
Domain walls in the VBS

3. Results
We chose a basis state |ψ0⟩ = |Vr⟩ as the trial state and consider the cases that |Vr⟩ in different
winding number sectors W . The detailed definition of the winding number of a VB state can
be found, e.g., in Refs. [3, 2]. In the PQMC simulations, besides the energy, we also sample the
probability, P (W ), of a projected state in the topological sector W = (wx, wy). This is done by
calculating the winding number of each projected VBs Pk|Vr⟩, with Pk a operator string with
length m generated in the MC processes.

In the case that the trial state is a VBs in the winding number sector W = (0, 0), the
ground columnar VBS state will be projected out quickly, i.e., within a small m/N , which can
be defined as a projecting ”time” (closely related to imaginary time [13]). This is indicated by
the convergence of the ground state energy density e0(L) for a system with linear size L.

Now turn to the cases that the trial state is in the nontrivial winding number sector
W ̸= (0, 0). For small systems, the columnar VBS state is again projected out after some
projection time m/N . This is indicated by the convergence of the energy density e(L) to the
ground state value e0(L). Meanwhile, the probability P (W ) decreases (to 0 for L → ∞).
However, as the system size increases, the projection time m/N needs to grow as well in order
for the ground state to be obtained. In the thermodynamic limit, we expect that the system
will stay in the sector with the initial winding number W , and then it is also plausible that the
energy of the system will converges to a value eW > e0 corresponding to the lowest excited state
within the sector W .

To demonstrate such behavior, we introduce the energy density eW (L) of states in the winding
number sector W , which is obtained by only sampling those states in the sector W . Figure 2
shows the ”time evolution” of the probability P (W ) for the system staying in the original winding
number sector W = (0, 0),W = (1, 0), and W = (2, 0) as a function of m/L2, respectively, for a
system with linear size L = 96 (lower panel). The corresponding energy density eW (L) converges
to the values which are higher than e0(L), if W ̸= 0 (upper panel).
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Figure 2. The probability P (W ) and
the energy density eW (L) as functions of
time m/N (projector power rescaled by
the system volume).

Figure 3. Snapshots of ⟨Bα(r)⟩ for a periodic
system with winding number W = (1, 0), in which
a 2π domain wall (four separate π/2 domain walls)
is formed (upper panel) and for an open system
with appropriate boundary conditions in which a π
domain wall is forced (lower panel).

We now study the reason of the energy gap between a system in a nontrivial topological
sector and in the W = 0 ground state. It is well known that the ground state of the J-Q3 is the
columnar VBS. The VBS state can be detected by the columnar VBS order parameter, which
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The domain-wall energy per unit length of a VB solid can
be expressed as

κ = K

"
, (14)

where K is a stiffness constant describing the energy cost of
a twist of the VB order parameter and " is the width of the
region over which this twist is distributed. In the theory of
deconfined quantum-criticality [49], the VB stiffness in the
thermodynamic limit scales as K ∼ ξ−1 ∼ (q − qc)−ν upon
approaching the critical point, while " must saturate at the
domain-wall thickness discussed above. Thus, in systems with
domain walls imposed through winding numbers, one can
expect that

κ ∼ 1
ξ

1
ξVB

∼ (q − qc)ν
′+ν . (15)

In standard finite-size scaling procedures at a critical
point [53], to relate the behavior of a quantity in the thermody-
namic limit as a critical point is approached to the behavior as
a function of the system size exactly at the critical point, one
simply replaces the correlation length by the system length L.
In the present case, we can argue that it is ξVB that should be
replaced by L, since this length scale is the one reaching L
first when qc is approached for finite L. We then obtain

κ(qc) ∼ L−(1+ν/ν ′), (16)

and, therefore, with the exponent b defined in the analysis of
our results above (shown in Fig. 8) we have b = 1 + ν/ν ′.
Thus, we have extracted a rather precise estimate of the
exponent ratio ν/ν ′ ≈ 0.80 ± 0.01, where the error bar is one
standard deviation of the slope of the fitted line in Fig. 8 (and
we estimate that the error due to very small deviations of q =
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FIG. 8. (Color online) VB domain-wall energy per unit length as
a function of the inverse system size graphed on a log-log scale.
In the case of the strongly ordered VB solid (q = 1), the energy
computed with two different inverse temperatures β(L) converges
to the same nonzero value as L → ∞, while at the critical point
(q = 0.6 ≈ qc) convergence of the energy for all L with increasing β

is demonstrated (the same also holds true at q = 1 if still larger β is
used). The converged energy decays as a power-law form ∼L−b. The
fitted line shown here has slope b = 1.80 ± 0.01.

2 2.5 3 3.5 4
-2

-1

0

1

2

ln
(τ

1/
2)

 wx=1     (α=1.2)
 wx=L/2 (α=0.75)

ln (L)

FIG. 9. (Color online) Size dependence of the imaginary-time
lifetime at qc of states with winding numbers wx = 1 and wx =
L/2, using initial states of the type in Fig. 4(b) and its wx > 1
generalization. The lines drawn through the large-L points have slopes
α = 1.2 and α = 0.75 for wx = 1 and wx = L/2, respectively.

0.6 from the true qc is smaller than the quoted statistical error).
The only other estimate of this exponent ratio that we are aware
of is ν ′/ν = 1.20 ± 0.05, or ν/ν ′ = 0.83 ± 0.04, from an anal-
ysis of the emergent U(1) symmetry of the VB order param-
eter [14]. It is gratifying that these two estimates obtained in
completely different ways are fully consistent with each other.

Now consider the lifetime in imaginary time, calculated as
in Sec. III. Figure 9 shows results for wx = 1 as well as the
extreme case of wx = L/2. We find τ1/2 ∼ L1.2 for wx = 1 and
τ1/2 ∼ L0.75 for wx = L/2 (with error bars on the exponents of
about 10%). In the effective real-time model, with the critical
domain-wall energy scaling as EW − EW−1 ∼ κL ∼ L1−b,
the form (13) of the decay rate derived in the VBS (where
the energy difference scales as L) becomes

v ∼ Le−2L1−b+α

. (17)

At wx = 1 the exponent 1 − b + α remains positive with the
values of α and b obtained above, and, thus, the transition
rate out of the original wx sector in real time is exponentially
small. It is interesting that for wx = L/2 our results suggest
1 − b + α ≈ 0 (within estimated error bars) and if this
exponent indeed vanishes, and if the two-state model is to
be taken seriously (which perhaps is asking too much of it in
this extreme case), then the high-winding states would actually
have a shorter than exponentially long lifetime at the critical
point.

Going to coupling ratio q < qc, entering the antiferro-
magnetic state of the J − Q model, the winding number
sectors should become completely unstable. Indeed, here the
energy above the ground state computed with different β = aL
quickly decays to 0 and, unlike the results at qc in Fig. 8, it is
not possible to discern any converged functional form.

VI. SUMMARY AND DISCUSSION

We have demonstrated a mechanism of decay of do-
main walls in a VB solid state of a quantum spin system
through fluctuations of the topological winding number which
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Close to a DQCP, the thickness of the domain wall grows according to
the U(1) length scale: ⇠0 / ⇠⌫

0/⌫



0.1 1

1/L

10
-3

10
-2

10
-1

κ

0 0.1 0.2 1/L

1.4

1.6

1.8

2.0

ε

Figure S7: Scaling of the domain-wall energy per unit area in the 3D classical q = 6 clock model
at its critical point (Tc/J ⇡ 2.202). The inset shows the running exponent obtained from data
pairs (L) and (2L) as ✏(L) = ln[(L)/(2L)]/ ln(2) and a fit to the form ✏(L) = 2 � aL�!

with ! ⇡ 0.77.

2.3 3D clock model
The existence of two length scales in the DQC theory relies heavily (3,4) on an analogy with the
classical 3D clock model, where the standard XY model is deformed by an external potential
h cos (q⇥i) for all the angles ⇥i. This term is known to act as a dangerously-irrelevant perturba-
tion, leading to a domain-wall thickness ⇠0 > ⇠. It is therefore natural to also test the scaling of
the domain-wall energy in this case. Here we use the standard XY interaction between nearest
neighbors on the 3D simple cubic lattice

H
XY

= �J
X

hiji
cos(⇥i �⇥j), (S31)

where the angles are constrained to the q clock angles, ⇥i = n2⇡/q, n = 0, 1, . . . , q � 1. The
hard constraint is equivalent to the limit h/J ! 1 with the cosine perturbation.

The exponent ⌫ 0 should be independent of h/J (including the fully-constrained limit consid-
ered here) but depends on q, diverging as q ! 1. There has been some controversy regarding
methods to compute the exponent in MC simulations, as summarized in the recent Ref. (31),
but for small q several calculations are nevertheless in good agreement with each other and we
can use them as reference points.

In order for the exponent ratio ⌫/⌫ 0 to be significantly different from one we here use q = 6,
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Figure S4: A domain wall in a generic 2D system where a discrete order parameter is locked at
different values (directions) to the left and right and the twist between the two directions takes
place over a region (domain-wall) of thickness ⇠0.

not strictly fixed at some location, and, e.g., in an MC simulation the local order parameter will
not detect the intrinsic width of a domain wall, because averaging is performed over all locations
of the wall. Therefore, other means have to be employed to detect the intrinsic domain-wall
thickness, e.g., using suitably defined correlation functions.

As we showed in the main text, the length scale ⇠0 is conveniently present in the J-Q model
in the finite-size scaling of the energy density  of a VBS domain wall. Here, in Sec. 2.1 we
derive the scaling form of , in the thermodynamic limit and for finite system size, using a
simple Ansatz generalizing the treatment by Fisher et al. (1) in a different context (considered
further in Sec. 3) to the case of discrete symmetry breaking with two divergent length scales.
The formalism applies both to classical and quantum systems. We present our MC procedures
to compute  at classical (thermal) phase transitions, using the 2D Ising model as a concrete
example in Sec. 2.2. We also present results for the 3D classical six-state clock model at its
critical temperature in Sec. 2.3, before describing the details of the QMC calculations of  for
the J-Q model at T = 0 in Sec. 2.4.

2.1 Scaling forms
Let us first consider the case of a d-dimensional system with single divergent length scale ⇠ /
��⌫ . Following Fisher et al. (1), we consider the singular part of the free-energy density, which
we can write for a classical system at finite temperature or a quantum system at T = 0 (in which
case the free energy is just the ground state energy) as

fs(�, L) / �⌫(d+z)Y (⇠/L) / ⇠�(d+z)Y (⇠/L), (S18)

where formally the dynamic exponent z = 0 for a classical system. Introducing a domain wall,
the free-energy difference with respect to the system without domain wall should scale in a
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similar way but with a different size-dependent function (1);

�fs(�, L) / ⇠�(d+z)
˜Y (⇠/L). (S19)

This density should be understood as a quantity averaged over the inhomogeneous system (or,
equivalently, in a finite system the domain wall location is not fixed and all properties are aver-
ages over all locations of the domain wall), and the total free-energy difference is

�Fs(�, L) / ⇠�(d+z)
˜Y (⇠/L)Ld, (S20)

where Ld is the volume of the system.
We can also write down a different expression for the free-energy difference, by explicitly

considering the cost of twisting the order parameter. If the domain wall has width ⇠ and the
total twist of the order parameter across the wall is ��, then the cost per lattice link inside the
wall is ⇢(��/⇠)2, which also defines the stiffness constant ⇢. Outside the wall region the local
energy cost vanishes, and, since the total volume occupied by the domain wall is / ⇠Ld�1 we
have

�Fs(�, L) / ⇢(��)2⇠�1Ld�1. (S21)

Consistency in the L dependence between this expression and Eq. (S20) requires that the scaling
function has the form ˜Y / ⇠/L, and therefore

�Fs(�, L) / ⇠�(d+z�1)Ld�1. (S22)

The domain wall energy per generalized cross-section area Ld�1 of the wall (its length for d = 2,
area for d = 3, etc.) is then

 =

�Fs

Ld�1

/ 1

⇠d+z�1

, (S23)

which no longer has any L dependence and, thus, represents the behavior in the thermodynamic
limit. We can also read off the scaling of the stiffness constant,

⇢ / ⇠�(d+z�2) / �⌫(d+z�2), (S24)

by comparing Eqs. (S21). and (S22).
Since we have written all expressions in terms of the correlation length, we can now switch

to finite-size scaling at a critical point by simply making the substitution ⇠ ! L. For the domain
wall energy (S23) of interest here we obtain

(L) / L�(d+z�1). (S25)
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Free-energy density

In conventional systems

ξ’ = ξ

 ⇠ L�✏

✏ =p(L) = ln[(L)/(2L)]/ ln(2) ! 1 + ⌫/⌫0

d+ z � 1 = 3 + 0� 1 = 2

Scaling from (L,2L) pairs

Expected behavior confirmed



Two kinds of VBS domain walls can be

imposed in open-boundary systems

� = ⇡/2

� = ⇡
�!

 �

Ambiguity in finite-size scaling:

option 1) ξ  → L, ξ’  → Lν’/ν : κ ~ L-(1+ν’/ν) 

option 2) ξ  → L, ξ’  → L:      κ ~ L-2

option 3) ξ’ → L, ξ   → Lν/ν’:  κ ~ L-(1+ν/ν’)

Results show option 3 (exponent < 2): ν/v’ ≈ 0.715 +/- 0.015

3. Results
We chose a basis state |ψ0⟩ = |Vr⟩ as the trial state and consider the cases that |Vr⟩ in different
winding number sectors W . The detailed definition of the winding number of a VB state can
be found, e.g., in Refs. [3, 2]. In the PQMC simulations, besides the energy, we also sample the
probability, P (W ), of a projected state in the topological sector W = (wx, wy). This is done by
calculating the winding number of each projected VBs Pk|Vr⟩, with Pk a operator string with
length m generated in the MC processes.

In the case that the trial state is a VBs in the winding number sector W = (0, 0), the
ground columnar VBS state will be projected out quickly, i.e., within a small m/N , which can
be defined as a projecting ”time” (closely related to imaginary time [13]). This is indicated by
the convergence of the ground state energy density e0(L) for a system with linear size L.

Now turn to the cases that the trial state is in the nontrivial winding number sector
W ̸= (0, 0). For small systems, the columnar VBS state is again projected out after some
projection time m/N . This is indicated by the convergence of the energy density e(L) to the
ground state value e0(L). Meanwhile, the probability P (W ) decreases (to 0 for L → ∞).
However, as the system size increases, the projection time m/N needs to grow as well in order
for the ground state to be obtained. In the thermodynamic limit, we expect that the system
will stay in the sector with the initial winding number W , and then it is also plausible that the
energy of the system will converges to a value eW > e0 corresponding to the lowest excited state
within the sector W .

To demonstrate such behavior, we introduce the energy density eW (L) of states in the winding
number sector W , which is obtained by only sampling those states in the sector W . Figure 2
shows the ”time evolution” of the probability P (W ) for the system staying in the original winding
number sector W = (0, 0),W = (1, 0), and W = (2, 0) as a function of m/L2, respectively, for a
system with linear size L = 96 (lower panel). The corresponding energy density eW (L) converges
to the values which are higher than e0(L), if W ̸= 0 (upper panel).
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Figure 2. The probability P (W ) and
the energy density eW (L) as functions of
time m/N (projector power rescaled by
the system volume).

Figure 3. Snapshots of ⟨Bα(r)⟩ for a periodic
system with winding number W = (1, 0), in which
a 2π domain wall (four separate π/2 domain walls)
is formed (upper panel) and for an open system
with appropriate boundary conditions in which a π
domain wall is forced (lower panel).

We now study the reason of the energy gap between a system in a nontrivial topological
sector and in the W = 0 ground state. It is well known that the ground state of the J-Q3 is the
columnar VBS. The VBS state can be detected by the columnar VBS order parameter, which
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- π wall splits into two π/2 walls

Domain walls in critical J-Q3 model

 ⇠ ⇠�1⇠0�1

Energy density can be shown to be

(Senthil et al.)

p(L) = ln[(L)/(2L)]/ ln(2) ! 1 + ⌫/⌫0



Two divergent lengths tuned by one parameter:
Finite-size scaling of some quantity A. Thermodynamic limit: A / �

A(�, L) = L�/⌫f(�L1/⌫ , �L1/⌫0
)

Conventional scenario

f(�L1/⌫ , �L1/⌫0
) ! (�L1/⌫)When L→∞:

Alternative scenario
A(�, L) = L�/⌫0

f(�L1/⌫ , �L1/⌫0
)

f(�L1/⌫ , �L1/⌫0
) ! (�L1/⌫0

)When L→∞:

The first scenario has so far been implicitly assumed

- can the drifts be explained using 𝜈 ≈ 0.45, 𝜈/𝜈’ ≈ 0.7? 

Two-length scaling hypothesis [Shao, Guo, Sandvik (Science 2016)]

Example: Spin stiffness: κ=ν(z+d-2). At criticality:

⇢s / L�(z+d�2) ⇢s / L�(z+d�2)⌫/⌫0
or

At the critical point:Equivalent view: A = ⇠�/⌫

Replace 𝜉 by L: A = L�/⌫ A = L�/⌫0
or, replace 𝜉’ by L, 𝜉 by L𝜈/𝜈’:  

⇠ ⇠ ��⌫ , ⇠0 ⇠ ��⌫0



If L(g) º x'(g) when L →1, then L(gc) º L
follows from our proposed limit of Eq. 2. If Lman-
ifestly probes only the longer length scale in a
finite system, which we will confirm below, then n'
is the exponent controlling the crossing points of
L/L. Data and fits are presented in Fig. 2 (left side).
Unlike other quantities that have been used pre-
viously to extract the critical point (18), the drift of
g* with L is monotonic in this case, and the
convergence is rapid. All L ≥ 16 points are con-
sistent with the expected power-law correction,
with 1/n' + w ≈ 3.0 and gc = 0.04468(4), where the
number in parenthesis indicates the statistical un-
certainty (one standard deviation) in the preced-
ing digit. The critical point agrees with earlier
estimates (18). The scaled crossing value L*/L also
clearly converges, and a slope analysis according
to Eq. 4 gives n' = 0.585(18).
In Fig. 2 (right side), we show the analysis of a

Binder ratio, defined with the z component of the
sublatticemagnetizationmszasR1 ¼ hm2

szi=hjmsz ji2
and computed at T = 1/L as in (18). In this case,
the nonmonotonic behavior of the crossing points
necessitates several scaling corrections, unless
only the largest sizes are used. In either case, the
L→1 behavior of g* is fully consistent with the
gc obtained from L/L. R1(gc) has an uncertainty
of over 1% because of the small value of the cor-
rection exponent, w ≈ 0.4 to 0.5. The slope es-
timator (Eq. 4) of the exponent 1/n is monotonic
and requires only a single L–w correction, also
with a small exponent w ≈ 0.45. The extrapolated
exponent n = 0.446(8) is close to the value ob-
tained recently for the loop model (24).
The above results support a nontrivial decon-

finement process in which the size of the bound
state diverges faster than the conventional cor-
relation length. However, in the DQC theory, the
fundamental longer length scale x' is the thick-
ness of a VBS domain wall. It can be extracted
from the domain-wall energy per unit length k,
which in the thermodynamic limit should scale
as k º (xx')–1 (4). In (32), we re-derive this form
using a two-length scaling ansatz and discuss
simulations of domain walls in a 3D clock model

and the J-Q model. At criticality in the conven-
tional scenario (exemplified by the clock model),
both x and x' saturate at L and kº L–2. For the
J-Qmodel with large L, we instead find kº L–a

with a = 1.715(15) (Fig. 3A). Our interpretation of
this unconventional scaling is that when x' sat-
urates at L, x also stops growing and remains at
xº Ln/n'. Thus, kº L–(1+n/n') with n/n' = a – 1 =
0.715(15),which agrees reasonablywell with n/n' =
0.76(3), obtained from the quantities in Fig. 2.
The large error bar on the latter ratio leaves open
the possibility that the spinon confinement ex-
ponent is between n and the domain-wall ex-
ponent n' (4).
We also calculated the critical spin stiffness rs

and the susceptibility c(k = 2p/L) for the smallest
wavenumber k at T= 1/L. Conventional quantum
critical scaling (2) dictates that both quantities
should decay with L as 1/L. Instead, panels B and
C in Fig. 3 demonstrate slower decays, with Lrs
and Lc being weakly divergent, as has also been
found in earlier works (17–19, 21, 30). The un-
conventional limit of the scaling function in Eq. 2
requiresLrs andLc to divergewithL asL

1–n/n'. The
behaviors are consistent with n/n' ≈ 0.715, ex-
tracted from k and a correction º L–w with a
small w (close to the correction for R1 in Fig. 2).
The mutually consistent scaling of the three quan-
tities lends strong support to a type of criticality
in which the magnetic properties are not de-
coupled from the longer VBS length scale x' for
finite L. The results are incompatible with a
first-order transition, where k→ constant,Lrs→
L, and Lc → L.
We have shown that the effects of the larger

divergent length scale x' at the Néel-VBS tran-
sition are more dramatic than those caused by
standard dangerously irrelevant perturbations
(31), and we therefore propose the term “super-
dangerous” for this case. The universality class,
in the sense of the normal critical exponents in
the thermodynamic limit at T = 0, is not affected
by such perturbations, but anomalous power laws
of the system size appear generically in finite-size
scaling. We have determined the value n/n' ≈ 0.72

for the exponent ratio governing the anomalous
scaling in the J-Q spin model.
Loop and dimermodels exhibit similar scaling

anomalies (24, 25), and it would be interesting to
test the consistency between different quantities
in thesemodels, as we have done in this study. In
simulations of the NCCP1 action (21, 26, 27), one
might not expect any effects related to the longer
DQC length scale, because themonopoles respon-
sible for the VBS condensation are not present in
the continuum theory (3). Nevertheless, there could
be some other super-dangerous operator present
(24), perhaps related to lattice regularization.
The consequences of our findings carry over

also to T > 0 quantum criticality in the ther-
modynamic limit, because 1/T is the thickness
of an equivalent system in the path integral
formulation (1, 2). Anomalous finite-T behav-
iors of the J-Q model have already been observed
(18, 30). For instance, the spin correlation length at
T > 0, which should be affected by deconfined
spinons, grows more quickly than the normally
expected form T–1, and the susceptibility vanishes
more slowly than T when T→0. The asymptotic
forms T–n'/n and Tn/n' can account for the respec-
tive behaviors (fig. S10). Thus, we find a strong
rationale to revise the experimentally most impor-
tant tenet of quantum criticality: the way that
T = 0 scaling is related to power laws in T at T > 0.
Our findings may apply to a wide range of strong-
ly correlated quantum systems with more than
one length scale and may help to resolve the mys-
teries that still surround scaling behaviors in ma-
terials such as high-Tc cuprate superconductors.
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In both channels, we observe broad continua that originate from the deconfined excitations. We further identify
several distinct spectral features of the deconfined quantum critical point, including the lower edge of the
continuum and its form factor on moving through the Brillouin zone. We provide field-theoretical and lattice
model calculations that explain the overall shapes of the computed spectra, which highlight the importance of
interactions and gauge fluctuations to explain the spectral-weight distribution. We make further comparisons
with the conventional Landau O(2) transition in a different quantum magnet, at which no signatures of fraction-
alization are observed. The distinctive spectral signatures of the deconfined quantum critical point suggest the
feasibility of its experimental detection in neutron scattering and nuclear magnetic resonance experiments.
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I. INTRODUCTION

The deconfined quantum critical point (DQCP), which
separates the Néel antiferromagnetic (AFM) and sponta-
neously dimerized valence bond solid (VBS) phases in
(2+1)D quantum magnets, was proposed as an example of
a continuous quantum phase transition outside the conven-
tional Landau-Ginzburg-Wilson (LGW) paradigm [1,2]. The
AFM and VBS order parameters both vanish continuously
and simultaneously at the DQCP. This scenario is gener-
ically not expected within the standard LGW description,
where such a case should be realizable only by fine tun-
ing two separate transitions to coincide at special multicrit-
ical points. Multiple field-theory descriptions [1–15] have
been proposed for the DQCP, which are believed to be
equivalent (or dual) to each other at low energy, including
the noncompact CP1 (NCCP1) theory [1,2] and some ver-
sions of the quantum electrodynamics (QED) and quantum
chromodynamics (QCD) theories [13,16]. In contrast to the
LGW description, which formulates the critical theory in
terms of the order parameters directly, these gauge theory
descriptions of the DQCP are formulated in terms of de-
confined degrees of freedom (fractionalized particles and
emergent gauge fields). The order parameters on either side
of the DQCP can be expressed as different compositions of
the fractionalized particles or gauge fluctuations within the
same theoretical framework. This mechanism captures the

intertwinement of the AFM and VBS orders and provides a
natural route beyond the LGW paradigm to a non-fine-tuned
quantum critical point between the two distinct symmetry-
breaking phases.

