known explicitly. Implicitly, the probability of generating a
pair of states is PðV!; V"Þ ¼ f"f!hV"jV!i. The overlap

hV"jV!i ¼ 2N0$N=2, whereN0 is the number of loops in the
transition graph of the two states. Figure 2(a) shows a case
with N0 ¼ 1. Matrix elements of the form hV"jAjV!i for
many observables A of interest depend on the loop struc-
ture of the transition graph [21,22].
For S > 0 and magnetizationmz ¼ S the states have 2mz

unpaired " spins and ðN $ 2mzÞ=2 singlet bonds (as dis-
cussed, e.g., in [14,15]). For odd N, which we use for S ¼
1=2, the system is in principle frustrated by periodic
boundaries. This is a finite-size effect, however, which
vanishes when N ! 1 (at least for observables probing
distances r * N). The QMC loop updates [20] automati-
cally exclude frustrated negative-sign configurations,
and this should, thus, be the most rapid way to approach
N ¼ 1. Configurations for S ¼ 1=2 and S ¼ 1 states are
illustrated in Figs. 2(b) and 2(c). We note that the valence-
bond basis with two unpaired spins was used in a pioneer-
ing variational study on spinon deconfinement in a VBS
state of a 1D frustrated model [1].
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FIG. 1 (color online). Spin (a) and dimer (b) correlations of
systems with N ¼ 1024 spins. Results for the J-Q3 model in the
VBS phase (J ¼ 0, g ¼ 4; 1) and at criticality (gc) are shown
along with the behavior in the Néel state of the long-range model
with ! ¼ 3=2. The curves in (a) are fits to the form / e$r=#

(with # ! 4 at J ¼ 0). The straight lines at the gc data show the
expected +1=r critical behavior [27].

FIG. 2 (color online). Illustration of the basis for states with
(a) S ¼ 0 (even N), (b) S ¼ 1=2 (odd N), and (c) S ¼ 1 (even
N). The bonds and unpaired spins of the bra and ket states are
shown below and above the line of sites, respectively.
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Recall extended VBS basis for S=1 excitation

f̃ (dL1/n,L1/n'–1/n,L–w). If f̃ (d = 0) is constantwhen
L → 1, then L1/n'–1/n acts like just another ir-
relevant field, as in the standard scenario for dan-
gerously irrelevant perturbations in classical clock
models (31). Our proposal is a different large-L
limit of Eq. 2, controlled by y = dL1/n', which leads
to concrete predictions of scaling anomalies. In
the case of the stiffness, the correct thermody-
namic limit is obtained with ñ ¼ n0 and k = zn if
f(x,y,L–w)º yzn for largeL. Then rs(d =0)º L–zn/n',
which we can also obtain with ñ ¼ n and f̃ º
Lz(1–n/n') for d → 0. A function f̃ behaving as a
power ofLwas implicitly suggested in (19), though
with no specific form.
This alternative scaling behavior corresponds

to xº (x') n/n' saturating at xº L n/n' when x'→ L
upon approaching the critical point, in contrast
to the standard scenario in which x grows until it
also reaches L (32). The criticality at distances r <
Ln/n' is conventional, whereas r> Ln/n' is governed
by the unconventional power laws. Different be-
haviors for r ≪ L and r ≈ L were observed in a
recent loop-model study (24), and a dangerously
irrelevant field was proposed as a possible expla-
nation, but with no quantitative predictions of
the kind offered by our approach. The anomalous
scaling law controlled by n/n', which we confirm
numerically below, is an unexpected feature of
DQCphysics andmay also apply to other systems
with two divergent lengths.
The J-Qmodel (15) for spins S = 1/2 is defined

using singlet projectors (Pij = 1/4 – Si · Sj) as

H ¼ −J
X

hiji

Pij − Q
X

hijkli

PijPkl ð3Þ

where hiji denotes nearest-neighbor sites on a
periodic square lattice with L2 sites, and ij and kl
in hijkliform the horizontal and vertical edges of
2 × 2 plaquettes. The Hamiltonian H has all sym-
metries of the square lattice, and the VBS ground
state for g= J/Q< gc (with gc≈ 0.045) is columnar,
breaking the translational and 90° rotational sym-
metries spontaneously. The Néel state for g > gc
breaks the spin rotation symmetry.
Although we have argued that the asymptotic

L→1 behavior when d ≠ 0 in Eq. 2 is controlled
by the second argument of f, the critical finite-
size scaling close to d = 0 (when dL1/n is of order
1) can still be governed by the first argument (32).
Wewill demonstrate that, depending on the quan-
tity, either dL1/n or dL1/n' is the relevant argument,
and, therefore, n and n' can be extracted using
single-parameter scaling. We will first consider
dimensionless quantities, corresponding to k =
0 in Eq. 2, before testing the anomalous powers
of L in other quantities.
If the effective one-parameter scaling holds

close to gc, then Eq. 2 implies thatA(g,L1) =A(g,L2)
at some point g that we denote g*(L1,L2), and a
crossing-point analysis (Fisher’s phenomenolog-
ical renormalization) can be performed (29). For a
k = 0 quantity, if L1 = L and L2 = rL with r >
1 being constant, a Taylor expansion of f shows
that the crossing points g*(L) approach gc as
g*(L) – gcº L–(1/n+w), if n is the relevant exponent
(which we assume here for definiteness). A* =

A(g*) approaches its limit Ac as A*(L) – Ac º
L–w, and it can also be shown that the quantity

1
n$ðLÞ

¼ 1
lnðrÞ

ln
dAðg; rLÞ=dg
dAðg;LÞ=dg

! "

g¼g$
ð4Þ

converges to 1/n at the rate L–w. In practice,
simulation data can be generated on a grid of
points close to the crossing values, with poly-
nomials used for interpolation and derivatives.
We present details and tests of such a scheme for
the Ising model in (32).

In the S = 1 sector, spinon physics can be
studiedwith projector QMC simulations in a basis
of valence bonds (singlet pairs) and two unpaired
spins (33, 34). Previously, the size of the spinon
bound state in the J-Qmodel was extrapolated to
the thermodynamic limit (35), but the results were
inconclusive as to the rate of divergence upon
approaching the critical point. Here we consider
the critical finite-size behavior. We define the size
L of the spinon pair by using the strings connect-
ing theunpaired spins in valence-bond simulations
(Fig. 1) (32–34).
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Fig. 1. Illustration of spinons. Shown is a QMC transition graph (33, 34) representing a sampled overlap
hyleftjyrighti of S = 1 states with two strings (spinons, shown in red and green) in a background of valence-
bond loops. Arches above and below the plane represent the states jyrighti and hyleftj, respectively.
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Fig. 2. (L,2L) crossing-point analysis. The size of the spinon bound state and the Binder ratio were
used to generate the left and right panels, respectively. The monotonic quantities were fitted with
simple power-law corrections; two additional subleading corrections were included in the fits of the non-
monotonic quantities.
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Critical J-Q2 model

The spinons can be considered as
extended objects - strings in the 
transition graphs
- define mean distance 𝛬 
- d𝛬/dg for (L,2L) defines exponent

Exponent different from correlation-length
exponent: ⌫0 = 0.58± 0.02


