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Outline

● Brief review of classical Monte Carlo

● World line algorithm

● Introduction to work-like algorithms



  

Preliminary Comments

● There is no “best” algorithm.

● Algorithms have advantages and disadvantages.

● Algorithms can be very well adapted to and optimized 
for a class of problems, but not work very well for other 
classes.

● The point is to choose an algorithm which is well 
adapted to your problem.

● Be pragmatic.

Here I will try to explain the basics building blocks of algorithms, but will 
not discuss important issues like auto-correlation, error bars etc. These are 
very interesting and important issues, but beyond our scope here.



  

Classical Monte Carlo

Our main goal is to calculate averages: 

P is the normalized (equilibrium) Boltzmann weight and Z the 
partition function. Complete numerical integration is impossible for 
large systems, even for a “simple” model like Ising where the 
number of configurations grows with the number of sites as 2N.

Monte Carlo: Construct a Markov chain to generate the 
configurations such that in the stationary limit, configurations are 
given by the correct probability distribution: P. In a Markov chain, an 
event depends only on the event immediately before it. 



  

Classical Monte Carlo

● P[φ,t] is the probability density for the configuration {φ} at step t.

●

● t is not necessarily real time.

is the transition rate from φ to φ'

In the stationary limit (i.e. at equilibrium):

Not easy to implement!

Rate of populating the 
configuration {φ} 

Rate of depopulating {φ}

The evolution equation for P can be written as:



  

Classical Monte Carlo

Easier to implement the configuration-by-configuration condition:

This condition is called detailed balance, it is sufficient to reach 
the correct equilibrium, but not necessary!

Many ways to do this. I give two examples:

Glauber dynamics:



  

Classical Monte Carlo
Check detailed balance:

We see that detailed balance is indeed satisfied. Of course we have:

Z cancels out in the detailed balance condition: We do not need to 
know the partition function, we only need the exponential of the 
energy of the configuration. We have this!



  

Classical Monte Carlo

Another very popular choice is Metropolis dynamics:

Check detailed balance for transitions between two
configurations φ and φ’. Two possibilities: 

As before, we do not need Z. Choose the dynamics you want, 
iterate using the appropriate W.

or Take the first one.



  

Classical Monte Carlo
Example: Ising with Metropolis.

● Generate an arbitrary initial configuration of spins:

● Visit the spins in any order (sequentially or randomly).

● At each spin, try to change it:

● Calculate the ratio:

●

● Accept the new value of the spin and move to the next one if:



  

Classical Monte Carlo
● Otherwise, generate a random number, r, uniformly distributed 

between 0 and 1. Accept the new value of the spin if:

● Otherwise reject the attempted change: Put back the value of 
the spin to its original value.

● Visit the next spin and repeat.

● When you visit all the spins, you have completed a SWEEP.

● Start another sweep. And so on.

● After many sweeps, the system will be at equilibrium and the 
spin configurations given by the correct Boltzmann weight.

● Continue generating new configurations now to calculate 
averages.

● To calculate physical quantities, visit the configuration and 
calculate.

● Average over all measurements. The average is arithmetic 
because the measurements have the correct weight built in.



  

Classical Monte Carlo

Important considerations:

● We need to make sure the system has thermalized, in other words P 
is stationary. Otherwise, the configurations are not drawn from 
equilibrium.

● The update scheme I described is local: In the Ising example I 
showed, we saw that only the close neighbors of a given spin 
participate in its evolution

● Away from a critical point, this is fine and evolution is efficient 
because correlation the length is short.

● But near a critical point, the correlation length is very long and one 
needs many more iterations for the effect of a flipped spin to be felt 
by all the spins correlated with it. This is called critical slowing 
down.

● In some cases it is possible to fight it by constructing “cluster 
algorithms”, e.g. the Wolff algorithm.



  

Quantum Monte Carlo
Apply the Metropolis method to quantum systems:

But the partition function here is a trace over an operator: How can 
we apply Metropolis to something like this? Recall that for 
Metropolis, we changed c-numbers and probabilities; how can one 
“change operators”?

We change matrix elements of operators!