With the increasing understanding of the nature of the
DQCP ground-state phase transition, the time is now ripe to
address direct connections to experiments, where the most
detailed signatures of deconfinement can be expected in dy-
namical properties. Based on the physical picture of decon-
finement of the experimentally accessible spin excitation into
two spinons at the DQCP, a broad continuum is expected in the
spectral function. This is in sharp contrast to an LGW transi-
tion of the AFM state into a nondegenerate (trivial) quantum
paramagnet, where the spin wave (magnon) picture remains
approximately valid at the critical point (as a very sharp edge
of the critical continuum, albeit the magnon quasiparticle
weight is highly damped to zero) [17]. The aim of this paper
is to present a comprehensive numerical study of the signature
of magnon fractionalization in the dynamic spin-structure
factor S(q,ω) of a (2+1)D square-lattice spin model hosting
a DQCP, accompanied with a detailed field theory analysis of
every low-energy continuum that appears in the spectrum.

Following the DQCP proposal, intensive theoretical and
numerical efforts have been invested in the possibility of
unambiguously observing such critical points in lattice mod-
els. In the traditional frustrated quantum spin models that
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With the increasing understanding of the nature of the
DQCP ground-state phase transition, the time is now ripe to
address direct connections to experiments, where the most
detailed signatures of deconfinement can be expected in dy-
namical properties. Based on the physical picture of decon-
finement of the experimentally accessible spin excitation into
two spinons at the DQCP, a broad continuum is expected in the
spectral function. This is in sharp contrast to an LGW transi-
tion of the AFM state into a nondegenerate (trivial) quantum
paramagnet, where the spin wave (magnon) picture remains
approximately valid at the critical point (as a very sharp edge
of the critical continuum, albeit the magnon quasiparticle
weight is highly damped to zero) [17]. The aim of this paper
is to present a comprehensive numerical study of the signature
of magnon fractionalization in the dynamic spin-structure
factor S(q,ω) of a (2+1)D square-lattice spin model hosting
a DQCP, accompanied with a detailed field theory analysis of
every low-energy continuum that appears in the spectrum.

Following the DQCP proposal, intensive theoretical and
numerical efforts have been invested in the possibility of
unambiguously observing such critical points in lattice mod-
els. In the traditional frustrated quantum spin models that
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exhibit VBS phases, sign problems in quantum Monte Carlo
(QMC) simulations and other technical difficulties in methods
such as the density matrix renormalization group and tensor
product states prohibit studies of the large system sizes needed
to reliably characterize critical points. However, for generic
and universal properties, other “designer hamiltonians” [18]
can be constructed that do not suffer from QMC sign problems
but still host the desired phases. Many such studies have
pointed to the existence of the DQCP in both two-dimensional
(2D) quantum magnets [19–28] and related (through the
path integral) three-dimensional (3D) classical models
[29–32]. In these studies it has been observed, e.g., that
the order parameters have unusually large anomalous dimen-
sions [21,24,25,27,28,31], which is an important deviation
from the common 3D Wilson-Fisher fixed point. More con-
crete evidence of deconfinement has been found by directly
probing the length scale associated with the fractionalization
process [25,33] and from thermodynamics [34]. However, the
experimentally most direct signatures of a DQCP, the dynamic
spin structure factor S(q,ω), have so far not been calculated
in the case of electronic spins (while there are already some
intriguing results for an SU(3) symmetric model [35]). His-
torically, in quasi-1D systems, the experimentally observed
spinon continuum, which agrees with calculations for the
spin-1/2 Heisenberg chain, was crucial in establishing spinon
deconfinement. Indications of fractionalized magnetic exci-
tations in 2D quantum spin liquids have also been similarly
observed [36–42]. Given that S(q,ω) is detectable by multiple
experimental techniques, including inelastic neutron scatter-
ing (INS), resonant inelastic x-ray scattering (RIXS), and
nuclear magnetic resonance (NMR), identifying the distinct
signatures of fractionalization in S(q,ω) at the DQCP will
provide a useful guide to experimental searches for DQCPs in
magnetic materials. Since the qualitative features of S(q,ω)
remain the same in the entire critical “fan” extending from the
critical point to finite temperature, the dynamical signatures
proposed in our study should be robustly observed even if
the experimental parameter is slightly off the critical point.
Moreover, due to a recently investigated duality relation be-
tween the DQCP and a certain bosonic topological transitions
(BTTs) in fermion systems [13,27,28], similar dynamical
signature of fractionalization is also expected in interaction-
driven topological phase transitions. Therefore, our work also
can impact the ongoing efforts in finding experimentally ac-
cessible signatures of topological phase transitions in strongly
correlated electron systems.

In this paper, we will investigate a U(1) version of the
DQCP on the square lattice, with the easy-plane J -Q (EPJQ)
model defined by the Hamiltonian

HJQ = −J
∑

⟨ij⟩

(
Pij + !Sz

i S
z
j

)
− Q

∑

⟨ijklmn⟩
PijPklPmn, (1)

where Si denotes the spin-1/2 operator on each site i and
Pij = 1

4 − Si · Sj is the singlet-projection operator on the link
ij (between nearest-neighbor sites). The two- and six-spin
terms are both illustrated in Fig. 1(a). For ! = 0, this is the
previously studied SU(2)spin J -Q3 model [21,22,43], which
is an extension of the original J -Q model (or J -Q2 model)
[20], with two instead of three singlet projectors in the Q

AFXY DQCP VBS

EPJQ

J
i j
k l

m n
Q

q = Q
J+Q

(a)

AFXY 3D XY Columnar

EPJ1 J2

J1

J2

g = J2
J1

(b)

= 1

2
−

FIG. 1. The two lattice models considered in this paper and their
schematic phase diagrams. (a) The EPJQ model with two-spin (J )
and six-spin (Q) couplings preserve all symmetries of the square
lattice. We define the tuning parameter chosen as q = Q/(J + Q).
The antiferromagnetic XY (AFXY) phase is separated by the DQCP
at q = qc from the columnar VBS phase, which spontaneously
breaks lattice symmetries but which has significant fluctuations of
the fourfold degenerate dimer pattern close to qc, as indicated. (b)
The EPJ1J2 model, with the tuning parameter g = J2/J1. The J2 term
explicitly pins a columnar dimer pattern and drives the AFXY phase
to the spin-disordered trivial (nondegenerate) columnar singlet phase
(without spontaneous lattice symmetry breaking) through the 3DXY
transition at g = gc.

terms. With three singlet projectors, we can go further into the
VBS state while still keeping J > 0 in sign-free QMC simu-
lations. The term !Sz

i S
z
j with ! ∈ (0, 1] introduces the easy-

plane anisotropy that breaks the SU(2)spin symmetry down to
U(1)spin explicitly. It has been shown [27] that when ! = 1/2
(which is the value we will use here), the EPJQ model exhibits
a direct and continuous quantum phase transition between the
antiferromagnetic XY (AFXY) and VBS phases, as illustrated
in Fig. 1(a), realizing the easy-plane DQCP (while for larger
anisotropy, such as ! = 1, the transition becomes first-order).
The XY order parameter has a U(1)spin rotational symmetry
and the VBS order parameter exhibits an emergent U(1)VBS
symmetry as the DQCP is approached, and, as argued based
on dualities [13], the two U(1) symmetries combine to form
an emergent higher O(4) symmetry exactly at the DQCP.

To make a comparison with the EPJQ model, we will also
study an easy-plane J1-J2 (EPJ1J2) model,

HJ1J2 = J1

∑

⟨i,j⟩′
Dij + J2

∑

⟨i,j⟩′′
Dij , (2)

where Dij = Sx
i Sx

j + S
y
i S

y
j + !Sz

i S
z
j . The J1 bonds ⟨i, j ⟩′ and

the J2 bonds ⟨i, j ⟩′′ correspond to the thin black and the thick
blue bonds in Fig. 1(b), respectively. Since the Hamiltonian
explicitly breaks the lattice symmetry, with the J2 terms pin-
ning a columnar pattern of bonds with higher singlet density,
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FIG. 6. The (bare) dynamic spin structure factor S0(q, ω) of the
free fermion π -flux state.

fermionic partons fi = (fi↑, fi↓)ᵀ at each site i as

Si = 1
2
f

†
i σfi. (12)

An SU(2) gauge structure emerges in association with the
above fractionalization scheme, but at the mean-field treat-
ment we will ignore the SU(2) gauge fluctuation completely
and place the fermionic parton in the square-lattice π -
flux state [4,5,60]. Thus, we use the following mean-field
Hamiltonian

HMF =
∑

i

i(f †
i+x̂fi + (−)xf †

i+ŷfi ) + H.c., (13)

such that each plaquette hosts a π -flux for the fermionic
parton. Four Dirac fermions are obtained at low energy. The
fermionic parton dispersion is simply given by

ϵk = 2(sin2(kx ) + sin2(ky ))1/2. (14)

It is interesting to find that the lower edge of the DQCP
spectra follows this simple dispersion relation quite nicely
without any adjustable parameters beyond an overall velocity,
as shown in Figs. 5(a) and 5(c), which justifies the π -flux
state as our starting point. The upper edge of the two-parton
continuum can also be obtained from ϵk by adding up single-
parton energies. This gives a rough estimate for the energy
range of the parton continuum, which is also consistent with
the numerical observation in Figs. 5(a) and 5(c).

Given Eqs. (12) and (13), it is straightforward to calculate
the spin-spin correlation function,

Ga
0 (r i − rj , t ) =

〈
MF

∣∣eiHMFt Sa
i e−iHMFt Sb

j

∣∣MF
〉
, (15)

on the free fermion ground state |MF⟩ of the mean-field
Hamiltonian HMF. Then we can obtain the dynamic spin
susceptibility,

χa
0 (q,ω) =

∫
dt

∑

i

Ga
0 (r i , t )eiωt−iq·r i , (16)

from which we obtain the dynamic spin-structure factor,

Sa
0 (q,ω) = Imχa

0 (q,ω + i0+), (17)

graphed in Fig. 6. This spectral function was also calculated
in Ref. [35] previously. One can see that S0 already captures
the gapless continua at momenta (0, 0), (π, 0), (0,π ), and
(π,π ) in all spin channels. Because the mean-field Hamilto-
nian HMF is symmetric under SU(2)spin, there is no difference
between Sx

0 (q,ω) and Sz
0 (q,ω). The easy-plane anisotropy

only enters the parton theory starting from four-fermion in-
teractions, since it is expressed in the SO(5) symmetric tensor
representation that cannot be written down at the quadratic
level. Therefore, the anisotropy is not manifest in the mean-
field approximation, where the interaction effects are ignored.
This observation provides a natural explanation for the strik-
ingly similar spectra of Sx (q,ω) and Sz(q,ω) seen in the
numerical results in Sec. III at the DQCP, despite of the
presence of a rather large anisotropy ! = 1/2 in the EPJQ
model.

The gauge fluctuations are expected to further renormalize
the spectrum and enhance the critical fluctuations around
(π,π ), which are not taken into account in the simple mean-
field theory presented in Fig. 6. While including the gauge
interactions in the calculation is highly nontrivial and beyond
the scope of this work, we next discuss a phenomenological
model that captures the spectral weight enhancement, and
leave more extensive calculations to future work. Let us
consider modeling the interaction effect phenomenologically
by a random phase approximation (RPA) correction,

χa (q,ω) = χa
0 (q,ω)

1 + Jaχ
a
0 (q,ω)

, (18)

where a = x, y, z. The coupling Ja parametrize the strength
of the spin-spin interaction in the Sa channel. We can intro-
duce the easy-plane anisotropy simply by considering Jx =
Jy > Jz. We found that the (π,π ) fluctuation is indeed en-
hanced by the interaction Ja . The resulting RPA corrected
spectral functions are already shown in Figs. 5(b) and 5(d),
with Jx tuned to the magnetic ordering critical point and
Jz = Jx/2.1 Compared to Fig. 6, the spin spectra in Figs. 5(b)
and 5(d) are much improved by the interaction effect. Our
phenomenological study combined with the QMC-SAC result
demonstrates that the π -flux state fermionic parton with in-
teraction accounts well for the overall features of the DQCP
spectra in both Sx and Sz channels, which is consistent with
the expectations from the Nf = 2 QCD or Nf = 4 QED
theories. An interesting open problem is a systematic route to
incorporating the effects of gauge fluctuations in calculating
the spin-excitation spectrum.

V. DISCUSSION

In this work, we have demonstrated dynamical signatures
of fractionalization at the DQCP in a planar, U(1), quan-
tum magnet by computing both the in-plane and out-of-
plane dynamic spin structure factors at low temperature. By
contrasting with analogous results for a conventional LGW
critical point, we explicitly observe how fractionalization of
the critical magnon into two spinons is manifested by a
large continuum, in sharp contrast to a much less prominent
continuum due to conventional critical quantum fluctuations
at the ordinary 3DXY transition. We also discovered several

1Although such a Grose-Neveu critical point is different from the
DQCP, we only use it to provide a rough estimate of the spectral
features close to a magnetic ordered phase. We do not claim that the
criticality of DQCP can be correctly understood by our mean field +
RPA approach.
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ingly similar spectra of Sx (q,ω) and Sz(q,ω) seen in the
numerical results in Sec. III at the DQCP, despite of the
presence of a rather large anisotropy ! = 1/2 in the EPJQ
model.

The gauge fluctuations are expected to further renormalize
the spectrum and enhance the critical fluctuations around
(π,π ), which are not taken into account in the simple mean-
field theory presented in Fig. 6. While including the gauge
interactions in the calculation is highly nontrivial and beyond
the scope of this work, we next discuss a phenomenological
model that captures the spectral weight enhancement, and
leave more extensive calculations to future work. Let us
consider modeling the interaction effect phenomenologically
by a random phase approximation (RPA) correction,

χa (q,ω) = χa
0 (q,ω)

1 + Jaχ
a
0 (q,ω)

, (18)

where a = x, y, z. The coupling Ja parametrize the strength
of the spin-spin interaction in the Sa channel. We can intro-
duce the easy-plane anisotropy simply by considering Jx =
Jy > Jz. We found that the (π,π ) fluctuation is indeed en-
hanced by the interaction Ja . The resulting RPA corrected
spectral functions are already shown in Figs. 5(b) and 5(d),
with Jx tuned to the magnetic ordering critical point and
Jz = Jx/2.1 Compared to Fig. 6, the spin spectra in Figs. 5(b)
and 5(d) are much improved by the interaction effect. Our
phenomenological study combined with the QMC-SAC result
demonstrates that the π -flux state fermionic parton with in-
teraction accounts well for the overall features of the DQCP
spectra in both Sx and Sz channels, which is consistent with
the expectations from the Nf = 2 QCD or Nf = 4 QED
theories. An interesting open problem is a systematic route to
incorporating the effects of gauge fluctuations in calculating
the spin-excitation spectrum.

V. DISCUSSION

In this work, we have demonstrated dynamical signatures
of fractionalization at the DQCP in a planar, U(1), quan-
tum magnet by computing both the in-plane and out-of-
plane dynamic spin structure factors at low temperature. By
contrasting with analogous results for a conventional LGW
critical point, we explicitly observe how fractionalization of
the critical magnon into two spinons is manifested by a
large continuum, in sharp contrast to a much less prominent
continuum due to conventional critical quantum fluctuations
at the ordinary 3DXY transition. We also discovered several

1Although such a Grose-Neveu critical point is different from the
DQCP, we only use it to provide a rough estimate of the spectral
features close to a magnetic ordered phase. We do not claim that the
criticality of DQCP can be correctly understood by our mean field +
RPA approach.
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of the conserved current nx∂yvy − vy∂ynx associated with the
emergent O(4) symmetry (in the XY-VBS rotation channel),
which is a unique feature of the easy-plane DQCP. The gap-
less point (π, 0) also follows naturally, because the XY-VBS
current can decay into the nx continuum at (π,π ) and the
vy continuum at (0,π ), such that the momenta add up to
(π, 0). A similar interpretation applies to the Sz channel as
well. The only difference is that the spin-VBS current there
is not conserved, but is nevertheless still critical. The (π, 0)
continua exhibit a remarkable spatial anisotropy. On the edge
of the continua, the spectral weight is always larger along
(π, 0)-(π,π ) line and smaller along (π, 0)-(0, 0) line. This
spatial anisotropy is a signature of current-current correlation,
which originates from the nontrivial ω2 − q2

x form factor on
the numerator as given in Eqs. (8) and (9). The (0,π ) continua
will also exhibit the spatial anisotropy but with the form
factor rotated by π/2 to ω2 − q2

y . These “shadow” continua
allow us to probe the critical VBS fluctuation in the spin
excitation spectrum, which is another remarkable hallmark of
the DQCP.

As discussed in Sec. I, the spectral features uncovered here
are relatively easy to probe in INS or RIXS experiments,
hence paving way for observation of the seeming ephemeral
DQCP in real materials. These features are also robust even
if the parameter is slightly off the critical point. Our simu-
lation itself serves as a “numerical proof” of this statement.
As we measure the DQCP spectra at q = 0.6 of the EPJQ
model [not exactly at its critical point qc = 0.6197(2)], we
still observe all the low-energy spectral features consistent
with the field theory qualitatively. This demonstrates that the
dynamical signatures do not require fine-tuning and should
be easier to measure in experiments. Whereas the previous
studies of DQCP mainly focused on the critical scaling and
exponents from the theoretical perspective, these quantities
require more fine-tuning and are rather difficult to measure
in experiments. Even if the DQCP turns out to be first order
(as expected if the anisotropy is strong) or becomes unsta-
ble against other intermediate phases at low temperature, its
distinct spectral features over a large range of frequencies
can still be robustly observed above the low-energy scale
at which the potentially other transitions of phases become
manifest.

Finally, the spectra of the EPJQ model in the VBS phase
is shown in Figs. 3(c) and 3(f). Their EPJ1J2 counterpart
in the columnar singlet phase is shown in Figs. 4(c) and
4(f). All spin excitations are gapped in both Sx (q,ω) and
Sz(q,ω) for both models. For the EPJQ model, the spectra
in the VBS phase still maintain broad continua above the gap,
in contrast to the much sharper spectra of gapped magnons
in the EPJ1J2 columnar phase. This might be related to the
two-length-scale phenomena, which is inherent to the DQCP,
persisting in the VBS phase of the standard JQ model [25],
namely, the domain wall size of the VBS order may still
remain large while the spin correlation length is small. The
domain wall size of the VBS order is directly related to the
confinement length scale of the spinons [2]. This implies that,
although the spin-correlation length is finite, the confinement
length scale of the spinon can still be large, which leads to
the large continuum above the spin gap in the spin-excitation
spectrum.

FIG. 5. Comparison of the DQCP dynamic spin structure factors
between numerics [(a) Sx channel and (c) Sz channel] and theory [(b)
Sx channel and (d) Sz channel]. The color map is the same as that
in Fig. 3. The dashed curves trace out the upper and low edges of
the two-parton continuum, assuming free fermionic partons with the
π -flux state dispersion ϵk in Eq. (14). The lower edge simply follows
ϵk and the upper edge is given by the maximal two-parton excitation
energy Eq = maxk∈BZ |ϵk + ϵq−k|. The suppressed spectral weight
near (0,0) can be captured by matrix element effects.

IV. PARTON MEAN FIELD THEORY FOR
THE DQCP SPECTRA

In this section, we provide theoretical account for the over-
all shape of the dynamic spin structure factors Sx (q,ω) and
Sz(q,ω) observed at the DQCP. The easy-plane DQCP admits
several candidate field theory descriptions, including the easy-
plane NCCP1 theory [1–3], the Nf = 2 noncompact QED3
theory [6,7,9–13], and the Nf = 2 QCD3 theory [5,13] (or
its Higgs descendent Nf = 4 compact QED3 [4,6,13,15,16])
with additional anisotropy in the SO(5) symmetric tensor
representation. Although all theories are believed to provide
equivalent descriptions of the low-energy physics under pro-
posed duality relations [13], some of them are more conve-
nient to handle by mean-field treatment than others. Among
these theories, we found that the Nf = 2 QCD (or Nf = 4
QED) theory gives the best account for the overall spectral
features at the mean-field level. Because, in these theories,
both the AFM and VBS order parameters are treated on equal
footing as fermionic parton bilinears, it is already possible
to approximately capture both spin and dimer fluctuations at
the free fermion level (ignoring gauge fluctuations and local
interactions). Figure 5 shows the comparison of the dynamics
spin-structure factors between numerics and theory, based on
the parton mean-field theory. The overall features match quite
nicely. However, if similar mean-field treatment were applied
to other dual field theories such as the NCCP1 or the Nf = 2
noncompact QED3 theories, some low-energy continua that
involve gauge monopole excitations will be missing, as the
gauge fluctuation can not be captured at the mean-field level.

Let us start with the parton construction on the square
lattice [60], where the spin operator Si is fractionalized into
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FIG. 6. The (bare) dynamic spin structure factor S0(q, ω) of the
free fermion π -flux state.

fermionic partons fi = (fi↑, fi↓)ᵀ at each site i as

Si = 1
2
f

†
i σfi. (12)

An SU(2) gauge structure emerges in association with the
above fractionalization scheme, but at the mean-field treat-
ment we will ignore the SU(2) gauge fluctuation completely
and place the fermionic parton in the square-lattice π -
flux state [4,5,60]. Thus, we use the following mean-field
Hamiltonian

HMF =
∑

i

i(f †
i+x̂fi + (−)xf †

i+ŷfi ) + H.c., (13)

such that each plaquette hosts a π -flux for the fermionic
parton. Four Dirac fermions are obtained at low energy. The
fermionic parton dispersion is simply given by

ϵk = 2(sin2(kx ) + sin2(ky ))1/2. (14)

It is interesting to find that the lower edge of the DQCP
spectra follows this simple dispersion relation quite nicely
without any adjustable parameters beyond an overall velocity,
as shown in Figs. 5(a) and 5(c), which justifies the π -flux
state as our starting point. The upper edge of the two-parton
continuum can also be obtained from ϵk by adding up single-
parton energies. This gives a rough estimate for the energy
range of the parton continuum, which is also consistent with
the numerical observation in Figs. 5(a) and 5(c).

