2D: Deconfined quantum criticality
Senthil, Vishwanath, Balents, Sachdev, Fisher (Science 2004)

(+ many previous works; Read & Sachdev, Sachdev & Murthy, Motrunich & Vishwanath....)
Continuous AF - VBS transition at T=0
- would be violation of Landau rule

- first-order would normally be expected
- role of topological defects
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Numerical (QMC) tests using J-Q models
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The “J-Q” model with two projectors is (Sandvik, PRL 2007)
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- Has Néel-VBS transition, appears to be continuous ==

* Not a realistic microscopic model for materials - A\
- “Designer Hamiltonian” for VBS physics and AF-VBS transmon

e Unusual scaling properties [Shao, Guo, Sandvik (Science 2016)]




SSE and projector methods can be easily generalized for J-Q

J- and Q-vertices through which loops enter and exit at
the individual 2-spin diagonal and off-diagonal parts
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The 1D J-Q model has critical-dimerized transition of exactly
the same kind as in the J1-J2 Heisenberg chain

2D J-Q models with first-order and (apparently) continuous
transitions (deconfined quantum criticality) can be constructed

Continuous
transitions

f riJ | X first-order transition




Operator coding for J-Q models

Slide by Ying Tang, Trieste School 2012
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Linked vertex list and loop update:
- direct generaization of data structure and procedure for Heisenberg




Related 1D system: Y. Tang and AWS, PRL (2011)
VBS state in J-Q chains S. Sanyal, A. Banerjee, and K. Damle, PRB (2011)
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Heisenberg chain with frustrated interactions
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For the special point J2/J1=0.5, this model has an exact solution
Singlet-product states
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It is not hard to show that these are

eigenstates of H (3,0} = (Tale— Lals)/ /2

The system has this kind of order (with fluctuations, no exact solution)

for all Jo/J1>0.2411..... This is a quantum phase transition between
* a critical state

 a valence-bond-solid (VBS) state
The symmetry is not broken for finite N
* the ground state is a superposition of the two ordered states
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J-Q chains: VBS with more fluctuations and critical state

J/Q = 0.5 J/Q = (J/Q)c ~ 6
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Extended valence-bond basis for S>0 states

Consider S%=S

- for even N spins: N/2-S bonds, 2S unpaired “up” spins
- for odd: (N-2S)/2 bonds, 2S unpaired spins

- transition graph has 2S open strings ¢ » ¢ T &

=1 @ <Vp|Vo>
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Overlaps and matrix elements involve loops and strings
- very simple generalizations of the S=0 case
- loops have 2 states, strings have 1 state




Spinons in 1D: a single spinon in odd-N J-Q3 model
- one spin (spinon) doesn’t belong to any bond
- bra and ket spinons at different locations; non-orthogonality

The distance
between the @M\‘\M“M@
bra and ket W 7,
spins can be §§
used to define <
the size of a §
spinon =
- the spinon =
is not just the =
unpaired spin %
“




Two spinons in 1D VBS are deconfined (no confining potential)
- 2 separated (deconfined) sets of bra/ket spinons
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Phase transition in the 2D J-Q model AFM

Staggered magnetization % ﬁ
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Us = 1, Ug = 0in AFM phase Behaviors of crossing pomts — exponents

Us = 0, Us = 1in VBS phase Competing scenario:

Phenomenological two-length scaling - weak first-order transition
[Shao, Guo, Sandvik (Science 2016)] - non-unitary conformal field theory




Exponent v: crossing-point analysis
H. Shao, W. Guo, A. W. Sandvik (Science 2016)

Binder ratio of the AF order parameter
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- Crossing of Ri(g,L), R1(g,rL), g=J/Q,
g*(L), analyze size dependence (using r=2)
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- Small correction exponent; w = 0.5
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Improved results
[Sandvik & Zhao, Chin. Phys. Lett. 2020]

1.0
Binder cumulants give critical point
- 0.8
- slopes used to define 1/v
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Mutual consistency between two ways of calculating 1/v




The VBS order parameter
Dimer order parameter EE[
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Collect histograms P(Dx,Dy) with
valence-bond basis QMC :
Two possible types of order patterns E

distinguished by histograms ; | | EE
plaquette

columnar
® ° ® B E
@) @) Finite-size fluctuations
- amplitude
¢ 9 o - angular




Analogy with classical 3D clock model
H=-J Z cos(©; —0,) —h Z cos qO©;  (soft clock model)
(25) U
H=-J) cos(©;—O;) qclock angles (hard clock model)
(i7)
Standard order parameter (mx,my)

s P
T ~ ;cos(@i) My = N ?:lem(@i) — global angle 0

=

Probability distribution P(myx,my) shows cross-over from U(1) to Zq for T<T.
Can be quantified with
“angular order parameter”:

e /O el

@q > 0 only if g-fold anisotropy

Zg, L=4 Zg, L=32

Finite-size scaling of @q can be
used to extract length scale &> &

and associated scaling dimension yq
Lou, Balents, Sandvik, PRL 2007 [Lecture by Hui Shao]




Emergent U(1) symmetry of columnar VBS order
Realize stronger VBS order with J-Qz model

3 T i J-Qs model
ool Bl = == n
= o S e e ae

Lou, Sandvik, Kawashima, PRB (2009),
Sandvik, PRB (2012)

max

Strong columnar VBS when J/Qz=0

J-Q2 model with J/Q2=0

- weak columnar VBS

- very large angular fluctuations
- emergent U(1) symmetry
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DQCP: In the field theory the VBS corresponds to condensation of topological
defects (quadrupoled monopoles on square lattice)

Analogy with 3D clock models: The topological
defects should be dangerously irrelevant

Fugacity of topological defects A4

Graph from Matthew Fisher ¢ VBS

I

AF DQCP U(1) SL

Ratio v/v’ plays important
in finite-size scaling
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The simulations take a long time to rotate the VBS angle

L=128: 10°> measurements require > 1 day of computation

building 100x10°> measurements 10°> measurements



Conventional first-order transition

Staircase J-Qs model [Sen, Sandvik, PRB 2010]

Binder cumulant of AFM order parameter
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Negative Cumulant peak is a sign of

No
emergent
symmetry
seen in
P(DX’DY)

phase coexistence; first-order transition




Spinons in the 2D J-Q model [Shao, Guo, Sandvik, Science 2016]
i k
Recall extended VBS basis for S=1 excitation L 3]_ 51'\9 <VBG.DIVa(i,k)>

:_ From 2-spinon distance

The spinons can be considered as
extended objects - strings in the
transition graphs

- define mean distance A

- dA/dg for (L,2L) defines exponent

1/v'*

Exponent different from correlation-length
exponent: v/ = 0.58 + 0.02
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