The trace of an operator is invariant, we can calculate it in any 
representation, |ψ>: 

L exponentials:

L is chosen such that Δτ times the largest energy scale in H is very 
small.



  

Quantum Monte Carlo
So:

Used:

● The partition function is now a sum over a product of matrix 
elements, i.e. c-numbers!

● Time evolution operator:

● Matrix elements formally look like (imaginary) time evolution 
between the two successive states:

● If the product of the matrix elements is positive, it can be used as 
a Boltzmann weight and the Metropolis algorithm can be used.

● If the product is negative or, worse, complex, we are in trouble!

● Sometimes, we can avoid this with a good choice of states. But 
NOT ALWAYS!



  

Quantum Monte Carlo:
World Line Algorithm

Refreneces:
● ``Monte Carlo simulations of one-dimensional fermion 

systems'', J. E. Hirsch, R. L. Sugar, D. J. Scalapino, and R. 
Blankenbecler Phys. Rev. B26 (1982) 5033.

● ``World-line quantum Monte Carlo algorithm for a one-
dimensional Bose model'', G. G. Batrouni et R. T. Scalettar, 
Phys. Rev. B46 (1992) 9051.

This is a relatively easy algorithm to understand intuitively and to 
implement in code. You can easily calculate all diagonal quantities 
(we will see what this means) but not non-diagonal ones, such as 
Green functions.

A large class of Hamiltonians can be written in the form:



  

Quantum Monte Carlo:
World Line Algorithm

Where K is nondiagonal, for example:

And U is diagonal, for example:

This type of model will be our focus.



  

Quantum Monte Carlo:
World Line Algorithm

To fix ideas, we will take the one-dimensional Bose-Hubbard model:

K U
Write:

H1 connects odd site to even site after it, and H2 connects even site to 
odd site after it. This allows us to write the first approximation:

where we used the
Baker-Hausdorff formula

(Checkerboard decomposition)



  

Quantum Monte Carlo:
World Line Algorithm

Then, the partition function becomes:

Now consider the occupation number states:

The subscripts label the sites on the 1-dimensional lattice.  To 
evaluate the trace, introduce between each pair of exponentials 
the identity:

Lτ exponentials

2Lτ exponentials



  

Quantum Monte Carlo:
World Line Algorithm

“Time” evolution
by Δτ connecting
half the sites

“Time” evolution
by Δτ connecting
the other half the 

1      2      3      4      5     6      7      8

Sites on shaded squares are connected.

Two consecutive matrix elements advance the entire system by one
imaginary time step: All sites will be connected.

x

τ



  

Quantum Monte Carlo:
World Line Algorithm

Particles trace
“world lines”

Can hop right

and left

Typical move

1      2      3      4      5     6      7      8



  

Quantum Monte Carlo:
World Line Algorithm

Consider a typical move:

In a typical move, only four matrix elements change. They can be 
evaluated independently. That is why we broke up the 
Hamiltonian as we did. 

● Visit a shaded square.
● Randomly choose: Try a left jump or a right jump.
● Check if the choice is possible.
● Not possible: move to next square.
● Possible: Evaluate the product of the 4 elements before the move.
● Then:      Evaluate the product of the 4 elements after the move.
● Accept/reject using the Metropolis criterion.
● Move to next shaded square.
● And so on.
● The problem is now reduced to a product of independent 4-site 

matrix elements which can be evaluated exactly.



  

Quantum Monte Carlo:
World Line Algorithm

The entire update sweep is comprised of evaluations of such matrix 
elements.



  

Quantum Monte Carlo:
World Line Algorithm

We consider the typical move:



  

Quantum Monte Carlo:
World Line Algorithm

The matrix elements can be evaluated exactly numerically. But 
we can also expand the exponential:

So, we have for our typical move:

Generate random number from uniform distribution [0,1)

Accept the new configuration if:



  

Quantum Monte Carlo:
World Line Algorithm

Another example:

(Calculated exactly as before)



  

Quantum Monte Carlo:
World Line Algorithm

Another example:



  

Quantum Monte Carlo:
World Line Algorithm

The matrix elements can be evaluated as before:

So, we have for our typical move:

Generate random number from uniform distribution [0,1)

Accept the new configuration if:



  

Quantum Monte Carlo:
World Line Algorithm

On the other hand:

Then:

Accept!