Given Eqs. (12) and (13), it is straightforward to calculate
the spin-spin correlation function,

Ga
0 (r i − rj , t ) =

〈
MF

∣∣eiHMFt Sa
i e−iHMFt Sb

j

∣∣MF
〉
, (15)

on the free fermion ground state |MF⟩ of the mean-field
Hamiltonian HMF. Then we can obtain the dynamic spin
susceptibility,

χa
0 (q,ω) =

∫
dt

∑

i

Ga
0 (r i , t )eiωt−iq·r i , (16)

from which we obtain the dynamic spin-structure factor,

Sa
0 (q,ω) = Imχa

0 (q,ω + i0+), (17)

graphed in Fig. 6. This spectral function was also calculated
in Ref. [35] previously. One can see that S0 already captures
the gapless continua at momenta (0, 0), (π, 0), (0,π ), and
(π,π ) in all spin channels. Because the mean-field Hamilto-
nian HMF is symmetric under SU(2)spin, there is no difference
between Sx

0 (q,ω) and Sz
0 (q,ω). The easy-plane anisotropy

only enters the parton theory starting from four-fermion in-
teractions, since it is expressed in the SO(5) symmetric tensor
representation that cannot be written down at the quadratic
level. Therefore, the anisotropy is not manifest in the mean-
field approximation, where the interaction effects are ignored.
This observation provides a natural explanation for the strik-
ingly similar spectra of Sx (q,ω) and Sz(q,ω) seen in the
numerical results in Sec. III at the DQCP, despite of the
presence of a rather large anisotropy ! = 1/2 in the EPJQ
model.

The gauge fluctuations are expected to further renormalize
the spectrum and enhance the critical fluctuations around
(π,π ), which are not taken into account in the simple mean-
field theory presented in Fig. 6. While including the gauge
interactions in the calculation is highly nontrivial and beyond
the scope of this work, we next discuss a phenomenological
model that captures the spectral weight enhancement, and
leave more extensive calculations to future work. Let us
consider modeling the interaction effect phenomenologically
by a random phase approximation (RPA) correction,

χa (q,ω) = χa
0 (q,ω)

1 + Jaχ
a
0 (q,ω)

, (18)

where a = x, y, z. The coupling Ja parametrize the strength
of the spin-spin interaction in the Sa channel. We can intro-
duce the easy-plane anisotropy simply by considering Jx =
Jy > Jz. We found that the (π,π ) fluctuation is indeed en-
hanced by the interaction Ja . The resulting RPA corrected
spectral functions are already shown in Figs. 5(b) and 5(d),
with Jx tuned to the magnetic ordering critical point and
Jz = Jx/2.1 Compared to Fig. 6, the spin spectra in Figs. 5(b)
and 5(d) are much improved by the interaction effect. Our
phenomenological study combined with the QMC-SAC result
demonstrates that the π -flux state fermionic parton with in-
teraction accounts well for the overall features of the DQCP
spectra in both Sx and Sz channels, which is consistent with
the expectations from the Nf = 2 QCD or Nf = 4 QED
theories. An interesting open problem is a systematic route to
incorporating the effects of gauge fluctuations in calculating
the spin-excitation spectrum.

V. DISCUSSION

In this work, we have demonstrated dynamical signatures
of fractionalization at the DQCP in a planar, U(1), quan-
tum magnet by computing both the in-plane and out-of-
plane dynamic spin structure factors at low temperature. By
contrasting with analogous results for a conventional LGW
critical point, we explicitly observe how fractionalization of
the critical magnon into two spinons is manifested by a
large continuum, in sharp contrast to a much less prominent
continuum due to conventional critical quantum fluctuations
at the ordinary 3DXY transition. We also discovered several

1Although such a Grose-Neveu critical point is different from the
DQCP, we only use it to provide a rough estimate of the spectral
features close to a magnetic ordered phase. We do not claim that the
criticality of DQCP can be correctly understood by our mean field +
RPA approach.
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exhibit VBS phases, sign problems in quantum Monte Carlo
(QMC) simulations and other technical difficulties in methods
such as the density matrix renormalization group and tensor
product states prohibit studies of the large system sizes needed
to reliably characterize critical points. However, for generic
and universal properties, other “designer hamiltonians” [18]
can be constructed that do not suffer from QMC sign problems
but still host the desired phases. Many such studies have
pointed to the existence of the DQCP in both two-dimensional
(2D) quantum magnets [19–28] and related (through the
path integral) three-dimensional (3D) classical models
[29–32]. In these studies it has been observed, e.g., that
the order parameters have unusually large anomalous dimen-
sions [21,24,25,27,28,31], which is an important deviation
from the common 3D Wilson-Fisher fixed point. More con-
crete evidence of deconfinement has been found by directly
probing the length scale associated with the fractionalization
process [25,33] and from thermodynamics [34]. However, the
experimentally most direct signatures of a DQCP, the dynamic
spin structure factor S(q,ω), have so far not been calculated
in the case of electronic spins (while there are already some
intriguing results for an SU(3) symmetric model [35]). His-
torically, in quasi-1D systems, the experimentally observed
spinon continuum, which agrees with calculations for the
spin-1/2 Heisenberg chain, was crucial in establishing spinon
deconfinement. Indications of fractionalized magnetic exci-
tations in 2D quantum spin liquids have also been similarly
observed [36–42]. Given that S(q,ω) is detectable by multiple
experimental techniques, including inelastic neutron scatter-
ing (INS), resonant inelastic x-ray scattering (RIXS), and
nuclear magnetic resonance (NMR), identifying the distinct
signatures of fractionalization in S(q,ω) at the DQCP will
provide a useful guide to experimental searches for DQCPs in
magnetic materials. Since the qualitative features of S(q,ω)
remain the same in the entire critical “fan” extending from the
critical point to finite temperature, the dynamical signatures
proposed in our study should be robustly observed even if
the experimental parameter is slightly off the critical point.
Moreover, due to a recently investigated duality relation be-
tween the DQCP and a certain bosonic topological transitions
(BTTs) in fermion systems [13,27,28], similar dynamical
signature of fractionalization is also expected in interaction-
driven topological phase transitions. Therefore, our work also
can impact the ongoing efforts in finding experimentally ac-
cessible signatures of topological phase transitions in strongly
correlated electron systems.

In this paper, we will investigate a U(1) version of the
DQCP on the square lattice, with the easy-plane J -Q (EPJQ)
model defined by the Hamiltonian

HJQ = −J
∑

⟨ij⟩

(
Pij + !Sz

i S
z
j

)
− Q

∑

⟨ijklmn⟩
PijPklPmn, (1)

where Si denotes the spin-1/2 operator on each site i and
Pij = 1

4 − Si · Sj is the singlet-projection operator on the link
ij (between nearest-neighbor sites). The two- and six-spin
terms are both illustrated in Fig. 1(a). For ! = 0, this is the
previously studied SU(2)spin J -Q3 model [21,22,43], which
is an extension of the original J -Q model (or J -Q2 model)
[20], with two instead of three singlet projectors in the Q

AFXY DQCP VBS

EPJQ

J
i j
k l

m n
Q

q = Q
J+Q

(a)

AFXY 3D XY Columnar

EPJ1 J2

J1

J2

g = J2
J1

(b)

= 1

2
−

FIG. 1. The two lattice models considered in this paper and their
schematic phase diagrams. (a) The EPJQ model with two-spin (J )
and six-spin (Q) couplings preserve all symmetries of the square
lattice. We define the tuning parameter chosen as q = Q/(J + Q).
The antiferromagnetic XY (AFXY) phase is separated by the DQCP
at q = qc from the columnar VBS phase, which spontaneously
breaks lattice symmetries but which has significant fluctuations of
the fourfold degenerate dimer pattern close to qc, as indicated. (b)
The EPJ1J2 model, with the tuning parameter g = J2/J1. The J2 term
explicitly pins a columnar dimer pattern and drives the AFXY phase
to the spin-disordered trivial (nondegenerate) columnar singlet phase
(without spontaneous lattice symmetry breaking) through the 3DXY
transition at g = gc.

terms. With three singlet projectors, we can go further into the
VBS state while still keeping J > 0 in sign-free QMC simu-
lations. The term !Sz

i S
z
j with ! ∈ (0, 1] introduces the easy-

plane anisotropy that breaks the SU(2)spin symmetry down to
U(1)spin explicitly. It has been shown [27] that when ! = 1/2
(which is the value we will use here), the EPJQ model exhibits
a direct and continuous quantum phase transition between the
antiferromagnetic XY (AFXY) and VBS phases, as illustrated
in Fig. 1(a), realizing the easy-plane DQCP (while for larger
anisotropy, such as ! = 1, the transition becomes first-order).
The XY order parameter has a U(1)spin rotational symmetry
and the VBS order parameter exhibits an emergent U(1)VBS
symmetry as the DQCP is approached, and, as argued based
on dualities [13], the two U(1) symmetries combine to form
an emergent higher O(4) symmetry exactly at the DQCP.

To make a comparison with the EPJQ model, we will also
study an easy-plane J1-J2 (EPJ1J2) model,

HJ1J2 = J1

∑

⟨i,j⟩′
Dij + J2

∑

⟨i,j⟩′′
Dij , (2)

where Dij = Sx
i Sx

j + S
y
i S

y
j + !Sz

i S
z
j . The J1 bonds ⟨i, j ⟩′ and

the J2 bonds ⟨i, j ⟩′′ correspond to the thin black and the thick
blue bonds in Fig. 1(b), respectively. Since the Hamiltonian
explicitly breaks the lattice symmetry, with the J2 terms pin-
ning a columnar pattern of bonds with higher singlet density,
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exhibit VBS phases, sign problems in quantum Monte Carlo
(QMC) simulations and other technical difficulties in methods
such as the density matrix renormalization group and tensor
product states prohibit studies of the large system sizes needed
to reliably characterize critical points. However, for generic
and universal properties, other “designer hamiltonians” [18]
can be constructed that do not suffer from QMC sign problems
but still host the desired phases. Many such studies have
pointed to the existence of the DQCP in both two-dimensional
(2D) quantum magnets [19–28] and related (through the
path integral) three-dimensional (3D) classical models
[29–32]. In these studies it has been observed, e.g., that
the order parameters have unusually large anomalous dimen-
sions [21,24,25,27,28,31], which is an important deviation
from the common 3D Wilson-Fisher fixed point. More con-
crete evidence of deconfinement has been found by directly
probing the length scale associated with the fractionalization
process [25,33] and from thermodynamics [34]. However, the
experimentally most direct signatures of a DQCP, the dynamic
spin structure factor S(q,ω), have so far not been calculated
in the case of electronic spins (while there are already some
intriguing results for an SU(3) symmetric model [35]). His-
torically, in quasi-1D systems, the experimentally observed
spinon continuum, which agrees with calculations for the
spin-1/2 Heisenberg chain, was crucial in establishing spinon
deconfinement. Indications of fractionalized magnetic exci-
tations in 2D quantum spin liquids have also been similarly
observed [36–42]. Given that S(q,ω) is detectable by multiple
experimental techniques, including inelastic neutron scatter-
ing (INS), resonant inelastic x-ray scattering (RIXS), and
nuclear magnetic resonance (NMR), identifying the distinct
signatures of fractionalization in S(q,ω) at the DQCP will
provide a useful guide to experimental searches for DQCPs in
magnetic materials. Since the qualitative features of S(q,ω)
remain the same in the entire critical “fan” extending from the
critical point to finite temperature, the dynamical signatures
proposed in our study should be robustly observed even if
the experimental parameter is slightly off the critical point.
Moreover, due to a recently investigated duality relation be-
tween the DQCP and a certain bosonic topological transitions
(BTTs) in fermion systems [13,27,28], similar dynamical
signature of fractionalization is also expected in interaction-
driven topological phase transitions. Therefore, our work also
can impact the ongoing efforts in finding experimentally ac-
cessible signatures of topological phase transitions in strongly
correlated electron systems.

In this paper, we will investigate a U(1) version of the
DQCP on the square lattice, with the easy-plane J -Q (EPJQ)
model defined by the Hamiltonian

HJQ = −J
∑

⟨ij⟩

(
Pij + !Sz

i S
z
j

)
− Q

∑

⟨ijklmn⟩
PijPklPmn, (1)

where Si denotes the spin-1/2 operator on each site i and
Pij = 1

4 − Si · Sj is the singlet-projection operator on the link
ij (between nearest-neighbor sites). The two- and six-spin
terms are both illustrated in Fig. 1(a). For ! = 0, this is the
previously studied SU(2)spin J -Q3 model [21,22,43], which
is an extension of the original J -Q model (or J -Q2 model)
[20], with two instead of three singlet projectors in the Q
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FIG. 1. The two lattice models considered in this paper and their
schematic phase diagrams. (a) The EPJQ model with two-spin (J )
and six-spin (Q) couplings preserve all symmetries of the square
lattice. We define the tuning parameter chosen as q = Q/(J + Q).
The antiferromagnetic XY (AFXY) phase is separated by the DQCP
at q = qc from the columnar VBS phase, which spontaneously
breaks lattice symmetries but which has significant fluctuations of
the fourfold degenerate dimer pattern close to qc, as indicated. (b)
The EPJ1J2 model, with the tuning parameter g = J2/J1. The J2 term
explicitly pins a columnar dimer pattern and drives the AFXY phase
to the spin-disordered trivial (nondegenerate) columnar singlet phase
(without spontaneous lattice symmetry breaking) through the 3DXY
transition at g = gc.

terms. With three singlet projectors, we can go further into the
VBS state while still keeping J > 0 in sign-free QMC simu-
lations. The term !Sz

i S
z
j with ! ∈ (0, 1] introduces the easy-

plane anisotropy that breaks the SU(2)spin symmetry down to
U(1)spin explicitly. It has been shown [27] that when ! = 1/2
(which is the value we will use here), the EPJQ model exhibits
a direct and continuous quantum phase transition between the
antiferromagnetic XY (AFXY) and VBS phases, as illustrated
in Fig. 1(a), realizing the easy-plane DQCP (while for larger
anisotropy, such as ! = 1, the transition becomes first-order).
The XY order parameter has a U(1)spin rotational symmetry
and the VBS order parameter exhibits an emergent U(1)VBS
symmetry as the DQCP is approached, and, as argued based
on dualities [13], the two U(1) symmetries combine to form
an emergent higher O(4) symmetry exactly at the DQCP.

To make a comparison with the EPJQ model, we will also
study an easy-plane J1-J2 (EPJ1J2) model,

HJ1J2 = J1

∑

⟨i,j⟩′
Dij + J2

∑

⟨i,j⟩′′
Dij , (2)

where Dij = Sx
i Sx

j + S
y
i S

y
j + !Sz

i S
z
j . The J1 bonds ⟨i, j ⟩′ and

the J2 bonds ⟨i, j ⟩′′ correspond to the thin black and the thick
blue bonds in Fig. 1(b), respectively. Since the Hamiltonian
explicitly breaks the lattice symmetry, with the J2 terms pin-
ning a columnar pattern of bonds with higher singlet density,
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exhibit VBS phases, sign problems in quantum Monte Carlo
(QMC) simulations and other technical difficulties in methods
such as the density matrix renormalization group and tensor
product states prohibit studies of the large system sizes needed
to reliably characterize critical points. However, for generic
and universal properties, other “designer hamiltonians” [18]
can be constructed that do not suffer from QMC sign problems
but still host the desired phases. Many such studies have
pointed to the existence of the DQCP in both two-dimensional
(2D) quantum magnets [19–28] and related (through the
path integral) three-dimensional (3D) classical models
[29–32]. In these studies it has been observed, e.g., that
the order parameters have unusually large anomalous dimen-
sions [21,24,25,27,28,31], which is an important deviation
from the common 3D Wilson-Fisher fixed point. More con-
crete evidence of deconfinement has been found by directly
probing the length scale associated with the fractionalization
process [25,33] and from thermodynamics [34]. However, the
experimentally most direct signatures of a DQCP, the dynamic
spin structure factor S(q,ω), have so far not been calculated
in the case of electronic spins (while there are already some
intriguing results for an SU(3) symmetric model [35]). His-
torically, in quasi-1D systems, the experimentally observed
spinon continuum, which agrees with calculations for the
spin-1/2 Heisenberg chain, was crucial in establishing spinon
deconfinement. Indications of fractionalized magnetic exci-
tations in 2D quantum spin liquids have also been similarly
observed [36–42]. Given that S(q,ω) is detectable by multiple
experimental techniques, including inelastic neutron scatter-
ing (INS), resonant inelastic x-ray scattering (RIXS), and
nuclear magnetic resonance (NMR), identifying the distinct
signatures of fractionalization in S(q,ω) at the DQCP will
provide a useful guide to experimental searches for DQCPs in
magnetic materials. Since the qualitative features of S(q,ω)
remain the same in the entire critical “fan” extending from the
critical point to finite temperature, the dynamical signatures
proposed in our study should be robustly observed even if
the experimental parameter is slightly off the critical point.
Moreover, due to a recently investigated duality relation be-
tween the DQCP and a certain bosonic topological transitions
(BTTs) in fermion systems [13,27,28], similar dynamical
signature of fractionalization is also expected in interaction-
driven topological phase transitions. Therefore, our work also
can impact the ongoing efforts in finding experimentally ac-
cessible signatures of topological phase transitions in strongly
correlated electron systems.

In this paper, we will investigate a U(1) version of the
DQCP on the square lattice, with the easy-plane J -Q (EPJQ)
model defined by the Hamiltonian

HJQ = −J
∑
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(
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)
− Q

∑

⟨ijklmn⟩
PijPklPmn, (1)

where Si denotes the spin-1/2 operator on each site i and
Pij = 1

4 − Si · Sj is the singlet-projection operator on the link
ij (between nearest-neighbor sites). The two- and six-spin
terms are both illustrated in Fig. 1(a). For ! = 0, this is the
previously studied SU(2)spin J -Q3 model [21,22,43], which
is an extension of the original J -Q model (or J -Q2 model)
[20], with two instead of three singlet projectors in the Q
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FIG. 1. The two lattice models considered in this paper and their
schematic phase diagrams. (a) The EPJQ model with two-spin (J )
and six-spin (Q) couplings preserve all symmetries of the square
lattice. We define the tuning parameter chosen as q = Q/(J + Q).
The antiferromagnetic XY (AFXY) phase is separated by the DQCP
at q = qc from the columnar VBS phase, which spontaneously
breaks lattice symmetries but which has significant fluctuations of
the fourfold degenerate dimer pattern close to qc, as indicated. (b)
The EPJ1J2 model, with the tuning parameter g = J2/J1. The J2 term
explicitly pins a columnar dimer pattern and drives the AFXY phase
to the spin-disordered trivial (nondegenerate) columnar singlet phase
(without spontaneous lattice symmetry breaking) through the 3DXY
transition at g = gc.

terms. With three singlet projectors, we can go further into the
VBS state while still keeping J > 0 in sign-free QMC simu-
lations. The term !Sz

i S
z
j with ! ∈ (0, 1] introduces the easy-

plane anisotropy that breaks the SU(2)spin symmetry down to
U(1)spin explicitly. It has been shown [27] that when ! = 1/2
(which is the value we will use here), the EPJQ model exhibits
a direct and continuous quantum phase transition between the
antiferromagnetic XY (AFXY) and VBS phases, as illustrated
in Fig. 1(a), realizing the easy-plane DQCP (while for larger
anisotropy, such as ! = 1, the transition becomes first-order).
The XY order parameter has a U(1)spin rotational symmetry
and the VBS order parameter exhibits an emergent U(1)VBS
symmetry as the DQCP is approached, and, as argued based
on dualities [13], the two U(1) symmetries combine to form
an emergent higher O(4) symmetry exactly at the DQCP.

To make a comparison with the EPJQ model, we will also
study an easy-plane J1-J2 (EPJ1J2) model,

HJ1J2 = J1

∑

⟨i,j⟩′
Dij + J2

∑

⟨i,j⟩′′
Dij , (2)

where Dij = Sx
i Sx

j + S
y
i S

y
j + !Sz

i S
z
j . The J1 bonds ⟨i, j ⟩′ and

the J2 bonds ⟨i, j ⟩′′ correspond to the thin black and the thick
blue bonds in Fig. 1(b), respectively. Since the Hamiltonian
explicitly breaks the lattice symmetry, with the J2 terms pin-
ning a columnar pattern of bonds with higher singlet density,
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FIG. 4. Dynamic spin-structure factors Sx (q, ω) (a)–(c) and Sz(q, ω) (d)–(f) obtained from QMC-SAC calculations for the EPJ1J2 model
with L = 32 and β = 64. Panels (a) and (d) are inside the AFXY phase, g = 2, (b) and (e) are close to the 3DXY transition point, g = 2.735,
and (c) and (f) are inside the quantum disordered phase, g = 3.6.

in the field theory correspond in the lattice model to the spin
spectrum Sz around (0,0) and Sx around (π, 0). The imaginary
part of these correlation functions are show in Figs. 2(e) and
2(f), respectively.

The correlation function of the nonconserved currents j 0
23

and j 2
35 are expected to take a similar form with another

anomalous dimension ηj ,

〈
j 0

23j
0
23

〉
∼ q2

(q2 − ω2)(1−ηj )/2 ,

〈
j 2

35j
2
35

〉
∼ ω2 − q2

x

(q2 − ω2)(1−ηj )/2 .

(9)

They correspond to Sx (q,ω) around (0,0) and Sz(q,ω)
around (π, 0). As we will discuss in more detail in Secs. III
and IV, all these expected spectral features are qualitatively
observed in the QMC-SAC spectrum of the EPJQ model
[see Figs. 3(b) and 3(e)], consistent with the QCD or QED
description of the DQCP.

In the VBS phase, all excitations (in both Sx and Sz

channels) are gapped. There is no low-energy feature in the
spectrum that can be reliably predicted at the field-theory
level. With our QMC-SAC numerics, we can easily go into
the VBS, however, and we will present results along with the
results in the XY phase and DQCP in the next section.

III. NUMERICAL CALCULATIONS OF
THE SPIN SPECTRA

We here present results for both the EPJQ and the EPJ1J2
models. The key quantity computed in our QMC simulations
with the stochastic series expansion (SSE) method [46] is the
spin-correlation function in the imaginary time domain (for

a = x, y, z),

Ḡa (q, τ ) =
〈
Sa

−q (τ )Sa
q (0)

〉
, (10)

where Sa
q = 1

L

∑
i e

−iq·r i Sa
i and the summation is over all sites

of the L × L lattice. From the imaginary time data for a set
of τ points, we reconstruct the corresponding real-frequency
spectral function by performing a numerical analytic contin-
uation using the SAC method [47–54]. With this method,
we average over Monte Carlo importance-sampled spectral
functions Ba (q,ω), from which the dynamic spin structure
factor is later obtained as Sa (q,ω) = ⟨Ba (q,ω)⟩/(1 + e−βω ).
The intermediate spectrum Ba (q,ω) has the advantage of
being normalized to Ḡa (q, 0) when integrating over positive
frequencies only. In the sampling procedure, we thus fix the
normalization and use the relationship

Ga (q, τ ) =
∫ ∞

0

dω

π

e−τω + e−(β−τ )ω

1 + e−βω
Ba (q,ω) (11)

to define the goodness-of-fit χ2 between this function and the
SSE-computed result Ḡa (q, τ ) (including covariance among
the SSE data for different τ ). The weight for a given spectrum
is ∝ exp(−χ2/2θ ), with θ a fictitious temperature chosen
in an optimal way so as to give a statistically sound mean
χ2 value, while still staying in the regime of significant
fluctuations of the sampled spectra so that a smooth averaged
spectral function is obtained. The most recent incarnation of
the SAC method uses a parametrization with a large number
of equal-amplitude δ-function sampled at locations in a fre-
quency continuum and collected in a histogram, as explained
in Refs. [51–55]. We refer to these works for technical details.

We have extracted S(q,ω) for the EPJQ and EPJ1J2 mod-
els in both the Sx and Sz channels. The imaginary time
correlations in these channels were independently calculated
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exhibit VBS phases, sign problems in quantum Monte Carlo
(QMC) simulations and other technical difficulties in methods
such as the density matrix renormalization group and tensor
product states prohibit studies of the large system sizes needed
to reliably characterize critical points. However, for generic
and universal properties, other “designer hamiltonians” [18]
can be constructed that do not suffer from QMC sign problems
but still host the desired phases. Many such studies have
pointed to the existence of the DQCP in both two-dimensional
(2D) quantum magnets [19–28] and related (through the
path integral) three-dimensional (3D) classical models
[29–32]. In these studies it has been observed, e.g., that
the order parameters have unusually large anomalous dimen-
sions [21,24,25,27,28,31], which is an important deviation
from the common 3D Wilson-Fisher fixed point. More con-
crete evidence of deconfinement has been found by directly
probing the length scale associated with the fractionalization
process [25,33] and from thermodynamics [34]. However, the
experimentally most direct signatures of a DQCP, the dynamic
spin structure factor S(q,ω), have so far not been calculated
in the case of electronic spins (while there are already some
intriguing results for an SU(3) symmetric model [35]). His-
torically, in quasi-1D systems, the experimentally observed
spinon continuum, which agrees with calculations for the
spin-1/2 Heisenberg chain, was crucial in establishing spinon
deconfinement. Indications of fractionalized magnetic exci-
tations in 2D quantum spin liquids have also been similarly
observed [36–42]. Given that S(q,ω) is detectable by multiple
experimental techniques, including inelastic neutron scatter-
ing (INS), resonant inelastic x-ray scattering (RIXS), and
nuclear magnetic resonance (NMR), identifying the distinct
signatures of fractionalization in S(q,ω) at the DQCP will
provide a useful guide to experimental searches for DQCPs in
magnetic materials. Since the qualitative features of S(q,ω)
remain the same in the entire critical “fan” extending from the
critical point to finite temperature, the dynamical signatures
proposed in our study should be robustly observed even if
the experimental parameter is slightly off the critical point.
Moreover, due to a recently investigated duality relation be-
tween the DQCP and a certain bosonic topological transitions
(BTTs) in fermion systems [13,27,28], similar dynamical
signature of fractionalization is also expected in interaction-
driven topological phase transitions. Therefore, our work also
can impact the ongoing efforts in finding experimentally ac-
cessible signatures of topological phase transitions in strongly
correlated electron systems.

In this paper, we will investigate a U(1) version of the
DQCP on the square lattice, with the easy-plane J -Q (EPJQ)
model defined by the Hamiltonian

HJQ = −J
∑

⟨ij⟩

(
Pij + !Sz

i S
z
j

)
− Q

∑

⟨ijklmn⟩
PijPklPmn, (1)

where Si denotes the spin-1/2 operator on each site i and
Pij = 1

4 − Si · Sj is the singlet-projection operator on the link
ij (between nearest-neighbor sites). The two- and six-spin
terms are both illustrated in Fig. 1(a). For ! = 0, this is the
previously studied SU(2)spin J -Q3 model [21,22,43], which
is an extension of the original J -Q model (or J -Q2 model)
[20], with two instead of three singlet projectors in the Q

AFXY DQCP VBS

EPJQ

J
i j
k l

m n
Q

q = Q
J+Q

(a)

AFXY 3D XY Columnar

EPJ1 J2

J1

J2

g = J2
J1

(b)

= 1

2
−

FIG. 1. The two lattice models considered in this paper and their
schematic phase diagrams. (a) The EPJQ model with two-spin (J )
and six-spin (Q) couplings preserve all symmetries of the square
lattice. We define the tuning parameter chosen as q = Q/(J + Q).
The antiferromagnetic XY (AFXY) phase is separated by the DQCP
at q = qc from the columnar VBS phase, which spontaneously
breaks lattice symmetries but which has significant fluctuations of
the fourfold degenerate dimer pattern close to qc, as indicated. (b)
The EPJ1J2 model, with the tuning parameter g = J2/J1. The J2 term
explicitly pins a columnar dimer pattern and drives the AFXY phase
to the spin-disordered trivial (nondegenerate) columnar singlet phase
(without spontaneous lattice symmetry breaking) through the 3DXY
transition at g = gc.

terms. With three singlet projectors, we can go further into the
VBS state while still keeping J > 0 in sign-free QMC simu-
lations. The term !Sz

i S
z
j with ! ∈ (0, 1] introduces the easy-

plane anisotropy that breaks the SU(2)spin symmetry down to
U(1)spin explicitly. It has been shown [27] that when ! = 1/2
(which is the value we will use here), the EPJQ model exhibits
a direct and continuous quantum phase transition between the
antiferromagnetic XY (AFXY) and VBS phases, as illustrated
in Fig. 1(a), realizing the easy-plane DQCP (while for larger
anisotropy, such as ! = 1, the transition becomes first-order).
The XY order parameter has a U(1)spin rotational symmetry
and the VBS order parameter exhibits an emergent U(1)VBS
symmetry as the DQCP is approached, and, as argued based
on dualities [13], the two U(1) symmetries combine to form
an emergent higher O(4) symmetry exactly at the DQCP.

To make a comparison with the EPJQ model, we will also
study an easy-plane J1-J2 (EPJ1J2) model,

HJ1J2 = J1

∑

⟨i,j⟩′
Dij + J2

∑

⟨i,j⟩′′
Dij , (2)

where Dij = Sx
i Sx

j + S
y
i S

y
j + !Sz

i S
z
j . The J1 bonds ⟨i, j ⟩′ and

the J2 bonds ⟨i, j ⟩′′ correspond to the thin black and the thick
blue bonds in Fig. 1(b), respectively. Since the Hamiltonian
explicitly breaks the lattice symmetry, with the J2 terms pin-
ning a columnar pattern of bonds with higher singlet density,
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exhibit VBS phases, sign problems in quantum Monte Carlo
(QMC) simulations and other technical difficulties in methods
such as the density matrix renormalization group and tensor
product states prohibit studies of the large system sizes needed
to reliably characterize critical points. However, for generic
and universal properties, other “designer hamiltonians” [18]
can be constructed that do not suffer from QMC sign problems
but still host the desired phases. Many such studies have
pointed to the existence of the DQCP in both two-dimensional
(2D) quantum magnets [19–28] and related (through the
path integral) three-dimensional (3D) classical models
[29–32]. In these studies it has been observed, e.g., that
the order parameters have unusually large anomalous dimen-
sions [21,24,25,27,28,31], which is an important deviation
from the common 3D Wilson-Fisher fixed point. More con-
crete evidence of deconfinement has been found by directly
probing the length scale associated with the fractionalization
process [25,33] and from thermodynamics [34]. However, the
experimentally most direct signatures of a DQCP, the dynamic
spin structure factor S(q,ω), have so far not been calculated
in the case of electronic spins (while there are already some
intriguing results for an SU(3) symmetric model [35]). His-
torically, in quasi-1D systems, the experimentally observed
spinon continuum, which agrees with calculations for the
spin-1/2 Heisenberg chain, was crucial in establishing spinon
deconfinement. Indications of fractionalized magnetic exci-
tations in 2D quantum spin liquids have also been similarly
observed [36–42]. Given that S(q,ω) is detectable by multiple
experimental techniques, including inelastic neutron scatter-
ing (INS), resonant inelastic x-ray scattering (RIXS), and
nuclear magnetic resonance (NMR), identifying the distinct
signatures of fractionalization in S(q,ω) at the DQCP will
provide a useful guide to experimental searches for DQCPs in
magnetic materials. Since the qualitative features of S(q,ω)
remain the same in the entire critical “fan” extending from the
critical point to finite temperature, the dynamical signatures
proposed in our study should be robustly observed even if
the experimental parameter is slightly off the critical point.
Moreover, due to a recently investigated duality relation be-
tween the DQCP and a certain bosonic topological transitions
(BTTs) in fermion systems [13,27,28], similar dynamical
signature of fractionalization is also expected in interaction-
driven topological phase transitions. Therefore, our work also
can impact the ongoing efforts in finding experimentally ac-
cessible signatures of topological phase transitions in strongly
correlated electron systems.

In this paper, we will investigate a U(1) version of the
DQCP on the square lattice, with the easy-plane J -Q (EPJQ)
model defined by the Hamiltonian

HJQ = −J
∑

⟨ij⟩

(
Pij + !Sz

i S
z
j

)
− Q

∑

⟨ijklmn⟩
PijPklPmn, (1)

where Si denotes the spin-1/2 operator on each site i and
Pij = 1

4 − Si · Sj is the singlet-projection operator on the link
ij (between nearest-neighbor sites). The two- and six-spin
terms are both illustrated in Fig. 1(a). For ! = 0, this is the
previously studied SU(2)spin J -Q3 model [21,22,43], which
is an extension of the original J -Q model (or J -Q2 model)
[20], with two instead of three singlet projectors in the Q
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FIG. 1. The two lattice models considered in this paper and their
schematic phase diagrams. (a) The EPJQ model with two-spin (J )
and six-spin (Q) couplings preserve all symmetries of the square
lattice. We define the tuning parameter chosen as q = Q/(J + Q).
The antiferromagnetic XY (AFXY) phase is separated by the DQCP
at q = qc from the columnar VBS phase, which spontaneously
breaks lattice symmetries but which has significant fluctuations of
the fourfold degenerate dimer pattern close to qc, as indicated. (b)
The EPJ1J2 model, with the tuning parameter g = J2/J1. The J2 term
explicitly pins a columnar dimer pattern and drives the AFXY phase
to the spin-disordered trivial (nondegenerate) columnar singlet phase
(without spontaneous lattice symmetry breaking) through the 3DXY
transition at g = gc.

terms. With three singlet projectors, we can go further into the
VBS state while still keeping J > 0 in sign-free QMC simu-
lations. The term !Sz

i S
z
j with ! ∈ (0, 1] introduces the easy-

plane anisotropy that breaks the SU(2)spin symmetry down to
U(1)spin explicitly. It has been shown [27] that when ! = 1/2
(which is the value we will use here), the EPJQ model exhibits
a direct and continuous quantum phase transition between the
antiferromagnetic XY (AFXY) and VBS phases, as illustrated
in Fig. 1(a), realizing the easy-plane DQCP (while for larger
anisotropy, such as ! = 1, the transition becomes first-order).
The XY order parameter has a U(1)spin rotational symmetry
and the VBS order parameter exhibits an emergent U(1)VBS
symmetry as the DQCP is approached, and, as argued based
on dualities [13], the two U(1) symmetries combine to form
an emergent higher O(4) symmetry exactly at the DQCP.

To make a comparison with the EPJQ model, we will also
study an easy-plane J1-J2 (EPJ1J2) model,

HJ1J2 = J1

∑

⟨i,j⟩′
Dij + J2

∑

⟨i,j⟩′′
Dij , (2)

where Dij = Sx
i Sx

j + S
y
i S

y
j + !Sz

i S
z
j . The J1 bonds ⟨i, j ⟩′ and

the J2 bonds ⟨i, j ⟩′′ correspond to the thin black and the thick
blue bonds in Fig. 1(b), respectively. Since the Hamiltonian
explicitly breaks the lattice symmetry, with the J2 terms pin-
ning a columnar pattern of bonds with higher singlet density,
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exhibit VBS phases, sign problems in quantum Monte Carlo
(QMC) simulations and other technical difficulties in methods
such as the density matrix renormalization group and tensor
product states prohibit studies of the large system sizes needed
to reliably characterize critical points. However, for generic
and universal properties, other “designer hamiltonians” [18]
can be constructed that do not suffer from QMC sign problems
but still host the desired phases. Many such studies have
pointed to the existence of the DQCP in both two-dimensional
(2D) quantum magnets [19–28] and related (through the
path integral) three-dimensional (3D) classical models
[29–32]. In these studies it has been observed, e.g., that
the order parameters have unusually large anomalous dimen-
sions [21,24,25,27,28,31], which is an important deviation
from the common 3D Wilson-Fisher fixed point. More con-
crete evidence of deconfinement has been found by directly
probing the length scale associated with the fractionalization
process [25,33] and from thermodynamics [34]. However, the
experimentally most direct signatures of a DQCP, the dynamic
spin structure factor S(q,ω), have so far not been calculated
in the case of electronic spins (while there are already some
intriguing results for an SU(3) symmetric model [35]). His-
torically, in quasi-1D systems, the experimentally observed
spinon continuum, which agrees with calculations for the
spin-1/2 Heisenberg chain, was crucial in establishing spinon
deconfinement. Indications of fractionalized magnetic exci-
tations in 2D quantum spin liquids have also been similarly
observed [36–42]. Given that S(q,ω) is detectable by multiple
experimental techniques, including inelastic neutron scatter-
ing (INS), resonant inelastic x-ray scattering (RIXS), and
nuclear magnetic resonance (NMR), identifying the distinct
signatures of fractionalization in S(q,ω) at the DQCP will
provide a useful guide to experimental searches for DQCPs in
magnetic materials. Since the qualitative features of S(q,ω)
remain the same in the entire critical “fan” extending from the
critical point to finite temperature, the dynamical signatures
proposed in our study should be robustly observed even if
the experimental parameter is slightly off the critical point.
Moreover, due to a recently investigated duality relation be-
tween the DQCP and a certain bosonic topological transitions
(BTTs) in fermion systems [13,27,28], similar dynamical
signature of fractionalization is also expected in interaction-
driven topological phase transitions. Therefore, our work also
can impact the ongoing efforts in finding experimentally ac-
cessible signatures of topological phase transitions in strongly
correlated electron systems.

In this paper, we will investigate a U(1) version of the
DQCP on the square lattice, with the easy-plane J -Q (EPJQ)
model defined by the Hamiltonian

HJQ = −J
∑

⟨ij⟩

(
Pij + !Sz

i S
z
j

)
− Q

∑

⟨ijklmn⟩
PijPklPmn, (1)

where Si denotes the spin-1/2 operator on each site i and
Pij = 1

4 − Si · Sj is the singlet-projection operator on the link
ij (between nearest-neighbor sites). The two- and six-spin
terms are both illustrated in Fig. 1(a). For ! = 0, this is the
previously studied SU(2)spin J -Q3 model [21,22,43], which
is an extension of the original J -Q model (or J -Q2 model)
[20], with two instead of three singlet projectors in the Q
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FIG. 1. The two lattice models considered in this paper and their
schematic phase diagrams. (a) The EPJQ model with two-spin (J )
and six-spin (Q) couplings preserve all symmetries of the square
lattice. We define the tuning parameter chosen as q = Q/(J + Q).
The antiferromagnetic XY (AFXY) phase is separated by the DQCP
at q = qc from the columnar VBS phase, which spontaneously
breaks lattice symmetries but which has significant fluctuations of
the fourfold degenerate dimer pattern close to qc, as indicated. (b)
The EPJ1J2 model, with the tuning parameter g = J2/J1. The J2 term
explicitly pins a columnar dimer pattern and drives the AFXY phase
to the spin-disordered trivial (nondegenerate) columnar singlet phase
(without spontaneous lattice symmetry breaking) through the 3DXY
transition at g = gc.

terms. With three singlet projectors, we can go further into the
VBS state while still keeping J > 0 in sign-free QMC simu-
lations. The term !Sz

i S
z
j with ! ∈ (0, 1] introduces the easy-

plane anisotropy that breaks the SU(2)spin symmetry down to
U(1)spin explicitly. It has been shown [27] that when ! = 1/2
(which is the value we will use here), the EPJQ model exhibits
a direct and continuous quantum phase transition between the
antiferromagnetic XY (AFXY) and VBS phases, as illustrated
in Fig. 1(a), realizing the easy-plane DQCP (while for larger
anisotropy, such as ! = 1, the transition becomes first-order).
The XY order parameter has a U(1)spin rotational symmetry
and the VBS order parameter exhibits an emergent U(1)VBS
symmetry as the DQCP is approached, and, as argued based
on dualities [13], the two U(1) symmetries combine to form
an emergent higher O(4) symmetry exactly at the DQCP.

To make a comparison with the EPJQ model, we will also
study an easy-plane J1-J2 (EPJ1J2) model,

HJ1J2 = J1

∑

⟨i,j⟩′
Dij + J2

∑

⟨i,j⟩′′
Dij , (2)

where Dij = Sx
i Sx

j + S
y
i S

y
j + !Sz

i S
z
j . The J1 bonds ⟨i, j ⟩′ and

the J2 bonds ⟨i, j ⟩′′ correspond to the thin black and the thick
blue bonds in Fig. 1(b), respectively. Since the Hamiltonian
explicitly breaks the lattice symmetry, with the J2 terms pin-
ning a columnar pattern of bonds with higher singlet density,
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FIG. 3. Dynamic spin structure factors Sx (q, ω) (a)–(c) and Sz(q, ω) (d)–(f) obtained from QMC-SAC calculations for the EPJQ model
with L = 32 and β = 64. Here (a) and (d) are inside the AFXY phase, q = 0.2, (b) and (e) are close to the DQCP, q = 0.6, and (c) and (f) are
inside the VBS phase, q = 0.9.

gapless magnon modes, each around (π,π ), so that the total
momentum is close to (0,0). Therefore, we expect Sz near
(0,0) to be of the form

⟨∂tθ∂tθ⟩ ∼ ω2

ρs (q2 − ω2)
. (5)

The imaginary part of this correlation function (with ω →
ω + i0+) is shown in Fig. 2(b). Here the spectral weight of
the linearly dispersing mode is suppressed as ω → 0. As we
will see, the low-energy spectral features of the dynamic spin-
structure factors Sx (q,ω) and Sz(q,ω) match our QMC-SAC
results nicely [see Figs. 3(a), 3(b) 4(a), and 4(b)].

At the DQCP, the low-energy dynamic spin-susceptibility
around Q = (π,π ) is expected to be of the form

χx ( Q + q,ω) ∼ (q2 − ω2)−1+ηxy/2,

χ z( Q + q,ω) ∼ (q2 − ω2)−1+ηz/2,
(6)

with large values of the anomalous dimension ηxy and ηz,
characterizing the complete breakdown of a well-defined
magnon at the critical point. The imaginary part of these
correlation functions are shown in Figs. 2(c) and 2(d), respec-
tively, with ηxy ≈ 0.13 and ηz ≈ 0.91 taken from Ref. [27] for
illustration purposes. Strictly speaking, any nonzero anoma-
lous dimension η would imply the breakdown of well-defined
magnons, but compared to the small anomalous dimension
η ≈ 0.04 [44,45] at the 3D O(2) Wilson-Fisher transition, we
expect to observe a much more prominent continuum at the
DQCP in the EQJQ model [as clearly seen in the QMC-SAC
results Figs. 3(b) and 3(e), to be discussed later]. This is in
sharp contrast to the Sx (q,ω) spectrum at the 3DXY critical
point in the EPJ1J2 model [as shown in Fig. 4(b)], where there
is essentially no continuum in the gapless Sx channel and that
in the gapped Sz channel is much less prominent (though there

are also interesting features there that cannot be explained at
the level of analysis discussed above).

Another important feature in the spectrum of the DQCP is
the gapless excitations at momenta (0,0) and (π, 0) [as well as
(0,π ) by symmetry] in both Sx and Sz channels, with much
weaker spectral weight, as shown in Figs. 3(b) and 3(e). The-
oretically, they correspond to the (generally nonconserved)
SO(5) current fluctuations, where the SO(5) group rotates
the Néel and VBS order parameters as a combined vector
N = (N1, N2, N3, N4, N5) = (n, v). The SO(5) current can
be written in terms of the combined order parameter N as

j
µ
ab = Na∂µNb − Nb∂µNa, (7)

with µ = 0, 1, 2 and a, b = 1, · · · , 5. By matching the mo-
mentum and the SO(5) symmetry quantum numbers, it is
straightforward to identify the Sx and Sz fluctuations around
(0,0) to j 0

23 and j 0
12, respectively, and identify those around

(π, 0) to j 2
15 and j 2

35, respectively. The emergent O(4) sym-
metry at the easy-plane DQCP corresponds to the subgroup
of SO(5) that rotates (N1, N2, N4, N5) only (keeping N2

3
invariant), so the currents j 0

12 and j 2
15 are emergent conserved

currents at low-energy. Their correlation functions can be
calculated based on the Nf = 2 QCD theory or the Nf =
4 QED theory L[ψ, a] = ψ̄γ µDµψ + · · · , where the order
parameters are fractionalized as Na ∼ ψ̄!aψ and the current-
current correlations are given by

〈
j 0

12j
0
12

〉
∼ ⟨ψ̄γ 0!12ψψ̄γ 0!12ψ⟩ ∼ q2

(q2 − ω2)1/2
,

〈
j 2

15j
2
15

〉
∼ ⟨ψ̄γ 2!15ψψ̄γ 2!15ψ⟩ ∼ ω2 − q2

x

(q2 − ω2)1/2
,

(8)

with !ab = i
2 [!a,!b] being the SO(5) generator that rotates

(Na,Nb ) components. These spectral functions of the currents
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Figure 1 | Phase diagram of SrCu2(BO3)2 as a function of pressure and temperature, including excitation energies. The blue region is the dimer phase, the
red region the newly identified plaquette phase, and the green region is the antiferromagnetic phase where Q= (1, 0, 0) magnetic Bragg peaks, indicated by
green squares, are observed only above 40 kbar. Circles are the triplet gap energy � at Q= (2, 0,L), diamonds are the corresponding two-triplet bound
state (BT) energy EBT and the star is a new low-energy excitation (LE) observed at Q= (1, 0, 1). The magenta line shows the tetragonal to monoclinic
structural transition. The procedure used to obtain it and its error bars is described in ref. 28. The corresponding monoclinic space groups are
indicated29,30. The dashed line in the plaquette phase is the extrapolated energy gap using ref. 9. The insets depict the corresponding ground states. All of
the experimental points are from this study.

it directly modifies the atomic distances and bridging angles,
such as Cu–O–Cu and thus the magnetic exchange integrals.
Quantum phase transitions were successfully discovered in dimer
magnets following application of pressure22. However high-
pressure measurements remain technically challenging. In the
case of SrCu2(BO3)2, magnetic susceptibility23 and electron spin
resonance24 tomoderate pressures (p12 kbar) indicate a softening
of the gap, while the combined e�ect of pressure and field was
measured by susceptibility and NMR25. In the latter case, magnetic
order occurring at 24 kbar and 7 T on a fraction of the dimers was
proposed. In an X-ray di�raction investigation, the temperature
dependence of the lattice parameters was analysed as an indirect
proxy for the singlet–triplet gap leading to the suggestion that it
closes at 20 kbar26. At even higher pressures, neutron and X-ray
di�raction experiments observed a transition above 45 kbar from
the ambient I4̄2M tetragonal space group to monoclinic27–30.

Here we present neutron spectroscopy results, which directly
determine the pressure dependence of the gap and through
the dynamic structure factor allow us to address the nature
of the correlations. Figure 1 summarizes the phase diagram
of SrCu2(BO3)2, which we determined in this study. The exact
dimer phase survives up to 16 kbar. The gap decreases from
3meV to 2meV, but does not vanish. At 21.5 kbar, we discover
experimentally a new, intermediate phase. We identify it by its
inelastic neutron scattering spectrum as the formation of 4-spin
plaquette singlets. Above 40 kbar and below 117K we find by
neutron di�raction that AFM order appears (Supplementary Fig. 6)
while the compound probably still has tetragonal symmetry with
orthogonal dimers. Above ⇠45 kbar, a structural distortion takes
place and the symmetry becomes monoclinic, implying non-
orthogonal dimers28,29. SrCu2(BO3)2 is magnetically ordered after
the distortion, but can no longer be described appropriately by
the original Shastry–Sutherland model. The transition from 2-spin
dimer to 4-spin plaquette singlets appears to be of first order,
whereas the transition from the plaquette to the AFM phase could
be of second order and concomitant with the continuous closure of
the plaquette gap as sketched in Fig. 1 or of first order9,20.