So, we now know how to make the Monte Carlo moves. We do many 
sweeps until the system thermalizes. Then we need to measure 
physical quantities and average them.



  

Quantum Monte Carlo:
World Line Algorithm

Why split H into H1 and H2? Recall, in my examples, I used expressions 
like:

to calculate the matrix elements of the 4-site problem. But in fact, for 
this 4-site problem, the matrix element of the exponential is 
calculated exactly: 
● Calculate the matrix elements of K, assuming a maximum multiple 

occupancy on a site (say 6), 
● Fourier transform (diagonalize), 
● Exponentiate. 
● Invert Fourier transform.
But to see how quickly this becomes complicated, go to second order:



  

Quantum Monte Carlo:
World Line Algorithm

The term: destroys 2 particles on i+1 and creates 2 on i

The term: hops a particle from i+1 to i and back to i+1.

The higher the power, the more such terms are included. In fact we 
need to keep all of them because the sum up to finite contributions.

That is why we need to calculate the transition matrix exactly, and 
that is not hard for a 4-site problem.

What if we do not split H into H1 and H2?



  

Quantum Monte Carlo:
World Line Algorithm

1      2      3      4      5     6      7      8

How will we evolve the particles from the first slice to the next?

● Suggest sequential moves for one particle at a time and apply 
Metropolis? We can but the matrix is much larger than before. 
Why not just do the 4-site problem?

● Suggest a move for all particles? The acceptance rate will be very 
low. Think of Ising: We only change one site at a time because if 
we change many dependent sites, the acceptance will not be 
high.

● This suggests that it is more efficient to do the checkerboard 
splitting like I showed before.

We need matrix
elements of both
Steps because
both change.



  

Quantum Monte Carlo:
World Line Algorithm

Measurements:



  

Quantum Monte Carlo:
World Line Algorithm

Measurements:

Boltzmann
weight

Measurable



  

Quantum Monte Carlo:
World Line Algorithm

The previous expression takes the form:

● We need to calculate the ratio of the matrix elements
● For quantities which are diagonal in occupation, this is very simple.



  

Quantum Monte Carlo:
World Line Algorithm

● We can calculate static (equal imaginary “time”) correlation 
functions.

● We can also calculate dynamic (separated in imaginary “time”) 
correlation functions.

● Use maximum entropy, for example, to get dynamic properties, 
like excited states etc. 

● Correlations in the “time” direction also give us the superfluid 
density.

● We cannot calculate Green functions with this algorithm because 
the world lines are continuous, they do not break.



  

Quantum Monte Carlo:
World Line Algorithm

Avery interesting quantity for Bose systems is the superfluid density:

where W is the winding number of the world line 
configuration.

All windings = 0

Green W =    0
Blue    W = +1
Red     W =  - 1  



  

Quantum Monte Carlo:
World Line Algorithm

In two dimensions, we do the same. However, one full time step is 
now accomplished with 4 exponentials due to the breakup of the H.

Drag moves Twist moves



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm

References:

● ``Worm Algorithm for Problems of Quantum and Classical 
Statistics'', Nikolay Prokof’ev and Boris Svistunov, Understanding 
Quantum Phase Transitions, CRC Press, Taylor and Francis Group, 
Lincoln D. Carr (editor), (2011).

● ``Quantum Monte Carlo simulation in the canonical ensemble at 
finite temperature'', K. Van Houcke, S. M. A. Rombouts, and L. 
Pollet, Phys. Rev.  E73, 056703 (2006).

● ``Stochastic Green function algorithm'', V. G. Rousseau, Phys. Rev. 
E77, 056705 (2008).

● ``Directed update for the stochastic Green function algorithm'', V. 
G. Rousseau, Phys. Rev. E78, 056707 (2008).



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm

General features:

● Extension of the canonical worm algorithm.

● Works well in canonical and grand canonical ensembles.

● Continuous imaginary time: No Δτ errors.

● World lines are broken and ends move around: Can calculate 
Green functions.

● Good for complicated Hamiltonians.