To allow a quantitative comparison to theoretical predictions,
we establish the pressure dependence of the exchange parameters
J� (p), J 0

�
(p) and ↵(p) by measuring magnetic susceptibility �(p,T )

and fitting it using 20-site exact diagonalization. The peak in
susceptibility shifts to lower temperature as pressure increases up
to 10 kbar (Fig. 2a). This suggests a reduction of the spin gap.
We parametrize the pressure dependence of J and J 0 by linear fits
(Fig. 2b). J has the larger slope so that ↵ increases with pressure.
Having established ↵(p) we see that the critical pressure lying
between 16 kbar and 21.5 kbar corresponds to 0.66< ↵c < 0.68, in
good agreement with theoretical predictions4,12,20.

A selection from the neutron spectra leading to the phase
diagram is presented in Fig. 3; additional spectra at various
momenta transfer Q are shown in the Supplementary Information.
Up to 16 kbar an essentially Q-independent linear decrease of the
gap energy is observed (Figs 1 and 3a). The measurement of the
dispersion and of the structure factor in that pressure range shows
that the spin system is still in its original ‘exact dimer’ phase.
The gap value and the integrated intensity decrease linearly with
pressure. The dispersion increases slightly with pressure, which
can be understood by the increase of ↵ (ref. 6). Interestingly, the
bound triplet energy EBT softens twice as fast, implying that the
triplet binding energy, �=2��EBT =1.19(2)meV, remains quasi
pressure independent. This results in the unusual situation that
extrapolating the softenings, the bound triplet would reach zero
energy before the single triplet, and hence that, before that point,
exciting a bound state of two triplets would cost less energy than
exciting one triplet.

SrCu2(BO3)2 enters a new quantum phase between 16 and
21.5 kbar, where a discontinuity in the gap softening occurs. The
inelastic neutron scattering peaks corresponding to the gap energy,
�'2meV, at these two pressures remain unchanged (Fig. 3b). The
discontinuity is also visible in the intensities (Fig. 3d), where the
linear decrease with pressure exhibits an abrupt halt above 16 kbar.

The transition to a new quantum phase is further asserted by a
new type of excitation suddenly appearing at the higher pressure
(Fig. 3b,c). We label this new low-energy excitation LE. LE is clearly
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4-spin plaquette singlet state in the
Shastry–Sutherland compound SrCu2(BO3)2
M. E. Zayed1,2,3*, Ch. Rüegg2,4,5, J. Larrea J.1,6, A. M. Läuchli7, C. Panagopoulos8,9, S. S. Saxena8,
M. Ellerby5, D. F. McMorrow5, Th. Strässle2, S. Klotz10, G. Hamel10, R. A. Sadykov11,12, V. Pomjakushin2,
M. Boehm13, M. Jiménez–Ruiz13, A. Schneidewind14, E. Pomjakushina15, M. Stingaciu15, K. Conder15

and H. M. Rønnow1

The study of interacting spin systems is of fundamental
importance for modern condensed-matter physics. On frus-
trated lattices, magnetic exchange interactions cannot be
simultaneously satisfied, and often give rise to compet-
ing exotic ground states1. The frustrated two-dimensional
Shastry–Sutherland lattice2 realized by SrCu2(BO3)2 (refs 3,4)
is an important test case for our understanding of quantum
magnetism. It was constructed to have an exactly solvable
2-spin dimer singlet ground state within a certain range of
exchange parameters and frustration. While the exact dimer
state and the antiferromagnetic order at both ends of thephase
diagram arewell known, the ground state and spin correlations
in the intermediate frustration range have been widely de-
bated2,4–14. We report here the first experimental identification
of the conjectured plaquette singlet intermediate phase in
SrCu2(BO3)2. It isobservedby inelasticneutronscatteringafter
pressure tuning to 21.5 kbar. This gapped singlet state leads
to a transition to long-range antiferromagnetic order above
40 kbar, consistentwith the existenceof a deconfinedquantum
critical point.

In the field of quantum magnetism, geometrically frustrated
lattices generally imply major di�culties in analytical and
numerical studies. For very few particular topologies, however, it
has been shown that the ground state, at least, can be calculated
exactly as for the Majumdar–Ghosh model15 that solves the J1 � J2
zigzag chain when J1 = 2J2. In two dimensions, the Shastry–
Sutherland model2 consisting of an orthogonal dimer network of
spin S= 1/2 was developed to be exactly solvable. For an inter-
dimer J 0 to intra-dimer J exchange ratio ↵ ⌘ J 0/J 0.5 the ground
state is a product of singlets on the strong bond J . Numerical
calculations have further shown that this remains valid up to
↵⇠0.7 and for small values of three-dimensional (3D) couplings
J 00 between dimer layers. At the other end, for ⇠0.9  ↵  1
the system approaches the well-known 2D square lattice, which

is antiferromagnetically (AFM) ordered, albeit with significant
quantum fluctuations that are believed to include resonating
singlet correlations resulting in fractional excitations16. The phase
diagram of the Shastry–Sutherland model, both with and without
applied magnetic field, has been intensively studied by numerous
theoretical and numerical approaches4. In the presence of magnetic
field, magnetization plateaus at fractional values of the saturation
magnetization corresponding to Mott insulator phases of dimer
states, as well as possible superfluid and supersolid phases have been
extensively studied7,17–19. At zero field, themain unsolved issue is the
existence and nature of an intermediate phase for⇠0.7↵⇠0.9.
A variety of quantum phases and transitions between them have
been predicted depending on the theoretical technique used: a
direct transition from dimer singlet phase to AFM order2,6,7, or an
intermediate phase with helical order5, columnar dimers11, valence
bond crystal12 or resonating valence bond plaquettes9,10. Recent
results indicate that a plaquette singlet phase is favoured4,20. From
such a phase, which would have an additional Ising-type order
parameter, a subsequent transition to AFM order could provide a
realization of the so far elusive deconfined quantum critical point21.

The compound strontium copper borate SrCu2(BO3)2 is the only
known realization of the Shastry–Sutherland model with S= 1/2
spins4 and has thus triggered considerable attention in the field
of quantum magnetism. The spectrum of SrCu2(BO3)2 exhibits
an almost dispersionless � = 3meV gap, and a bound state of
two triplets (BT) forms at EBT ' 5meV. The unusual size and
dispersionless nature of the gap is an e�ect of the frustration that
prevents triplets from hopping up to sixth order4. The estimated
exchange parameters in the material J ⇠85K and ↵=0.635 (ref. 4)
or J ⇠ 71K and ↵ = 0.603 (ref. 8) place the compound close
to an interesting regime ↵ ⇠ 0.7 where correlations may change
dramatically at a critical point.

A precious means to tune a quantum magnet across a quantum
phase transition is the application of hydrostatic pressure as
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trated lattices, magnetic exchange interactions cannot be
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ing exotic ground states1. The frustrated two-dimensional
Shastry–Sutherland lattice2 realized by SrCu2(BO3)2 (refs 3,4)
is an important test case for our understanding of quantum
magnetism. It was constructed to have an exactly solvable
2-spin dimer singlet ground state within a certain range of
exchange parameters and frustration. While the exact dimer
state and the antiferromagnetic order at both ends of thephase
diagram arewell known, the ground state and spin correlations
in the intermediate frustration range have been widely de-
bated2,4–14. We report here the first experimental identification
of the conjectured plaquette singlet intermediate phase in
SrCu2(BO3)2. It isobservedby inelasticneutronscatteringafter
pressure tuning to 21.5 kbar. This gapped singlet state leads
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quantum fluctuations that are believed to include resonating
singlet correlations resulting in fractional excitations16. The phase
diagram of the Shastry–Sutherland model, both with and without
applied magnetic field, has been intensively studied by numerous
theoretical and numerical approaches4. In the presence of magnetic
field, magnetization plateaus at fractional values of the saturation
magnetization corresponding to Mott insulator phases of dimer
states, as well as possible superfluid and supersolid phases have been
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existence and nature of an intermediate phase for⇠0.7↵⇠0.9.
A variety of quantum phases and transitions between them have
been predicted depending on the theoretical technique used: a
direct transition from dimer singlet phase to AFM order2,6,7, or an
intermediate phase with helical order5, columnar dimers11, valence
bond crystal12 or resonating valence bond plaquettes9,10. Recent
results indicate that a plaquette singlet phase is favoured4,20. From
such a phase, which would have an additional Ising-type order
parameter, a subsequent transition to AFM order could provide a
realization of the so far elusive deconfined quantum critical point21.

The compound strontium copper borate SrCu2(BO3)2 is the only
known realization of the Shastry–Sutherland model with S= 1/2
spins4 and has thus triggered considerable attention in the field
of quantum magnetism. The spectrum of SrCu2(BO3)2 exhibits
an almost dispersionless � = 3meV gap, and a bound state of
two triplets (BT) forms at EBT ' 5meV. The unusual size and
dispersionless nature of the gap is an e�ect of the frustration that
prevents triplets from hopping up to sixth order4. The estimated
exchange parameters in the material J ⇠85K and ↵=0.635 (ref. 4)
or J ⇠ 71K and ↵ = 0.603 (ref. 8) place the compound close
to an interesting regime ↵ ⇠ 0.7 where correlations may change
dramatically at a critical point.

A precious means to tune a quantum magnet across a quantum
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Is the PSS-AFM
transition a deconfined
quantum critical point?

Connection to experiments: Checker-board J-Q model
Plaquette-singlet 
solid (PSS) state 
- 2-fold degenerate

2

JJ’ JQ
(a) (b)

Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter

D
µ

=
1

N

X

r

(�1)rµSz(r)Sz(r+ µ̂), µ = x, y, (2)

where the sum is over all lattice coordinates r = (r
x

, r
y

). In a
columnar symmetry-broken VBS, we have hD

x

i 6= 0, hD
y

i =
0 for x-oriented bond order and the same with x $ y for y
oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD

x

i| = |hD
y

i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,

m
s

=
1

N

X

r

�(r)Sz(r), m
p

=
2

N

X

q

✓(q)P z(q), (3)

where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)
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FIG. 1. (Color online) The phase diagram of the Shastry-
Sutherland model as a function of nearest-neighbor coupling J

(J ′ = 1), obtained with iPEPS. The width of a bond is proportional
to the magnitude of the bond energy, where full (dashed) lines
correspond to negative (positive) energies. The arrows in the right
panel illustrate the Néel order. In between the well-established dimer
and Néel phase we find a phase with plaquette long-range order.

The paper is organized as follows: In Sec. II we provide
a brief introduction to the iPEPS method and explain the
different simulation setups used in this work. In Sec. III
we present our simulation results, first for values of J deep
in the individual phases, followed by a detailed study of
the phase transitions. Finally, in Sec. IV we summarize our
findings. In the Appendix the scheme to treat next-nearest-
neighbor interactions in iPEPS is explained.

II. METHOD

A. Infinite projected entangled-pair states

In this section we provide a short overview of iPEPS. For
a more detailed introduction to iPEPS and tensor networks in
general we refer to Refs. 14 and 25–27.

The main idea of a tensor network ansatz is to represent
(approximate) the coefficients ci1i2...iN of a wave function,

|!⟩ =
∑

i1i2...iN

ci1i2i3...iN |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |iN ⟩, (2)

by a trace over a product of tensors. Here each index ik
runs over the d local basis states of a lattice site. The most
famous example is matrix product states (MPS) which form
the class of variational states underlying the density-matrix
renormalization group (DMRG) method.15 In an MPS the
coefficients are given by a trace over the product of 3-index
tensors T lr

i (with 2-index tensors at the boundaries), as for
example for a 6-site system

ci1i2i3i4i5i6 ≈
∑

j1j2j3j4j5

A
j1
i1
B

j1j2
i2

C
j2j3
i3

D
j3j4
i4

E
j4j5
i5

F
j5
i6

. (3)

Thus, each coefficient ci1i2i3i4i5i6 is given by a product of
matrices (with vectors at the open boundaries), hence the name
matrix product state. Tensor networks are most conveniently
represented graphically, as shown in Fig. 2(a) for this particular
example. Each tensor is represented by a shape with lines (legs)
attached to it, which correspond to the indices of the tensor.
A connection between two tensors implies a sum over the
corresponding index, and an open leg of a tensor corresponds
to the physical index for the local Hilbert space of a site. Each
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FIG. 2. (Color online) Graphical representation of an infinite
projected entangled-pair state (iPEPS) made of a 4 × 2 unit cell
of tensors (surrounded by thick dashed lines) which is periodically
repeated. Each sphere corresponds to a rank-5 tensor and the lines
(legs) attached to the sphere represent the indices of the tensor, as
shown on the right-hand side.

auxiliary index jk runs over D elements, which is called the
bond dimension. Thus, D controls the size of the tensors (or
matrices), i.e., the number of variational parameters of the
ansatz.

A projected entangled-pair state (PEPS)13 is a natural
generalization of a matrix product state to two dimensions.
Instead of a three-index tensor, a five-index tensor T ldru

i

is introduced for each lattice site on a two-dimensional
(square) lattice, where each tensor is connected with its four
neighboring tensors via the auxiliary indices l, d, r , u, each
having a bond dimension D. Thus, the number of variational
parameters per tensor is dD4. An infinite PEPS (iPEPS) is an
ansatz for a wave function in the thermodynamic limit.14 It is
made of a unit cell of tensors which is periodically repeated on
the infinite lattice, as depicted in Fig. 2(b). If the wave function
is translational invariant, the same tensor can be used on each
lattice site. If the state breaks translational symmetry, a larger
unit cell may be required.17 In practice, different unit cell sizes
are tested to check, which size leads to the state with lowest
variational energy.

An iPEPS with D = 1 is nothing but a site-vectorized wave
function (a product state), parametrized by vectors Ti on each
site. With increasing D the iPEPS can represent more and more
entangled states, with a scaling of the entanglement with block
size which obeys the area law of the entanglement entropy.25,28

Or in other words, with increasing D the iPEPS can take
into account more of the quantum fluctuations of the true
ground state. These quantum fluctuations may select, e.g., one
of infinitely many degenerate states in the classical D = 1
case. Thus, iPEPS provides a way to systematically study a
state as a function of D, where D controls the amount of
quantum fluctuations (or entanglement) in the system.

In order to obtain an approximate representation of the
ground state for a given Hamiltonian, the tensors need to
be optimized; i.e., the best variational parameters have to be
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Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter

D
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=
1
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X

r

(�1)rµSz(r)Sz(r+ µ̂), µ = x, y, (2)

where the sum is over all lattice coordinates r = (r
x

, r
y

). In a
columnar symmetry-broken VBS, we have hD

x

i 6= 0, hD
y

i =
0 for x-oriented bond order and the same with x $ y for y
oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD

x

i| = |hD
y

i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,

m
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�(r)Sz(r), m
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=
2
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X

q

✓(q)P z(q), (3)

where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)

To study AFM-PSS transition in detail with QMC
- replace frustrated bonds by 4-spin Q terms
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Theoretical descriptions of quantum phase transitions have indicated the existence of critical points with
higher symmetry than those of the underlying Hamiltonian. Points of emergent symmetry have not been ex-
pected at discontinuous (first-order) transitions, however. Here we present such an example, where phase coex-
istence at a first-order transition takes the form of an enhanced rotational symmetry in a space of two order pa-
rameters. Using quantum Monte Carlo simulations to study a two-dimensional (2D) S = 1/2 quantum magnet
hosting the antiferromagnetic (AFM) and plaquette-singlet solid (PSS) states recently detected in SrCu2(BO3)2,
we observe that the O(3) symmetric AFM order and the Z2 symmetric PSS order form an SO(4) vector at the
transition. The control parameter (a coupling ratio) rotates the vector from the AFM sector to the PSS sector,
with the length of the combined order parameter vector always remaining non-zero. This phenomenon should
be observable in neutron scattering experiments on SrCu2(BO3)2.

Introduction.—Theoretical studies of exotic quantum states
of matter and the transitions between them can provide new
perspectives on quantum many-body physics and stimulate
experimental investigations. One example is the quantum
phase transition between Néel antiferromagnetic (AFM) and
spontaneously dimerized valence-bond solid (VBS) states in
two-dimensional (2D) quantum magnets [1, 2]. The theory of
deconfined quantum critical points (DQCPs) suggests that this
transition represents a breakdown of the Landau-Ginzburg-
Wilson (LGW) mechanism of phase transitions, as a conse-
quence of quasi-particle fractionalization [3, 4]. Over the past
decade, likely DQCPs have been identified in lattice models,
using “designer hamiltonians” constructed for their amenabil-
ity to large-scale quantum Monte Carlo (QMC) simulations
of VBS physics and the AFM–VBS transition [5–16]. How-
ever, only very recently was a potential experimental realiza-
tion of this type of DQCP reported—in the quasi-2D Shastry-
Sutherland (SS) compound SrCu2(BO3)2 under pressure [17].
Though the SS model Hamiltonian [18] is difficult to study
numerically, due to its geometrical frustration (which causes
sign problems in QMC simulations), a specific type of VBS—
a two-fold degenerate plaquette-singlet solid (PSS)—between
the known AFM and bond-singlet phases was nevertheless
demonstrated rather convincingly using a calculation with
tensor-network states [19]. Zayed et al. [17] showed that a
PSS also exists in SrCu2(BO3)2 and suggested that the AFM–
PSS transition may be a DQCP. The phase transition was not
studied in the experiment, however, and it is not immediately
clear if the two-fold degenerate PSS can support spinon de-
confinement in the same way as a four-fold degenerate VBS.
QMC studies of rectangular lattices with two-fold degenerate
VBS states point to a first-order transition [13].

Here we propose and study a sign-problem-free model that
mimics the SS compound, in the sense that it shares the same
kinds of AFM and PSS ground states. The Hamiltonian, illus-
trated in Fig. 1 along with the SS model, is a new member in
the “J-Q” family of Hamiltonians [5], with standard antifer-
romagnetic Heisenberg exchange of strength J supplemented
by four-spin interactions of strength Q that weaken and even-

tually destroy the AFM order. Our QMC simulations demon-
strate a quantum phase transition of a new kind, where the
O(3) symmetry of the AFM order parameter and the Z2 sym-
metry of the PSS order combine into an SO(4) (pseudo)vector,
even though no such large symmetry is apparent in the Hamil-
tonian. Non-LGW transitions with emergent higher symme-
tries have been intensely investigated during the past few years
[20–27], but, to our knowledge, always in the context of criti-
cal points, where the magnitude of the order parameter(s) van-
ishes. In the case discussed here, the order parameters exhibit
discontinuities, but the transition is not a conventional first-
order one. We show that the AFM order is rotated by the con-
trol parameter into PSS order, and that coexistence of the two
phases at the transition is in the form of an SO(4) symmet-
ric vector order parameter. The transition mechanism is, thus,
similar to that in an ordered system tuned through a point of
explicitly higher symmetry that separates ordered phases with
symmetries that are subgroups of the higher symmetry. A well
known case is the XXZ spin model tuned from the O(2) sym-
metric XX phase through the O(3) symmetric XXX (Heisen-
berg) point into the Z2 (Ising) phase. However, in our system
the different components of the SO(4) vector are physically
distinct order parameters, not just different components of a
magnetic order, and the higher symmetry is emergent instead
of explicit and trivial.

Ground states.—Our Hamiltonian can be defined using sin-
glet projection operators P

ij

= �(1/4 � S
i

· S
j

);

H = �J
X

hiji

P
ij

� Q
X

ijkl2⇤0

(P
ij

P
kl

+ P
ik

P
jl

), (1)

where hiji denotes nearest neighbors on a periodic 2D square
lattice with N = L2 sites and ⇤0 are the 2 ⇥ 2-site plaque-
ttes with J 0 bonds in the SS model (Fig. 1), with ijkl corre-
sponding to consecutive sites around a plaquette. We define
the coupling ratio g = J/Q. For g ! 1, this checker-board
J-Q (CBJQ) model reduces to the usual AFM ordered (at tem-
perature T = 0) Heisenberg model, and for g ! 0 we will
demonstrate a two-fold degenerate PSS. The model does not
have any phase corresponding the SS model for large J 0/J ,

Pij =
1
4 � Si · Sj

Do we get a PSS phase, and what kind of phase transition?

Checker-board J-Q (CBJQ) model2
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Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter

D
µ

=
1

N

X

r

(�1)rµSz(r)Sz(r+ µ̂), µ = x, y, (2)

where the sum is over all lattice coordinates r = (r
x

, r
y

). In a
columnar symmetry-broken VBS, we have hD

x

i 6= 0, hD
y

i =
0 for x-oriented bond order and the same with x $ y for y
oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD

x

i| = |hD
y

i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,
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where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)
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Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter
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a two-fold degenerate PSS should have |hD
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i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
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) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,
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and PSS order parameters, respectively. In m
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and we evaluate the expectation of its square; hm2i. The
VBS order can form with horizontal or vertical bonds,
and these are captured by the bond order parameters
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where for convenience we have switched to a notation
where the double subscripts on S

x,y

refer to the integer
coordinates on the square lattice. In this case as well
we need the squared order parameter, hD2i = hD2

x

i =
hD2

y

i, which has a reasonably simple direct transition-
graph loop estimator [? ].

With the above order parameters we can also define
the corresponding Binder cumulants. In the case of the
O(3) symmetric AFM order the proper definition of the
cumulant is
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hm2i2

◆
, (6)

where the coe�cients are chosen such that with increas-
ing system size U

m

! 1 in the AFM phase and U
m

! 0
if there is no AFM order. For hm4i rangle as well there is
a simple direct loop expression [? ]. In the case of VBS
order, the coe�cients of the cumulant should be chosen
as those for a 2-component vector order parameter, thus

U
D

= 2� hD4i
hD2i2 . (7)

Here hD4i involves eight-spin correlation functions that
in practice are too di�cult to compute e�ciently [? ]. We
therefore invoke an approximation that does not impact
the scaling properties; we simply evaluate (D

x

, D
y

) using
the loop estimator for the two-point operators (5a) and
(5b), and then use this vector of c-numbers to D2 and
D4. While the expectation values entering (7) are then
not strictly the correct quantum-mechanical expectation
values, they still reflect perfectly the absence or presence
of VBS order in the system.

In addition to the squared order parameters hm2i and
hD2i evaluated on the full lattice, we will also consider
the distance dependent spin and dimer correlation func-
tions,
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where we spaitially average over the reference coordinates
x, y for each disorder sample. The spin correlations have
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for di↵erent values of the coupling ratio of the random-Q
model. The curves show fits to the expected forms; low-order
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AFM phase and excluding linear terms in the RS phase.

a staggered sign (�1)rx+r

y , while the sign of the dimer
correlator with x oriented bond as above is (�1)rx (and
we take the proper average with the y-oriented ones).

B. Site Diluted J1-J2 static-dimer model

C. Site Diluted J-Q model

In the site-diluted model spins are removed (vacancies
are introduced) at random locations at some fixed con-
centration p. Any J or Q term in Eq. (1) that acting on
one or more vanacies are excluded from the sums. In the
AFM phase, as long as p is below the percolation thresh-
old p

c

above which the system (in the thermodynamic
limit) breaks up into finite decoupled clusters, the va-
cancies do not destroy the long-range AFM order, only
weaken it. If Q = 0 (the pure Heisenberg model), the
percolation point is the standard percolation point of the
square lattice, p

c

⇡ 0.407, while with Q > 0 the perco-
lation point will clearly increase further. Here we will
be interested in low concentrations, far below the perco-
lation point. In the gapped VBS host, when Q > Q

c

,
wth Q

c

/J ⇡ 0.667, the vacancies are expected to lo-
calize magnetic spin-1/2 moments around them. These
moments interact weakly with each other through the
gapped host, and since these interactions are, by sim-
ple arguments for a bipartite lattice, not frustrated, they
will develop a subsystem with AFM long-range-order at
T = 0. Thus, one would expect the sharp AFM–VBS
transition to be ruined.
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Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter

D
µ

=
1

N

X

r

(�1)rµSz(r)Sz(r+ µ̂), µ = x, y, (2)

where the sum is over all lattice coordinates r = (r
x

, r
y

). In a
columnar symmetry-broken VBS, we have hD

x

i 6= 0, hD
y

i =
0 for x-oriented bond order and the same with x $ y for y
oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD

x

i| = |hD
y

i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,

m
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=
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r

�(r)Sz(r), m
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=
2
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X

q

✓(q)P z(q), (3)

where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)
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the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
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an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
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the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
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Figure 3. Finite-size scaling results for the CPJQ model from SSE simulations at T = 1/L. (a) Spin (solid symbols) and dimer (open symbols)
Binder cumulants versus g for L = 24 (black), 48 (blue) and 96 (red). Interpolations within these data sets (and results for other system sizes)
underlie the analysis presented in the other panels. In (b) the crossing g-values of U

s

and U

d

are shown vs 1/L along with cross-points of the
same quantity (U

s

or U
d

) for system sizes L and 2L. The points approach the infinite-size transition point g
c

= 0.2175± 0.0001. The curves
are fits including a single power-law correction / L

�! , where ! is taken as an effective exponent. In (c) the squared order parameters at the
Binder (L, 2L) cross-points are graphed versus 1/L along with polynomial fits. The estimator of the correlation-length exponent, Eq. (6), is
shown in (d) for both order parameters, along with line fits. In all panels, error bars are not shown and are typically much smaller than the
symbol size. In all fits, small system sizes were excluded until acceptable agreement with the functional forms were obtained.

Figure 4. Results for the classical 3D Heisenberg model graphed as in Fig. 3. Here T

�1 = 0.7 > T

�1
c

for all values of �. The system sizes
in (a) are L = 8 (black), 16 (blue) and 32 (red). In the other panels the analysis is presented as in Fig. 3, with U
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and U

z

$ U

d

.

For a point on an O(4) sphere of radius R we have |m
p

| =
(R2 �m2

s

)1/2, and to mimic a finite CPJQ system we include
fluctuations of R. With mean hRi = 1 we take Gaussian fluc-
tuations of standard deviation � and generate the probability
distribution P (m

s

, |m
p

|) using the algorithm in Ref. [39]. Ex-
amples are shown Fig. 5(a). We can see that the projection
from four down to two dimensions leads to an arc shaped dis-
tribution with strongly varying height. We further generate
points on a deformed O(4) sphere, where the fourth compo-
nent (m

p

) is multiplied by a parameter � before normalizing
the vector. Thus, � = 1 is the isotropic O(4) coexistence
point and � < 1 and � > 1 correspond to the AFM and PSS
cases, respectively. Effects of the deformation are shown in
Fig. 5(b), where we have chosen values of both � and � to

closely reproduce the features observed in the CBJQ model
in Fig. 5(c) at selected points as we move across its phase
transition. We take this similarity as further evidence of the
enlarged symmetry. We expect � to decrease with increasing
L, as we do observe in our results for L  96.

Discussion.—We have demonstrated a new kind of symme-
try enhanced quantum phase transition at which AFM and PSS
orders coexist and form the components of an emergent SO(4)
(pseudo)vector. While in principle it cannot be excluded that
the symmetry is only approximate, the fact that the Binder
cumulants of the two order parameters never exhibit any neg-
ative values—the hallmarks of conventional first-order tran-
sitions (including previously studied first-order AFM–VBS
transitions [36])—shows that the length scale at which the
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0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J
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where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
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the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
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). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,

m
s

=
1

N

X

r

�(r)Sz(r), m
p

=
2

N

X

q

✓(q)P z(q), (3)

where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)
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where the coefficients have been chosen according to the rel-
evant symmetries so that U

s

! 1, U
p

! 0 in the AFM phase
while U

s

! 0, U
p

! 1 in the PSS. If there is a single tran-
sition, we can use the point at which U

s

(L) = U
p

(L) (where
the two curves graphed versus g cross each other) to define
a finite-size critical point. We can also take the more com-
monly used crossing points of curves for two different system
sizes, L and bL (where we use b = 2 below), locating the g
value where U

s

(L) = U
s

(bL) or U
p

(L) = U
p

(bL). The three
definitions will differ for finite L but should flow to the same
point g

c

in the thermodynamic limit.
The slopes of the cumulants at g

c

can be used to extract the
correlation length exponents ⌫

s

and ⌫
p

, using the following
definition based on two system sizes, L and bL [16, 34]:

1

⌫
sp

=
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ln(b)
ln


dU

sp

(g, bL)/dg

dU
sp

(g, L)/dg

�

g=gc(L)

, (6)

where g
c

(L) is the relevant (L, bL) cross-point. The deriva-
tives can be evaluated directly in the QMC simulations, and
we interpolate to obtain the cross-points and slopes from data
on a dense g-grid in the neighborhood of g

c

.
The analysis is presented and explained in Fig. 3. We find

a single transition with g
c

= 0.2175 ± 0.0001 based on all
three cross-point estimators in Fig. 3(b). Most notably, as seen
in Fig. 3(c), the order parameters at their respective Binder
crossing points do not vanish as L ! 1. This coexistence
of AFM and PSS order is a decisive indicator of a first-order
transition. Another first-order indicator is the fact that 1/⌫

s

and 1/⌫
p

both grow to values larger than 3 with increasing
L. At a classical first-order transition, 1/⌫ ! d, where d
is the spatial dimensionality. Here we are in 2+1 (two space
and one time) dimensions and would expect 1/⌫

sp

! 3, but in
Fig. 3(d) we see larger values. It is likely that the highly space-
time anisotropic system (with z 6= 1 because of the long-range
order) is responsible for this anomaly. In any case, the large
values do not support the already ruled-out (from the order
parameter) continuous transition. Then one would normally
also expect divergent negative peaks in the Binder cumulants
[35–37], which are not seen in Fig. 3(a).

The lack of negative Binder peaks leads us to consider other
mechanisms that could cause discontinuities in the order pa-
rameters (as follows from the phase coexistence in combina-
tion with the step-function behavior of the Binder cumulants).
A well known case is a system with long-range order driven
through a point at which the Hamiltonian has a higher sym-
metry. As an example, we discuss the 3D classical Heisenberg

O(3) model in the ordered phase, including a deformation pa-
rameter �;

H = �
X

hiji
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j

+��z

i

�z

j

). (7)

Here �
i

is a vector of length 1 residing on a simple cubic lat-
tice. Alternatively, we could also consider the 2D S = 1/2
quantum Heisenberg antiferromagnet at T = 0 with a simi-
lar deformation. When � < 1, the order parameter is in the
xy plane, hence is U(1) symmetric, while for � > 1 it is
an Ising order parameter with Z2 symmetry. The O(3) point
� = 1 is not normally regarded as the location of a first-order
phase transition, as there is no latent heat released when the
magnetization flips its direction, and it is certainly not a crit-
ical point. However, the elementary excitations do change,
as the Goldstone modes of the U(1) phase and O(3) point are
gapped out for � > 1. In this sense we can still consider the
system as going through a phase transition, which has both
first-order and continuous characteristics. We will analyze the
xy and z magnetizations individually, using standard classical
Monte Carlo simulations at T�1 = 0.7, which is below but
very close to T�1

c

at �
c

= 1 (where T�1
c

= 0.6930).
As shown in Fig. 4, behaviors very similar to those in the

CPJQ model are observed if we make an analogy between
the xy magnetization and the AFM order parameter on the
one hand and the Ising magnetization and the PSS order pa-
rameter on the other hand. The Binder cumulants and their
slopes are defined in ways completely analogous to Eqs. (5)
and (6). Since T is barely below T

c

, the coexistence values
of the magnetizations m2

x

= m2
y

= m2
z

at � = 1 [Fig. 4(c)]
are small, similar to the AFM and PSS order parameters in
Fig. 3(c). In the O(3) case we can also see clearly how 1/⌫

xy

and 1/⌫
z

approach the expected value 3 in Fig. 4(d). Thus,
in most respects this transition looks in finite-size scaling as a
first-order transition, with the glaring exception of the lack of
negative Binder peaks. Indeed, with phase coexistence in the
form of a higher symmetry, the arguments behind the negative
peaks [35, 37] do not apply.

Emergent SO(4) symmetry.—The CBJQ model does not
have any obvious point of enhanced symmetry between its
order parameters, but the above results suggest that the sys-
tem possesses an emergent symmetry at g

c

. The most natural
scenario is that the O(3) AFM and the Z2 PSS combine to
form SO(4) rotational symmetry [38]. To test this, we use the
valence-bond QMC method [28], where a transition graph is
associated with values m2

s

= m2
x

+m2
y

+m2
z

and m
p

. In the
latter we now use the rotationally invariant operator

P (q) = S(q) · S(q+ x̂) + S(q+ ŷ) · S(q+ ŷ + x̂)

+S(q) · S(q+ ŷ) + S(q+ x̂) · S(q+ x̂+ ŷ) (8)

in place of P z(q) in Eq. (3). In a state with both AFM and
PSS order, the commutator [m2

s

,m
p

] / 1/N2, and we can
therefore treat m2

s

and m
p

as c-numbers. For the putative
SO(4) symmetry to be manifest, we further divide m2

s

and m2
p

from each transition graph by hm2
s

i and hm2
p

i, respectively.
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where the coefficients have been chosen according to the rel-
evant symmetries so that U

s

! 1, U
p

! 0 in the AFM phase
while U

s

! 0, U
p

! 1 in the PSS. If there is a single tran-
sition, we can use the point at which U

s

(L) = U
p

(L) (where
the two curves graphed versus g cross each other) to define
a finite-size critical point. We can also take the more com-
monly used crossing points of curves for two different system
sizes, L and bL (where we use b = 2 below), locating the g
value where U

s

(L) = U
s

(bL) or U
p

(L) = U
p

(bL). The three
definitions will differ for finite L but should flow to the same
point g
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in the thermodynamic limit.
The slopes of the cumulants at g
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can be used to extract the
correlation length exponents ⌫

s

and ⌫
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, using the following
definition based on two system sizes, L and bL [16, 34]:
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where g
c

(L) is the relevant (L, bL) cross-point. The deriva-
tives can be evaluated directly in the QMC simulations, and
we interpolate to obtain the cross-points and slopes from data
on a dense g-grid in the neighborhood of g

c

.
The analysis is presented and explained in Fig. 3. We find

a single transition with g
c

= 0.2175 ± 0.0001 based on all
three cross-point estimators in Fig. 3(b). Most notably, as seen
in Fig. 3(c), the order parameters at their respective Binder
crossing points do not vanish as L ! 1. This coexistence
of AFM and PSS order is a decisive indicator of a first-order
transition. Another first-order indicator is the fact that 1/⌫

s

and 1/⌫
p

both grow to values larger than 3 with increasing
L. At a classical first-order transition, 1/⌫ ! d, where d
is the spatial dimensionality. Here we are in 2+1 (two space
and one time) dimensions and would expect 1/⌫

sp

! 3, but in
Fig. 3(d) we see larger values. It is likely that the highly space-
time anisotropic system (with z 6= 1 because of the long-range
order) is responsible for this anomaly. In any case, the large
values do not support the already ruled-out (from the order
parameter) continuous transition. Then one would normally
also expect divergent negative peaks in the Binder cumulants
[35–37], which are not seen in Fig. 3(a).

The lack of negative Binder peaks leads us to consider other
mechanisms that could cause discontinuities in the order pa-
rameters (as follows from the phase coexistence in combina-
tion with the step-function behavior of the Binder cumulants).
A well known case is a system with long-range order driven
through a point at which the Hamiltonian has a higher sym-
metry. As an example, we discuss the 3D classical Heisenberg

O(3) model in the ordered phase, including a deformation pa-
rameter �;
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Here �
i

is a vector of length 1 residing on a simple cubic lat-
tice. Alternatively, we could also consider the 2D S = 1/2
quantum Heisenberg antiferromagnet at T = 0 with a simi-
lar deformation. When � < 1, the order parameter is in the
xy plane, hence is U(1) symmetric, while for � > 1 it is
an Ising order parameter with Z2 symmetry. The O(3) point
� = 1 is not normally regarded as the location of a first-order
phase transition, as there is no latent heat released when the
magnetization flips its direction, and it is certainly not a crit-
ical point. However, the elementary excitations do change,
as the Goldstone modes of the U(1) phase and O(3) point are
gapped out for � > 1. In this sense we can still consider the
system as going through a phase transition, which has both
first-order and continuous characteristics. We will analyze the
xy and z magnetizations individually, using standard classical
Monte Carlo simulations at T�1 = 0.7, which is below but
very close to T�1

c

at �
c

= 1 (where T�1
c

= 0.6930).
As shown in Fig. 4, behaviors very similar to those in the

CPJQ model are observed if we make an analogy between
the xy magnetization and the AFM order parameter on the
one hand and the Ising magnetization and the PSS order pa-
rameter on the other hand. The Binder cumulants and their
slopes are defined in ways completely analogous to Eqs. (5)
and (6). Since T is barely below T

c

, the coexistence values
of the magnetizations m2

x

= m2
y

= m2
z

at � = 1 [Fig. 4(c)]
are small, similar to the AFM and PSS order parameters in
Fig. 3(c). In the O(3) case we can also see clearly how 1/⌫

xy

and 1/⌫
z

approach the expected value 3 in Fig. 4(d). Thus,
in most respects this transition looks in finite-size scaling as a
first-order transition, with the glaring exception of the lack of
negative Binder peaks. Indeed, with phase coexistence in the
form of a higher symmetry, the arguments behind the negative
peaks [35, 37] do not apply.

Emergent SO(4) symmetry.—The CBJQ model does not
have any obvious point of enhanced symmetry between its
order parameters, but the above results suggest that the sys-
tem possesses an emergent symmetry at g

c

. The most natural
scenario is that the O(3) AFM and the Z2 PSS combine to
form SO(4) rotational symmetry [38]. To test this, we use the
valence-bond QMC method [28], where a transition graph is
associated with values m2

s

= m2
x

+m2
y

+m2
z

and m
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. In the
latter we now use the rotationally invariant operator

P (q) = S(q) · S(q+ x̂) + S(q+ ŷ) · S(q+ ŷ + x̂)

+S(q) · S(q+ ŷ) + S(q+ x̂) · S(q+ x̂+ ŷ) (8)

in place of P z(q) in Eq. (3). In a state with both AFM and
PSS order, the commutator [m2
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,m
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] / 1/N2, and we can
therefore treat m2
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and m
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as c-numbers. For the putative
SO(4) symmetry to be manifest, we further divide m2
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from each transition graph by hm2
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Figure 3. Finite-size scaling of CBJQ results from SSE simulations at T = 1/L. (a) Spin (open symbols) and plaquette (solid symbols) Binder
cumulants versus g for L = 24 (black), 48 (blue) and 96 (red). Interpolations within these data sets (and results for other system sizes) underlie
the analysis presented in the other panels. In (b) the crossing g-values of U

z

and U

p

are shown vs 1/L along with the (L, 2L) same-quantity
crossing points from U

z

and U

p

. The points approach the infinite-size transition point g
c

= 0.2175 ± 0.0001. The curves are fits including
a single power-law correction / L

�! . In (c) the squared order parameters at the Binder (L, 2L) cross points are graphed versus 1/L along
with polynomial fits. The estimator of the correlation-length exponent, Eq. (6), is shown in (d) for both order parameters, along with line fits.
In all fits, small system sizes were excluded until acceptable agreement with the functional forms were obtained.

Figure 4. Results for the classical 3D Heisenberg model with anisotropy � graphed as in Fig. 3. Here T

�1 = 0.7 > T

�1
c

for all values of �.
The system sizes in (a) are L = 8 (black), 16 (blue) and 32 (red), with open and solid symbols used for U

xy

and U

z

, respectively. In the other
panels the analysis is presented as in Fig. 3.

The slopes of the cumulants at g
c

can be used to extract
the correlation length exponents ⌫

z

and ⌫
p

, using two system
sizes, L and bL [16, 36]:
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(g, bL)/dg
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where g
c

(L) is the relevant (L, bL) cross point. The deriva-
tives can be evaluated directly in the QMC simulations, and
we interpolate to obtain the cross points and slopes from data
on a dense g-grid in the neighborhood of g

c

.
The analysis is presented and explained in Fig. 3. We find a

single transition with g
c

= 0.2175±0.0001 based on all three
cross point estimators in Fig. 3(b). Most notably, in Fig. 3(c)
the order parameters at their respective Binder crossing points
do not vanish as L ! 1. This coexistence of AFM and PSS

order is a decisive indicator of a first-order transition. Another
first-order indicator is 1/⌫

z

and 1/⌫
p

growing to values larger
than 3 with increasing L. At a classical first-order transition,
1/⌫ ! d, where d is the spatial dimensionality. Here, in 2+1
dimensions we might expect 1/⌫

zp

! 3, but in Fig. 3(d) we
see larger values, perhaps related to the Anderson-Goldstone
rotor spectrum of the coexistence state. In any case, the large
values do not support the already ruled-out continuous transi-
tion. Then one would normally also expect divergent negative
peaks in the Binder cumulants [37, 38], which are not seen in
Fig. 3(a) but are present at the first-order transition in a J-Q
model with staggered Z4 VBS [39].

The lack of negative Binder peak at the first-order transition
leads us to consider alternative scenarios for coexisting order
parameters. A well known case is a system with long-range



Do we know any phase transition with similar characteristics?
Yes: 3D O(N) models with N=3,4,5,… in their ordered states (T < Tc)

3

for detecting plaquette modulation, and the index q runs over
the low-left corners of the Q plaquettes in Fig. 1. The signs
✓(q) = ±1 corresponds to even or odd plaquette rows.

We will primarily analyze the Binder cumulants,

U
s

=
5

2

✓
1 � hm4

s

i
3hm2

s

i2
◆
, U

p

=
3

2

 
1 � hm4

p

i
3hm2

p

i2
!
, (5)

where the coefficients have been chosen according to the rel-
evant symmetries so that U
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! 1, U
p

! 0 in the AFM phase
while U
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! 0, U
p

! 1 in the PSS. If there is a single tran-
sition, we can use the point at which U

s

(L) = U
p

(L) (where
the two curves graphed versus g cross each other) to define
a finite-size critical point. We can also take the more com-
monly used crossing points of curves for two different system
sizes, L and bL (where we use b = 2 below), locating the g
value where U
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(L) = U
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(bL). The three
definitions will differ for finite L but should flow to the same
point g
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in the thermodynamic limit.
The slopes of the cumulants at g
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correlation length exponents ⌫
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and ⌫
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, using the following
definition based on two system sizes, L and bL [16, 34]:
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where g
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(L) is the relevant (L, bL) cross-point. The deriva-
tives can be evaluated directly in the QMC simulations, and
we interpolate to obtain the cross-points and slopes from data
on a dense g-grid in the neighborhood of g

c

.
The analysis is presented and explained in Fig. 3. We find

a single transition with g
c

= 0.2175 ± 0.0001 based on all
three cross-point estimators in Fig. 3(b). Most notably, as seen
in Fig. 3(c), the order parameters at their respective Binder
crossing points do not vanish as L ! 1. This coexistence
of AFM and PSS order is a decisive indicator of a first-order
transition. Another first-order indicator is the fact that 1/⌫

s

and 1/⌫
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both grow to values larger than 3 with increasing
L. At a classical first-order transition, 1/⌫ ! d, where d
is the spatial dimensionality. Here we are in 2+1 (two space
and one time) dimensions and would expect 1/⌫

sp

! 3, but in
Fig. 3(d) we see larger values. It is likely that the highly space-
time anisotropic system (with z 6= 1 because of the long-range
order) is responsible for this anomaly. In any case, the large
values do not support the already ruled-out (from the order
parameter) continuous transition. Then one would normally
also expect divergent negative peaks in the Binder cumulants
[35–37], which are not seen in Fig. 3(a).

The lack of negative Binder peaks leads us to consider other
mechanisms that could cause discontinuities in the order pa-
rameters (as follows from the phase coexistence in combina-
tion with the step-function behavior of the Binder cumulants).
A well known case is a system with long-range order driven
through a point at which the Hamiltonian has a higher sym-
metry. As an example, we discuss the 3D classical Heisenberg

O(3) model in the ordered phase, including a deformation pa-
rameter �;

H = �
X

hiji

(�x

i

�x

j

+ �y

i

�y

j

+��z

i

�z

j

). (7)

Here �
i

is a vector of length 1 residing on a simple cubic lat-
tice. Alternatively, we could also consider the 2D S = 1/2
quantum Heisenberg antiferromagnet at T = 0 with a simi-
lar deformation. When � < 1, the order parameter is in the
xy plane, hence is U(1) symmetric, while for � > 1 it is
an Ising order parameter with Z2 symmetry. The O(3) point
� = 1 is not normally regarded as the location of a first-order
phase transition, as there is no latent heat released when the
magnetization flips its direction, and it is certainly not a crit-
ical point. However, the elementary excitations do change,
as the Goldstone modes of the U(1) phase and O(3) point are
gapped out for � > 1. In this sense we can still consider the
system as going through a phase transition, which has both
first-order and continuous characteristics. We will analyze the
xy and z magnetizations individually, using standard classical
Monte Carlo simulations at T�1 = 0.7, which is below but
very close to T�1

c

at �
c

= 1 (where T�1
c

= 0.6930).
As shown in Fig. 4, behaviors very similar to those in the

CPJQ model are observed if we make an analogy between
the xy magnetization and the AFM order parameter on the
one hand and the Ising magnetization and the PSS order pa-
rameter on the other hand. The Binder cumulants and their
slopes are defined in ways completely analogous to Eqs. (5)
and (6). Since T is barely below T

c

, the coexistence values
of the magnetizations m2
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= m2
y

= m2
z

at � = 1 [Fig. 4(c)]
are small, similar to the AFM and PSS order parameters in
Fig. 3(c). In the O(3) case we can also see clearly how 1/⌫
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and 1/⌫
z

approach the expected value 3 in Fig. 4(d). Thus,
in most respects this transition looks in finite-size scaling as a
first-order transition, with the glaring exception of the lack of
negative Binder peaks. Indeed, with phase coexistence in the
form of a higher symmetry, the arguments behind the negative
peaks [35, 37] do not apply.

Emergent SO(4) symmetry.—The CBJQ model does not
have any obvious point of enhanced symmetry between its
order parameters, but the above results suggest that the sys-
tem possesses an emergent symmetry at g

c

. The most natural
scenario is that the O(3) AFM and the Z2 PSS combine to
form SO(4) rotational symmetry [38]. To test this, we use the
valence-bond QMC method [28], where a transition graph is
associated with values m2

s

= m2
x

+m2
y

+m2
z

and m
p

. In the
latter we now use the rotationally invariant operator

P (q) = S(q) · S(q+ x̂) + S(q+ ŷ) · S(q+ ŷ + x̂)

+S(q) · S(q+ ŷ) + S(q+ x̂) · S(q+ x̂+ ŷ) (8)

in place of P z(q) in Eq. (3). In a state with both AFM and
PSS order, the commutator [m2

s

,m
p

] / 1/N2, and we can
therefore treat m2

s

and m
p

as c-numbers. For the putative
SO(4) symmetry to be manifest, we further divide m2

s

and m2
p

from each transition graph by hm2
s

i and hm2
p

i, respectively.