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm

Examples of Hamiltonians where SGF is useful:

Spin-1/2 Bose-Hubbard model:

The one dimensional Rabi-Hubbard model:



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm

As usual, we start with the partition function:

Now we will write the H in the form:

Where U is the diagonal part and depends only on number operators. 
T is the nondiagonal part which can be more complicated than just 
the hopping term: It can have ring exchange operators, conversion 
from one particle type to another, etc ...

The minus sign in front of T is needed next page. T itself now is 
assumed to have positive signs.

Define the imaginary time-dependent operator:



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm

In the interaction picture we can write:

The exponential of the nondiagonal part is time ordered. It takes into 
account all possible (imaginary) times when the T can act. So, the 
partition function can be written as:



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm

So far this is just the usual partition function written is a slightly 
different form.

Note: The imaginary time insertions are not at discretized imaginary 
time steps, they can be anywhere between 0 and β. That is what 
makes this a continuous time algorithm. 



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm

Now let us write an “extended” partition function:

G is an arbitrary operator for now.

Defining, we can show as before:

This is the same as the previous partition function, except we have 
this G acting at τ which we introduced but not yet explained.



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm

Define:

Then, G is defined by:

● gpq is a matrix of our choice which depends on the application.

● It determines how many creation and annihilation operators can be 
be inserted.

● Typically, it decreases rapidly with number of insertions.

● Example:



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm

● ik and j
l
 are site indices where we insert the operators

● {ip|jq} denotes that all site indices in subset i are different from all 
indices in subset j. But one or more indices in a subset can be equal.

● The operator G inserts inserts breaks in the world lines.

● These are the “worms” in the algorithm.

● When the world lines close, we have a configuration of continuous 
lines. 

● We can then measure diagonal quantities.



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm

Choose direction: left or right

Create or destroy

Create an operator

Destroy an operatorShift

Shift

END



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm

6

4

5

2

3

1
x

τ

Choose: Move left.  Choose: Create Insert T at current location, move left

1



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm

6

4

5

2

3

1
x

τ

Choose: Move left.  Choose: Create Insert T at current location, move left

6

4

5

2

3

1

6

4

5

2

3

1

G=a3a
+

2



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm

6

4

5

2

3

6

4

5

2

3

1

G=a3a
+

2

● For illustration, I have taken T to be a hop between near neighbors.
● In general, the nondiagonal operator can be more complicated.
● How far to shift? It is chosen according to a probability distribution, 

typically exponential.



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm

6

4

5

2

3

6

4

5

2

3

1

τ

Now, shift left and create: The shift must stop before τL because of time ordering

6

4

5

2

3

6

4

5

2

3

1

τ

G=a+
1a3



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm
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1

τ

If we shift left and destroy, then:

G=a4a
+

2



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm
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+
2a3a5

G=a+
2a3



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm

● The head and tail of all worms are at the same imaginary time.
● Insures canonical ensemble.
● The canonical worm algorithm: Only one head and tail (one 

worm) and at the same imaginary time.
● Worm algorithm: Only the head or tail moves and is not at the 

same time.
● Worm algorithm can change the number of world lines, it is 

grand canonical.
● Measure Green functions: Just count how often a worm of a 

certain length appears.
● Measure diagonal quantities: Only when worms close. Then 

measurement is trivial.



  

Quantum Monte Carlo:
Stochastic Green Function Algorithm

Detailed Balance:
● Let Pi (Pf) be the probability of the initial (final) configuration.
● Si⟶ f the transition probability from i to f.
● Ai⟶ f the acceptance rate for the transition from i to f.

Detailed balance condition is:

Typically we choose the Metropolis solution:

with

For details of the probabilities, P, S and the probabilities to choose left 
or right, create or destroy, see the references. They are discussed in 
detail.



  

Quantum Monte Carlo:
Some Last comments

● The world line algorithm is intuitive and easy to code, especially in 
one dimension.

● It is still very useful for simpler bosonic models.

● Cannot measure Green functions.

● The SGF and other worm algorithms are powerful and, depending 
on the application, should be chosen. 

● Always choose an algorithm that is adapted to the problem.

● Choose if it is more practical to simulate in the canonical or grand 
canonical ensembles.

● Algorithm development is an active, and fun, part of what we do!
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