Example: Classical 3D O(3) (Heisenberg) model with tunable anisotropy

Symmetry changes vs 𝛥: O(2) for 𝛥<1, O(3) for 𝛥=1, Z2 for 𝛥>1
For T<Tc, analyze xy and z order parameters and Binder cumulants

Very similar behaviors as CBJQ model!
But no point of obvious higher symmetry vs g in the CBJQ model…

3

Figure 3. Finite-size scaling of CBJQ results from SSE simulations at T = 1/L. (a) Spin (open symbols) and plaquette (solid symbols) Binder
cumulants versus g for L = 24 (black), 48 (blue) and 96 (red). Interpolations within these data sets (and results for other system sizes) underlie
the analysis presented in the other panels. In (b) the crossing g-values of U

z

and U

p

are shown vs 1/L along with the (L, 2L) same-quantity
crossing points from U

z

and U

p

. The points approach the infinite-size transition point g
c

= 0.2175 ± 0.0001. The curves are fits including
a single power-law correction / L

�! . In (c) the squared order parameters at the Binder (L, 2L) cross points are graphed versus 1/L along
with polynomial fits. The estimator of the correlation-length exponent, Eq. (6), is shown in (d) for both order parameters, along with line fits.
In all fits, small system sizes were excluded until acceptable agreement with the functional forms were obtained.
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Figure 4. Results for the classical 3D Heisenberg model with anisotropy � graphed as in Fig. 3. Here T

�1 = 0.7 > T

�1
c

for all values of �.
The system sizes in (a) are L = 8 (black), 16 (blue) and 32 (red), with open and solid symbols used for U

xy

and U

z

, respectively. In the other
panels the analysis is presented as in Fig. 3.

The slopes of the cumulants at g
c

can be used to extract
the correlation length exponents ⌫

z

and ⌫
p

, using two system
sizes, L and bL [16, 36]:

1

⌫
zp

=

1

ln(b)
ln


dU

zp

(g, bL)/dg

dU
zp

(g, L)/dg

�

g=gc(L)

, (6)

where g
c

(L) is the relevant (L, bL) cross point. The deriva-
tives can be evaluated directly in the QMC simulations, and
we interpolate to obtain the cross points and slopes from data
on a dense g-grid in the neighborhood of g

c

.
The analysis is presented and explained in Fig. 3. We find a

single transition with g
c

= 0.2175±0.0001 based on all three
cross point estimators in Fig. 3(b). Most notably, in Fig. 3(c)
the order parameters at their respective Binder crossing points
do not vanish as L ! 1. This coexistence of AFM and PSS

order is a decisive indicator of a first-order transition. Another
first-order indicator is 1/⌫

z

and 1/⌫
p

growing to values larger
than 3 with increasing L. At a classical first-order transition,
1/⌫ ! d, where d is the spatial dimensionality. Here, in 2+1
dimensions we might expect 1/⌫

zp

! 3, but in Fig. 3(d) we
see larger values, perhaps related to the Anderson-Goldstone
rotor spectrum of the coexistence state. In any case, the large
values do not support the already ruled-out continuous transi-
tion. Then one would normally also expect divergent negative
peaks in the Binder cumulants [37, 38], which are not seen in
Fig. 3(a) but are present at the first-order transition in a J-Q
model with staggered Z4 VBS [39].

The lack of negative Binder peak at the first-order transition
leads us to consider alternative scenarios for coexisting order
parameters. A well known case is a system with long-range

T

1 ∆

Proposal: O(3) AFM and Z2 PSS orders form emergent O(4) vector



Detecting O(4) symmetry in the CBJQ model
- We know that the AFM component has O(3) symmetry
- Need to check only PSS order and one AFM component; P(mz,mp)
- O(4) projected down to a plane - constant density within circle
- Radius fluctuates because of finite size

- Appears that there is an O(4) point (the transition point)
- No sign of conventional AFM, PSS coexistence

O(4)

4

order driven through a point at which the Hamiltonian has a
higher symmetry. As an example, we discuss a deformed 3D
classical Heisenberg O(3) model in its ordered phase, with
nearest neighbor interactions H

ij

= �x

i

�x

j

+ �y

i

�y

j

+��z

i

�z

j

between unit vectors �
i

on a simple cubic lattice. We could
also consider the 2D S = 1/2 AFM Heisenberg model at
T = 0 with a similar deformation [40]. When � < 1, the
order parameter is U(1) symmetric in the xy plane, while for
Ising anisotropy, � > 1, the symmetry is Z2. At the O(3)
point � = 1, the elementary excitations of the quantum model
change, as the Goldstone modes of the U(1) phase and O(3)
point are gapped out continuously for � > 1. In this sense
we can consider the change in symmetry as a phase transition
with both first-order and continuous characteristics.

We carry out classical Monte Carlo simulations at T�1
=

0.7, close to T�1
c

(�

c

= 1) ⇡ 0.6930, and analyze the xy
and z magnetizations individually. As shown in Fig. 4, be-
haviors very similar to those in the CPJQ model are observed
if we make an analogy between the xy magnetization and the
AFM order parameter on the one hand and the Ising magne-
tization and the PSS order parameter on the other hand. The
Binder cumulants and slopes are defined in ways analogous
to Eqs. (5) and (6). Since T is barely below T

c

, the coexis-
tence values hm2

x

i = hm2
y

i = hm2
z

i in Fig. 4(c) are small. In
Fig. 4(d) we can also see that 1/⌫

xy

approaches the expected
first-order value 3, using a simple line fit, while a proper anal-
ysis of 1/⌫

z

may require larger systems.
In most respects, we see that the O(3) order–order transition

looks in finite-size scaling as a first-order transition, with the
glaring exception of the lack of negative Binder peak. Indeed,
with phase coexistence in the form of a higher symmetry, the
arguments behind the negative peak [37, 38] do not apply.

Emergent O(4) symmetry.—The CBJQ model does not have
any obvious point of enhanced symmetry, but the above re-
sults suggest that the system possesses an emergent symmetry
at g

c

. The most natural scenario is that the O(3) AFM and the
Z2 PSS combine to form O(4) symmetry [35]. To test this, we
use the valence-bond projector QMC method and now define
m

p

with the rotationally invariant operator,

⇧(q) = S(q) · S(q+ x̂) + S(q+ ŷ) · S(q+ ŷ + x̂)

+S(q) · S(q+ ŷ) + S(q+ x̂) · S(q+ x̂+ ŷ), (7)

in place of ⇧z

(q) in Eq. (3). We investigate the probability
distribution P (m

z

,m
p

), where the z-component of the AFM
order parameter is given as before by Eq. (3) and both m

z

and m
p

can be generated from a given transition graph [31].
In a state with both AFM and PSS order, the commutator
[m

z

,m
p

] / 1/N , and we can treat m
z

and m
p

as c-numbers.
For the putative O(4) symmetry to be manifest, we further nor-
malize each m

z

and m
p

by factors involving hm2
z

i and hm2
p

i,
as explained in Supplemental Material [42].

For a point on an O(4) sphere of radius R, the projection
onto two components results in a uniform distribution within
a circle of radius R. However, in a finite system we also ex-
pect fluctuations of R, and we therefore compare our CBJQ
results with a distribution obtained from an O(4) sphere with

� = 0.000(a) � = 0.100 � = 0.200

Figure 5. (a) One quadrant of the sampled [41] distribution of two
components of an O(4) vector with Gaussian length fluctuations with
mean R = 1 and standard deviation �. (b) Projector QMC distribu-
tion P (m

z

,m

p

) for the L = 64 CBJQ model at three coupling ratios
g. The x axis represents the z component of the AFM order parame-
ter (m

z

), while the y-axis is the PSS order parameter (m
p

) [42].

mean radius R = 1 and standard deviation �. Examples are
shown Fig. 5. At the transition, the CBJQ distribution is ro-
tation symmetric with radial profile similar to that of the O(4)
sampling with � = 0.2. Inside the phases the distributions are
shifted as expected—deep in the PSS we should eventually,
for L ! 1, obtain a point on the y-axis, and in the AFM
state a line on the x-axis. Further tests of the emergent sym-
metry are presented in Supplemental Material [42].

Discussion.—We have found a first-order quantum phase
transition at which coexisting AFM and PSS order parameters
form an emergent O(4) vector. It is possible that the O(4) sym-
metry is not exact, but reflects the existence of a nearby fixed
point (perhaps outside the model space) at which the higher
symmetry is exact [20, 25, 28]. Then, away from this point,
perturbations break the symmetry above some length scale ⇠0

larger than the correlation length ⇠ [25]. This scenario was
discussed in the context of continuous and weakly first-order
transitions. In the case of the CBJQ model, the observed dis-
continuities are rather large, however. From Fig. 3(c) and as-
suming O(4) symmetry, we have m

s

= h4m2
z

i1/2 ⇡ 0.12,
almost 25% of the maximum (classical) staggered magnetiza-
tion. Moreover, the first-order nature of the transition is appar-
ent even on small lattices, e.g., the flow of 1/⌫

z

in Fig. 3(d).
Thus, we are well above the length scale ⇠ but the scenario
of Ref. [25] would suggests that still L ⌧ ⇠0 ⇠ ⇠1+a, where
the exponent a would have to be rather large in order to give
the clear separation of length scales needed to account for
the observed O(4) behavior. Alternatively, we may speculate
that the emergent symmetry could be exact. In this scenario,
the dominant symmetry breaking field is tuned to zero at the
first-order AFM-PSS transition and higher-order O(4) violat-
ing perturbations are either absent or vanish upon renormal-
ization, by some extension of the DQCP description of the
order parameters or by some more general mechanism. While
emergent O(N ) symmetric multicritical points arising from

4

Figure 4. (a) One quadrant of the sampled [43] distribution of two
components of an O(4) vector with Gaussian length fluctuations with
mean R = 1 and standard deviation �. (b) Projector QMC distribu-
tion P (m

z

,m

p

) for the L = 96 CBJQ model at three coupling ratios
g. The x axis represents the z component of the AFM order parame-
ter m

z

, while the y-axis is the PSS order parameter m
p

[39].

(L = 8, 16), but no detectable deviations at gc for the largest
systems studied (up to L = 96).

Having concluded that there is emergent O(4) symmetry,
we can also understand why 1/⌫z,p > 3 in Fig. 3(b): The
dynamic exponent of the Anderson-Goldstone rotor states as-
sociated with O(N � 3) order is z = 2, and therefore one
may expect the exponents to eventually tend to d + z = 4

when L ! 1 at T = 0. The deviations may be due to T > 0

effects when T is scaled as L�1 (instead of L�2). As we show
in SM [39], quantitative measures of the emergent O(4) sym-
metry in our T = 0 calculations exhibit L�4 scaling of the
size of the g-window in which the symmetry is emergent.

Another interesting consequence of O(4) symmetry should
be a specific logarithmic (log) form of the critical PSS tem-
perature Tc versus the distance � = gc � g from the T = 0

transition point, Tc / log

�1
(C/�), as in an O(N � 3) model

with an Ising deformation [31, 32]. This form is very different
from that expected close to an Ising quantum-critical point,
where Tc / �⌫3D , where ⌫3D is the 3D Ising correlation-length
exponent. Neither form should apply at a conventional first-
order transition extending from (gc, T = 0) to some T > 0. If
the O(4) breaking perturbation is very weak, one should still
expect the log form to hold down to some low temperature.

We have computed Tc(g) for the PSS by the cumulant-
crossing method using SSE data for L  160. We can reli-
ably extrapolate Tc to the thermodynamic limit for g  0.216
(� & 0.0015), as shown in Fig. 5. The behavior for � . 0.02
is very well described by the log form, lending strong indirect
support to the emergent O(4) symmetry through an important
physical observable in the thermodynamic limit.

Discussion.—We cannot exclude that the O(4) symmetry is
present only up to some length scale above the largest system,
L = 96, studied here. Such symmetry violations at a long
scale may be expected at certain weak first-order transitions,
either when the system is close to a fine-tuned point with or-
der parameter of the higher symmetry (though no convincing

Figure 5. Inverse PSS critical temperature versus the shifted coupling
ratio � = g

c

�g. The red line is a fit to the expected log form, and the
black curve is of the conventional Ising form as a contrast. The inset
shows examples of the extrapolation of T

c

using the expected critical
scaling form with a subleading correction, T

c

= aL

�b(1 + cL

�d),
with fitting parameters a, b, c, d and L up to 160.

emmergent symmetries were observed in connection with this
scenario [44]), or in proximity of a quantum-critical point at
which the higher symmetry is emergent [20, 25, 28]. In the lat-
ter case, perturbations break the symmetry above some length
scale ⇠0 larger than the correlation length ⇠ [25].

In the CBJQ model studied here, the observed discontinu-
ities are rather strong; from Fig. 3(c), the magnitude of the
O(4) vector in AFM units is ms = h4m2

zi1/2 ⇡ 0.12, almost
25% of the maximum staggered magnetization 1/2. The first-
order nature of the transition is apparent even on small lat-
tices, e.g., as seen in the flow of 1/⌫z toward an anomalously
large value in Fig. 3(d). Thus, in the scenario of Ref. [25], we
should have ⇠ ⌧ L ⌧ ⇠0 ⇠ ⇠1+a, where the exponent a must
be rather large in order to give the clear separation of length
scales needed to account for the observed behavior. Such be-
havior has not been previously anticipated; rather, emergent
symmetry on large length scales has been cited as support for
continuous non-LGW transitions [20, 27]

In an alternative scenario of an asymptotic O(4) symme-
try, the dominant symmetry-breaking field is tuned to zero at
the AFM-PSS transition and higher-order O(4) violating per-
turbations would vanish upon renormalization, perhaps by an
extension of the DQCP framework, or by some more general
mechanism. While emergent O(N ) multicritical points arising
from O(N�1) and Z2 order parameters have been extensively
discussed within the LGW framework [45–48], the influence
of the higher symmetry on associated first-order lines have not
been addressed until recently in the weakly first-order DQCP
context [25]. In order to exclude that the CBJQ model is ac-
cidentally fine-tuned to vanishing or extremely small pertur-
bations of the O(4) symmetry, we have also studied a model
extended by additional interactions; see SM [39].

We designed the CBJQ model with SrCu2(BO3)2 in mind.

CBJQ

L = 96
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mean R = 1 and standard deviation �. (b) Projector QMC distribu-
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) for the L = 96 CBJQ model at three coupling ratios
g. The x axis represents the z component of the AFM order parame-
ter m

z

, while the y-axis is the PSS order parameter m
p

[39].

(L = 8, 16), but no detectable deviations at gc for the largest
systems studied (up to L = 96).

Having concluded that there is emergent O(4) symmetry,
we can also understand why 1/⌫z,p > 3 in Fig. 3(b): The
dynamic exponent of the Anderson-Goldstone rotor states as-
sociated with O(N � 3) order is z = 2, and therefore one
may expect the exponents to eventually tend to d + z = 4

when L ! 1 at T = 0. The deviations may be due to T > 0

effects when T is scaled as L�1 (instead of L�2). As we show
in SM [39], quantitative measures of the emergent O(4) sym-
metry in our T = 0 calculations exhibit L�4 scaling of the
size of the g-window in which the symmetry is emergent.

Another interesting consequence of O(4) symmetry should
be a specific logarithmic (log) form of the critical PSS tem-
perature Tc versus the distance � = gc � g from the T = 0

transition point, Tc / log

�1
(C/�), as in an O(N � 3) model

with an Ising deformation [31, 32]. This form is very different
from that expected close to an Ising quantum-critical point,
where Tc / �⌫3D , where ⌫3D is the 3D Ising correlation-length
exponent. Neither form should apply at a conventional first-
order transition extending from (gc, T = 0) to some T > 0. If
the O(4) breaking perturbation is very weak, one should still
expect the log form to hold down to some low temperature.

We have computed Tc(g) for the PSS by the cumulant-
crossing method using SSE data for L  160. We can reli-
ably extrapolate Tc to the thermodynamic limit for g  0.216
(� & 0.0015), as shown in Fig. 5. The behavior for � . 0.02
is very well described by the log form, lending strong indirect
support to the emergent O(4) symmetry through an important
physical observable in the thermodynamic limit.

Discussion.—We cannot exclude that the O(4) symmetry is
present only up to some length scale above the largest system,
L = 96, studied here. Such symmetry violations at a long
scale may be expected at certain weak first-order transitions,
either when the system is close to a fine-tuned point with or-
der parameter of the higher symmetry (though no convincing
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shows examples of the extrapolation of T
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using the expected critical
scaling form with a subleading correction, T
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= aL

�b(1 + cL

�d),
with fitting parameters a, b, c, d and L up to 160.

emmergent symmetries were observed in connection with this
scenario [44]), or in proximity of a quantum-critical point at
which the higher symmetry is emergent [20, 25, 28]. In the lat-
ter case, perturbations break the symmetry above some length
scale ⇠0 larger than the correlation length ⇠ [25].

In the CBJQ model studied here, the observed discontinu-
ities are rather strong; from Fig. 3(c), the magnitude of the
O(4) vector in AFM units is ms = h4m2

zi1/2 ⇡ 0.12, almost
25% of the maximum staggered magnetization 1/2. The first-
order nature of the transition is apparent even on small lat-
tices, e.g., as seen in the flow of 1/⌫z toward an anomalously
large value in Fig. 3(d). Thus, in the scenario of Ref. [25], we
should have ⇠ ⌧ L ⌧ ⇠0 ⇠ ⇠1+a, where the exponent a must
be rather large in order to give the clear separation of length
scales needed to account for the observed behavior. Such be-
havior has not been previously anticipated; rather, emergent
symmetry on large length scales has been cited as support for
continuous non-LGW transitions [20, 27]

In an alternative scenario of an asymptotic O(4) symme-
try, the dominant symmetry-breaking field is tuned to zero at
the AFM-PSS transition and higher-order O(4) violating per-
turbations would vanish upon renormalization, perhaps by an
extension of the DQCP framework, or by some more general
mechanism. While emergent O(N ) multicritical points arising
from O(N�1) and Z2 order parameters have been extensively
discussed within the LGW framework [45–48], the influence
of the higher symmetry on associated first-order lines have not
been addressed until recently in the weakly first-order DQCP
context [25]. In order to exclude that the CBJQ model is ac-
cidentally fine-tuned to vanishing or extremely small pertur-
bations of the O(4) symmetry, we have also studied a model
extended by additional interactions; see SM [39].

We designed the CBJQ model with SrCu2(BO3)2 in mind.
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Figure 1. Phases of the SS model and SrCu2(BO3)2. (a) Schematic T = 0 phase diagram of the SS model [10, 17]. (b) Experimental (P, T )
phase diagram of SrCu2(BO3)2 (crystal structure in the inset) revealed by high pressure heat capacity measurements. Examples of C(T )/T
curves are given in (c-f). The green open symbols in (b) mark the location Th of the hump in C/T for different samples (indicted by different
symbols). The purple curve shows Th for the 20-spin SS model with P -linear couplings close to those of Ref. [11]; J 0(P ) = [75�8.3P/GPa]
K and J(P ) = [46.7 � 3.7P/GPa] K. For P ⇡ 1.7 � 2.4 GPa a second peak at lower T appears, exemplified in (d), which indicates the
transition into the PS phase. Upon further compression, the system first enter a regime where the experimental setups (Methods) cannot reach
sufficiently low T to observe the second peak. The peak is again detectable around 3 GPa and becomes more prominent while moving to higher
T with increasing P . This behavior, shown in (e,f), suggests [26] a quasi-2D AF system ordering at T > 0 due to weak inter-layer couplings.
The phase boundaries extracted from the second peak are indicated by half-filled red squares and diamonds (PS phase) and blue filled squares
and half-filled circles (AF phase). The low-T data in (c,d) are fitted (black curves) to the form C/T = a0 + a1T

2 + (a2/T
3)e��/T [25],

giving gaps � displayed in Fig. 2(a). In (e,f) fits are shown (red curves) without gap term; C/T = a0 + a1T
2.

argue that this peak signals the PS phase transition. Upon
further increasing P , the small peak is no longer detected at
temperatures accesible in the experiment. A different, broader
hump appears between 3 and 4 GPa, below which there is a

peak at T ⇡ 2 � 3.5 K that we interpret as an AF transition.
AF order was previously detected only at P > 4 GPa at T as
high as ⇡ 120 K [11]. This high-T AF phase is not connected
to the new low-T AF phase—see Supplemental Information.

The C/T hump is known from previous studies at ambi-
ent pressure [25], where it is the result of the spins forming
the correlations that eventually lead to the dimer singlets as
T ! 0. As shown in Fig. 1(b), the hump temperature T

h

(P )
exhibits a minimum at P ⇡ 2.1 GPa. We have computed
C(T ) of the SS model by exact diagonalization (ED) of the
Hamiltonian on a 20-site lattice (Methods and Supplemental
Information) and extracted T

h

(↵). As shown in Fig. 1(b), we
achieve a remarkably good match with the experiments when
converting ↵ to P by using P -linear J(P ) and J 0(P ) [11].

In the 2D Heisenberg model the hump appears at T ⇡ J/2
[26] where significant short-range AF correlations start to

build up. In general, the hump indicates a temperature scale
where correlations set in that remove significant entropy from
the system. The T

h

(P ) minimum can be regarded as the point
of highest frustration, with the energy scale being lowered
due to the competing effects of the two couplings (see also
Refs. [27, 28]). The peak that we associate with PS ordering
appears in this pressure region, suggesting singlet formation
driven by strong frustration.

If the putative AF ordering below T = 4 K for P ⇡ 3 � 4
GPa is the result of weak inter-layer couplings J?, the ob-
served hump-peak separation is expected, as the hump present
for an isolated layer is not affected much by a small J? and
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Figure 1. Phases of the SS model and SrCu2(BO3)2. (a) Schematic T = 0 phase diagram of the SS model [10, 17]. (b) Experimental (P, T )
phase diagram of SrCu2(BO3)2 (crystal structure in the inset) revealed by high pressure heat capacity measurements. Examples of C(T )/T
curves are given in (c-f). The green open symbols in (b) mark the location Th of the hump in C/T for different samples (indicted by different
symbols). The purple curve shows Th for the 20-spin SS model with P -linear couplings close to those of Ref. [11]; J 0(P ) = [75�8.3P/GPa]
K and J(P ) = [46.7 � 3.7P/GPa] K. For P ⇡ 1.7 � 2.4 GPa a second peak at lower T appears, exemplified in (d), which indicates the
transition into the PS phase. Upon further compression, the system first enter a regime where the experimental setups (Methods) cannot reach
sufficiently low T to observe the second peak. The peak is again detectable around 3 GPa and becomes more prominent while moving to higher
T with increasing P . This behavior, shown in (e,f), suggests [26] a quasi-2D AF system ordering at T > 0 due to weak inter-layer couplings.
The phase boundaries extracted from the second peak are indicated by half-filled red squares and diamonds (PS phase) and blue filled squares
and half-filled circles (AF phase). The low-T data in (c,d) are fitted (black curves) to the form C/T = a0 + a1T

2 + (a2/T
3)e��/T [25],

giving gaps � displayed in Fig. 2(a). In (e,f) fits are shown (red curves) without gap term; C/T = a0 + a1T
2.

argue that this peak signals the PS phase transition. Upon
further increasing P , the small peak is no longer detected at
temperatures accesible in the experiment. A different, broader
hump appears between 3 and 4 GPa, below which there is a

peak at T ⇡ 2 � 3.5 K that we interpret as an AF transition.
AF order was previously detected only at P > 4 GPa at T as
high as ⇡ 120 K [11]. This high-T AF phase is not connected
to the new low-T AF phase—see Supplemental Information.
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ent pressure [25], where it is the result of the spins forming
the correlations that eventually lead to the dimer singlets as
T ! 0. As shown in Fig. 1(b), the hump temperature T

h

(P )
exhibits a minimum at P ⇡ 2.1 GPa. We have computed
C(T ) of the SS model by exact diagonalization (ED) of the
Hamiltonian on a 20-site lattice (Methods and Supplemental
Information) and extracted T

h

(↵). As shown in Fig. 1(b), we
achieve a remarkably good match with the experiments when
converting ↵ to P by using P -linear J(P ) and J 0(P ) [11].

In the 2D Heisenberg model the hump appears at T ⇡ J/2
[26] where significant short-range AF correlations start to

build up. In general, the hump indicates a temperature scale
where correlations set in that remove significant entropy from
the system. The T

h

(P ) minimum can be regarded as the point
of highest frustration, with the energy scale being lowered
due to the competing effects of the two couplings (see also
Refs. [27, 28]). The peak that we associate with PS ordering
appears in this pressure region, suggesting singlet formation
driven by strong frustration.

If the putative AF ordering below T = 4 K for P ⇡ 3 � 4
GPa is the result of weak inter-layer couplings J?, the ob-
served hump-peak separation is expected, as the hump present
for an isolated layer is not affected much by a small J? and
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In a quantum magnet, localized electronic spins can
form unusual collective states at low temperature. While
theoretical proposals for exotic states abound [1–6], many
of the most intriguing scenarios of quantum phases and
phase transitions beyond classical descriptions have been
difficult to realize experimentally. In one class of hy-
pothetical states, the spins entangle locally into dimer-
or quadrumer-singlets, which order in patterns breaking
some of the symmetries of the crystal lattice [1–3, 5, 7–
10]. Experimental signatures of such a state with four-spin
singlets were only recently detected in an inelastic neu-
tron scattering study of the quasi-two-dimensional quan-
tum magnet SrCu2(BO3)2 under high pressure [11]. The
state remained incompletely characterized, however, and
its existence has been questioned [12]. Here we report
heat capacity C(T) measurements along with simulations
of relevant quantum spin models and map out the (P,T)
phase diagram of the material. At pressures P between 1.7
and 2.4 GPa, the temperature dependence of C/T exhibits
features—a hump followed by a smaller peak at lower
T—characteristic of a paramagnet with strong quantum
fluctuations undergoing a phase transition below T = 2 K
into a plaquette-singlet state. We also observe a differ-
ent transition at T ⇡ 2 – 3.5 K into what appears to be
a previously missed antiferromagnetic state at P ⇡ 3 – 4
GPa. The possibility to tune SrCu2(BO3)2 between the
plaquette-singlet and antiferromagnetic states at moder-
ately high pressures opens opportunities for experimental
tests of quantum field theories and lattice models involv-
ing fractionalized excitations, emergent symmetries, and
gauge fluctuations [1, 4, 5, 13].

The S = 1/2 magnetic moments of SrCu2(BO3)2 re-
side on the Cu ions, which form orthogonal dimers within
the two-dimensional (2D) planes [14, 15]. The two domi-
nant Heisenberg exchange couplings J

ij

S
i

· S
j

realize the
Shastry-Sutherland (SS) model [Fig. 1(a)], with intra- and
inter-dimer values J 0 ⇡ 75 K and J ⇡ 45 K, respectively.
The SS model [16] was originally conceived as an example
of a 2D quantum spin system with an exact solution; when
0  ↵ = J/J 0 . 0.68 the ground state is a product of
dimer singlets [10, 16, 17]. For ↵ ! 1 the system reduces to

the antiferromagnetic (AF) Heisenberg model [18], but there
is also a third phase between the dimer-singlet (DS) and AF
phases. Recent calculations [17] have confirmed an early sce-
nario [10] of a plaquette-singlet (PS) phase at ↵ ⇡ 0.68�0.75
that breaks lattice translation symmetry [Fig. 1(a)].

At ambient pressure the properties of SrCu2(BO3)2 agree
well with SS model calculations in the DS phase [14, 15].
AF order has been observed at P ⇡ 4 GPa [11], before a
tetragonal to monoclinic structural transition takes place that
invalidates the SS description [19–21]. Since the Mermin-
Wagner theorem prohibits spin order in 2D Heisenberg sys-
tems at T > 0, the AF order should be due to weak inter-layer
couplings. A 2D SS description of the quantum phase transi-
tions is still relevant, and the simplest explanation of the be-
havior under pressure is that ↵ increases with P [10, 11, 22].
Then it should also be possible to stabilize the PS phase of
the SS model within some region of intermediate P at low T .
Breaking a discrete two-fold (Z2) symmetry, the PS order can
appear at T > 0 already in an isolated layer, and 3D effects
should be less important than at the AF T > 0 transition.

Following earlier indications of an intermediate phase with
broken spatial symmeties [23, 24], an inelastic neutron scat-
tering study revealed an excitation attributed to a PS state [11].
However, the new mode was only detected at P = 2.15 GPa,
and recently an alternative scenario with no PS phase was pro-
posed [12]. Here we will argue that the PS phase does exist
and is directly connected to a low-T (below 4 K) AF phase
between 3 and 4 GPa that was not observed previously.

We have performed high-pressure heat capacity (C) mea-
surements on SrCu2(BO3)2 single crystals. Based on the re-
sults and supporting numerical simulations of quantum spin
models, we have extracted the phase diagram, Fig. 1(b), in the
whole range of pressures where the SS model should be rele-
vant. We discuss data for still higher pressures in Supplemen-
tary Information. Six different samples were studied success-
fully, and for each of them C(T ) was measured from room
temperature down to 1.5 K or 0.4 K at several pressures (using
two different types of cryostats and pressure cells; see Meth-
ods). Consistent results were obtained among all these mea-
surements. In Fig. 1(c-f) we show typical results for C(T )/T
in the different pressure regions.
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Helical VBS in a deformed J-Q model Zhao, Takahashi, Sandvik [PRL 2021]

induced by the Z interaction may counteract the emergent
symmetry, as we recently showed with similar terms that,
when strong enough, render the AFM-VBS transition
clearly first order [26]. Our present results suggest that
already an infinitesimal Z causes a first-order transition.
Next, we consider the staircase J modulation, V ¼ W,

which breaks lattice symmetries. The fourfold degenerate
columnar VBS state of the model still retains its Z4

symmetry, with clocklike angular fluctuations between
neighboring states characterized by a complex order param-
eter D ¼ jDjeiϕ (as we demonstrate in Supplemental
Material [40]). The unit cell is doubled when h > 0 in
Fig. 1(d), but there is no symmetry implying destruction of
the DQCP due to Berry phase cancellations, unlike systems
such as the bilayer SUðNÞ model [53]. The W perturbation
being irrelevant in theVBSandAFMphases, it coulda priori
also be RG irrelevant at the DQCP, even though it breaks
lattice symmetries; in the Supplemental Material [40] we
show an example of an irrelevant perturbation breaking the
π=2 lattice rotation symmetry.
Figure 2(b) shows that CW defined with a 5 × 5-site cell

operator gives ΔW ¼ 1.90ð2Þ, i.e., the staircase perturba-
tion is also relevant. Thus, the DQCP is unstable, but from
the scaling dimension alone we do not know what fixed
point the system flows to for a finite W perturbation. We
will next show that a new phase opens between the VBS
and AFM phases.
HVB phase.—To characterize bond order beyond regular

patterns with small unit cells, we here first define a local
order parameter coarse grained on a cell of 3 × 3 spins,

TxðrÞ ¼ ð−1ÞrxðSzrSzrþx̂ þ SzrþŷS
z
rþx̂þŷ þ Szr−ŷS

z
rþx̂−ŷ

− SzrS
z
r−x̂ − SzrþŷS

z
r−x̂þŷ − Szr−ŷS

z
r−x̂−ŷÞ=6; ð3Þ

and TyðrÞ ¼ TxðrÞðx̂ ↔ ŷÞ. We will demonstrate that the
J −Q3 model with finite staircase modulation h > 0 hosts
a phase with helical order parameter

mðkðwx; wyÞÞ ¼
X

r

½Tx̂ðrÞ þ iTŷðrÞ&e−ir·kðwx;wyÞ; ð4Þ

where ðwx; wyÞ are positive integer winding numbers and
kðwx; wyÞ ¼ 2πðwx;−wyÞ=L. Here the minus sign on wy
applies to the choice of J pattern in Fig. 1(d), where the
stairs are directed along the ð1;−1Þ diagonal. The conven-
tional columnar VBS order parameter has w ¼ ð0; 0Þ.
We used the stochastic series expansion (SSE) QMC

method [54] at inverse temperature β ¼ L to study systems
with 0.2 ≤ h ≤ 1. We first visualize the HVB order in
Fig. 3, where a bond-centered local angle was extracted
from Tx and Ty in short h ¼ 1 simulations during which
symmetries can be broken. We observe what appears to be
long-range order along the diagonal (1, 1) direction and a
modulation in the ð1;−1Þ direction, corresponding to
winding numbers w ¼ ð1; 1Þ in Fig. 3(a) and (2, 2) in

Fig. 3(b). We find similar behaviors also at smaller h
values, and below we will present quantitative results
showing how the winding increases versus g at fixed h.
We will also demonstrate transitions of the HVB phase into
a conventional VBS phase at g1ðhÞ and an AFM phase
at g2ðhÞ > g1ðhÞ.
The following results were obtained by long SSE runs

with bona fide quantum mechanical expectation values
averaged over the lattice. We define a correlation function
CTðrÞ ¼ hTxðrÞTxð0Þi and also study the conventional spin
correlation function CSðrÞ ¼ hSzðrÞSzð0Þi. Examples of
both are shown in Fig. 4. As expected from Fig. 3, CT in the
HVB phase is modulated in the ðx;−xÞ direction, while the
correlations along ðx; xÞ are always positive and flatten out
when x → L=2. In contrast, the spin correlations decay
monotonically, faster than a power law in both directions.
Next we consider the squared magnitude of the order

parameter (4) for different winding numbers. Figure 5 shows

FIG. 3. Spatial dependence of the local VBS order parameter
from short SSE runs of L ¼ 64 systems at h ¼ 1 and g ¼ 0.25 (a)
and g ¼ 0.31 (b). The bar shows the mapping of the angle
extracted from bond-centered combinations of TxðrÞ and TyðrÞ
defined in Eq. (3). The brightness indicates the local bond
correlation jhSzi Szjij by a nonlinear map (see Supplemental
Material [40]).

FIG. 4. Bond CTðrÞ and spin CSðrÞ correlations at h ¼ 1 in the
diagonal directions of an L ¼ 128 system at g ¼ 0.25, where
wx ¼ wy ¼ 3. Negative CTðx;−xÞ values have been multiplied
by −1 and are shown with open circles.
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a scan over g for L ¼ 96. The conventional w ¼ ð0; 0Þ VBS
order successively gives way to HVB order with higher
winding, until k$ reaches a maximum kmaxðgÞ and AFM
order sets in. The finite-size rounded decays of both theHVB
and AFM order parameters suggest a continuous transition.
In contrast, the “microtransitions” between different winding
numbers exhibit metastability similar to first-order transi-
tions. In the transition regions where all the displayed
m2ðwx; wyÞ values are close to zero in Fig. 5, the system
fluctuates into winding sectors with wx ≠ wy. Such winding
sectors are seen explicitly for g ∼ 0.08–0.09, where we
observe degenerate w ¼ ð0; 1Þ and (1,0) helical order adja-
cent to the conventional w ¼ ð0; 0Þ VBS phase. In the
Supplemental Material [40] we further discuss the metasta-
bility and signatures of avoided level crossings in the ground
state energy in the neighborhood of winding-number tran-
sitions. We also demonstrate that these microtransitions are
mediated by the creation of spinon pairs and their subsequent
(after winding) destruction. In the thermodynamic limit, we
expect the wx ¼ wy states to completely dominate the
HVB phase.
Phase diagram.—Figure 6 shows the phase diagram

constructed from L ¼ 96 data such as those in Fig. 5.
Results for smaller sizes indicate only minor remaining
finite-size effects (see Supplemental Material [40]). The
HVB phase narrows with decreasing h and should extend
all the way to h ¼ 0, on account of the relevance of the
infinitesimal staircase perturbation. The DQCP is then a
kind of Lifshitz point, where the modulated HVB phase
meets the VBS and AFM phases. In contrast to the classical
Lifshitz point [55], all three phases are ordered, however.
The HVB-AFM transitions replace the classical modulated-
disordered transitions and may form a line of DQCPs, as we
show in the Supplemental Material [40] by examining
critical correlation functions and signatures of emergent
U(1) symmetry in the HVB phase. In the thermodynamic

limit, the HVB phase at fixed h should contain infinitely
many winding sectors. The conventional DQCP approached
for h → 0 then has infinite winding degeneracy, as was also
argued based on studies of different winding sectors in the
standard J-Q model [56].
Discussion.—The CFT bootstrap bound ν > 0.51 [37]

for the DQCP has been regarded as conflicting with the
QMC value ν ≈ 0.45 [24,28,36] and supporting the non-
unitary CFT scenario [30–35]. However, the bootstrap
argument can also be interpreted differently [37] if the
significance of the QMC result is properly recognized: if
ν < 0.51, there must be a second relevant field. We have
here identified this field as one induced by the staggered
bond operators illustrated in Fig. 1(c) and conjecture that it
destabilizes the DQCP by topological defects. We expect
this effect also with other correlated-singlet projectors that
are incompatible with columnar or plaquette VBS states.
The values of 1=ν ¼ 3 − Δ0 and 1=ν0 ¼ 3 − Δ0

0 are con-
sistent with the CFT bootstrap [37] and it would be
interesting to derive bounds for ΔAFM and ΔVBS given
Δ0 and Δ0

0, both with and without the additional
assumption of SO(5) symmetry. If there is SO(5) symmetry,
Δ0 and Δ0

0 may correspond to crossover and SO(5)-
preserving fields, respectively.
We have further demonstrated that the staircase pertur-

bation in Fig. 1(d) is also relevant and opens up a
magnetically disordered modulated HVB phase between
the conventional VBS and AFM phases. The HVB-AFM
transition at g ¼ g2 appears to be a line of generic DQCPs.
At the VBS-HVB transition at g ¼ g1 we always observe
the smallest nonzero winding number. Thus, in the thermo-
dynamic limit k$ → 0 continuously and the HVB wave-
length diverges when g↘g1. When g↗g1, the VBS
amplitude does not vanish and its correlation length
remains finite. This type of transition is similar to

FIG. 5. Helical order parameters in several ðwx; wyÞ sectors
versus g for an L ¼ 96 system at h ¼ 1. We have defined
m2ð1; 0Þ$ ¼ m2ð1; 0Þ þm2ð0; 1Þ, reflecting two degenerate sec-
tors for g ∼ 0.08–0.09. The staggered AFM order parameterm2

z is
also shown.
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FIG. 6. Phase diagram of the staircase J-Q3 model. The points
with error bars are based on L ¼ 96 results (see Supplemental
Material [40]) and the lines are guides to the eye. Dotted lines
emphasize the unknown shape of the tip of the HVB phase at the
multicritical DQCP (circle) and for h > 1 (where there is a QMC
sign problem).

PHYSICAL REVIEW LETTERS 125, 257204 (2020)

257204-4

 

Multicritical Deconfined Quantum Criticality and Lifshitz Point
of a Helical Valence-Bond Phase

Bowen Zhao ,1,* Jun Takahashi ,2,† and Anders W. Sandvik 1,2,‡
1Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA

2Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China

(Received 27 May 2020; accepted 6 November 2020; published 17 December 2020)

The S ¼ 1=2 square-lattice J-Q model hosts a deconfined quantum phase transition between
antiferromagnetic and dimerized (valence-bond solid) ground states. We here study two deformations
of this model—a term projecting staggered singlets, as well as a modulation of the J terms forming
alternating “staircases” of strong and weak couplings. The first deformation preserves all lattice
symmetries. Using quantum Monte Carlo simulations, we show that it nevertheless introduces a second
relevant field, likely by producing topological defects. The second deformation induces helical valence-
bond order. Thus, we identify the deconfined quantum critical point as a multicritical Lifshitz point—the
end point of the helical phase and also the end point of a line of first-order transitions. The helical-
antiferromagnetic transitions form a line of generic deconfined quantum-critical points. These findings
extend the scope of deconfined quantum criticality and resolve a previously inconsistent critical-exponent
bound from the conformal-bootstrap method.

DOI: 10.1103/PhysRevLett.125.257204

The deconfined quantum-critical point (DQCP) is a
paradigmatic “beyond Landau” quantum phase transition
in two dimensions [1]. Building on field theories for
quantum magnets [2–6] and stimulated by intriguing
numerical simulations [7,8], the DQCP proposal posits
that the transition between an antiferromagnetic (AFM)
ground state and a valence-bond solid (VBS, where singlets
condense on groups of two or more spins) is continuous
and described by spinons coupled to a U(1) gauge field
without topological defects. With the symmetry of the
spinons extended from SU(2) to SUðNÞ, the proposed
CPN−1 field theory can be solved for N → ∞. In violation
of the Landau rules, which prescribe a first-order transition,
the critical exponents including 1=N corrections agree
remarkably well [9] with simulations [10,11] of lattice
models with AFM-VBS transitions for moderately large N.
A contentious aspect of the DQCP scenario is the

suggestion that the continuous transition persists down to
N ¼ 2. This conjecture [1,12] found early support in
quantumMonte Carlo (QMC) simulations of the J-Qmodel,
in which the S ¼ 1=2Heisenberg model with exchange J on
the square lattice is supplemented by four-spin [13] or six-
spin [14] terms Q, illustrated in Figs. 1(a) and 1(b), that
induce correlated singlets and lead to VBS order for large
Q=J. Many QMC studies of these and other variants of the
J-Q model [15–26], as well as related 3D classical loop
models [27,28], have characterized the signatures of the
DQCP, including an emergent U(1) symmetry of the VBS
fluctuations [13,16,19,27]. However, anomalous scaling
behaviors have been interpreted by some as precursors to

a first-order transition [16,21,29]. Attempts to explain the
observations as a weakly first-order “walking” transition
invoke a nonunitary conformal field theory (CFT) with a
DQCP slightly outside the accessible model space, e.g., in
dimensionality different from two [30–35]. In this scenario,
the transition reflects the properties of the inaccessible fixed
point but eventually, for large lattices, flows away from it. No
concrete predictions have been put forward, however, and
concurrently further QMC studies have provided compelling
evidence of a continuous transition [36].
A puzzling issue is that the critical correlation-length

exponent ν ≈ 0.45 [24,28,36] violates a bound ν > 0.51
from the CFT bootstrap [37].We here identify a loophole in
this bound and also discover a previously unknown helical
valence-bond (HVB) phase. We consider two deforma-
tions of the J-Q model and demonstrate that they are

(a) (b) (c) (d)

FIG. 1. The multispin columnar Q interactions are products of
two (Q2) in (a) or three (Q3) in (b) singlet projectors. (c) The Z
perturbation consists of all four-spin interactions ðSi · SjÞðSk · SlÞ
with the site pairs ij and kl forming two staggered bonds, as
shown, as well as the π=2 rotated cases. (d) Staircase exchange
pattern W, with thick blue and thin black links representing
Jð1$ hÞSi · Sj.
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of a Helical Valence-Bond Phase
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The S ¼ 1=2 square-lattice J-Q model hosts a deconfined quantum phase transition between
antiferromagnetic and dimerized (valence-bond solid) ground states. We here study two deformations
of this model—a term projecting staggered singlets, as well as a modulation of the J terms forming
alternating “staircases” of strong and weak couplings. The first deformation preserves all lattice
symmetries. Using quantum Monte Carlo simulations, we show that it nevertheless introduces a second
relevant field, likely by producing topological defects. The second deformation induces helical valence-
bond order. Thus, we identify the deconfined quantum critical point as a multicritical Lifshitz point—the
end point of the helical phase and also the end point of a line of first-order transitions. The helical-
antiferromagnetic transitions form a line of generic deconfined quantum-critical points. These findings
extend the scope of deconfined quantum criticality and resolve a previously inconsistent critical-exponent
bound from the conformal-bootstrap method.

DOI: 10.1103/PhysRevLett.125.257204

The deconfined quantum-critical point (DQCP) is a
paradigmatic “beyond Landau” quantum phase transition
in two dimensions [1]. Building on field theories for
quantum magnets [2–6] and stimulated by intriguing
numerical simulations [7,8], the DQCP proposal posits
that the transition between an antiferromagnetic (AFM)
ground state and a valence-bond solid (VBS, where singlets
condense on groups of two or more spins) is continuous
and described by spinons coupled to a U(1) gauge field
without topological defects. With the symmetry of the
spinons extended from SU(2) to SUðNÞ, the proposed
CPN−1 field theory can be solved for N → ∞. In violation
of the Landau rules, which prescribe a first-order transition,
the critical exponents including 1=N corrections agree
remarkably well [9] with simulations [10,11] of lattice
models with AFM-VBS transitions for moderately large N.
A contentious aspect of the DQCP scenario is the

suggestion that the continuous transition persists down to
N ¼ 2. This conjecture [1,12] found early support in
quantumMonte Carlo (QMC) simulations of the J-Qmodel,
in which the S ¼ 1=2Heisenberg model with exchange J on
the square lattice is supplemented by four-spin [13] or six-
spin [14] terms Q, illustrated in Figs. 1(a) and 1(b), that
induce correlated singlets and lead to VBS order for large
Q=J. Many QMC studies of these and other variants of the
J-Q model [15–26], as well as related 3D classical loop
models [27,28], have characterized the signatures of the
DQCP, including an emergent U(1) symmetry of the VBS
fluctuations [13,16,19,27]. However, anomalous scaling
behaviors have been interpreted by some as precursors to

a first-order transition [16,21,29]. Attempts to explain the
observations as a weakly first-order “walking” transition
invoke a nonunitary conformal field theory (CFT) with a
DQCP slightly outside the accessible model space, e.g., in
dimensionality different from two [30–35]. In this scenario,
the transition reflects the properties of the inaccessible fixed
point but eventually, for large lattices, flows away from it. No
concrete predictions have been put forward, however, and
concurrently further QMC studies have provided compelling
evidence of a continuous transition [36].
A puzzling issue is that the critical correlation-length

exponent ν ≈ 0.45 [24,28,36] violates a bound ν > 0.51
from the CFT bootstrap [37].We here identify a loophole in
this bound and also discover a previously unknown helical
valence-bond (HVB) phase. We consider two deforma-
tions of the J-Q model and demonstrate that they are

(a) (b) (c) (d)

FIG. 1. The multispin columnar Q interactions are products of
two (Q2) in (a) or three (Q3) in (b) singlet projectors. (c) The Z
perturbation consists of all four-spin interactions ðSi · SjÞðSk · SlÞ
with the site pairs ij and kl forming two staggered bonds, as
shown, as well as the π=2 rotated cases. (d) Staircase exchange
pattern W, with thick blue and thin black links representing
Jð1$ hÞSi · Sj.
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J-Q3 model with staircase modulation of J terms
- induced a phase with winding (helical) VBS

J ! J(1± h)



Quantum magnetism as a research field
Many different aspects/contexts
- materials 
- artificial structures
Interesting theoretical questions
- how can we understand “exotic” quantum phases 
- how can we do reliable quantitative calculations? 
- connections to quantum field theory, particle physics
Experiments
- improving technologies allow better experiments
Technology
- future technologies; spintronics 
- quantum computing/information
Education
- S=1/2 quantum spin contains a lot of basic quantum mech! 
- quantum many-body physics with interacting spins


